文章快速检索     高级检索
  中国水土保持科学   2023, Vol. 21 Issue (5): 71-80.  DOI: 10.16843/j.sswc.2023.05.008
0

引用本文 

亢晨波, 郭汉清, 张垚, 刘洋. 复垦区不同土地利用类型土壤入渗特征及其影响因素[J]. 中国水土保持科学, 2023, 21(5): 71-80. DOI: 10.16843/j.sswc.2023.05.008.
KANG Chenbo, GUO Hanqing, ZHANG Yao, LIU Yang. Soil infiltration characteristics and influencing factors of different land use types in reclaimed areas[J]. Science of Soil and Water Conservation, 2023, 21(5): 71-80. DOI: 10.16843/j.sswc.2023.05.008.

项目名称

山西农业大学科技创新基金项目"煤矸石山生态恢复不同阶段土壤水文特性研究"(2020BQ29)

第一作者简介

亢晨波(1997-), 男, 硕士研究生。主要研究方向: 水土保持与林业生态工程。E-mail: 1319095761@qq.com

通信作者简介

郭汉清(1972-), 男, 博士, 副教授。主要研究方向: 水土保持与流域综合治理。E-mail: ghqbxm@126.com

文章历史

收稿日期:2021-07-22
修回日期:2022-06-13
复垦区不同土地利用类型土壤入渗特征及其影响因素
亢晨波 , 郭汉清 , 张垚 , 刘洋     
山西农业大学林学院, 030801, 山西太谷
摘要:为揭示复垦区不同土地利用类型土壤入渗特征差异及其影响因素,采用环刀法测定不同土地利用类型土壤水分入渗过程,并分析土壤孔隙状况、机械组成、水稳性团聚体和有机质含量等与入渗性能的相关性。结果表明:1)初渗速率和稳渗速率均表现为杨树林>紫穗槐林>复垦耕地>草地,且同一土地利用类型下土壤入渗速率均随土层厚度增加而降低;2)对土壤入渗过程的拟合得出通用经验方程是描述该区域土壤入渗过程的最佳模型,决定系数在0.961~0.996之间;Pearson相关分析法表明土壤初渗速率和稳渗速率均与土壤密度呈极显著负相关(P<0.01),入渗速率与总孔隙度和有机质含量均呈显著正相关关系(P<0.05);3)主成分分析表明土壤水稳性团聚体、孔隙度、机械组成和有机质含量是影响该复垦区土壤渗透性的4个主要因子,四者累积贡献率为87.760%。
关键词土壤入渗    土地利用类型    入渗模型    主成分分析    复垦区    
Soil infiltration characteristics and influencing factors of different land use types in reclaimed areas
KANG Chenbo , GUO Hanqing , ZHANG Yao , LIU Yang     
College of Forestry, Shanxi Agricultural University, 030801, Taigu, Shanxi, China
Abstract: [Background] With the development and utilization of mineral resources, a series of eco-environmental problems have emerged. Land reclamation and vegetation restoration are the main measures for ecological restoration and reconstruction in mining areas. Soil infiltration is an important hydrological parameter to evaluate the water conservation capacity of soil. The study on soil infiltration characteristics and its influencing factors of different vegetation in the reclamation area is helpful to understand the improvement of soil texture by different vegetation in the mining area, and has certain guiding significance for the prevention and control of soil erosion and ecological construction. [Methods] In order to reveal the difference of soil water infiltration characteristics and its influencing factors of different land use types in reclamation area, taking four kinds of artificial restoration of vegetation (Populus woodland, Amorpha fruticosa woodland, reclaimed land and grassland) in the coal gangue reclamation area of Shanxi Yang Coal Group as the research object, the ring knife method was used to determine the soil water infiltration process of different land use types, and the correlation between soil density, soil moisture content, soil porosity, mechanical composition, water-stable aggregates and organic matter content and infiltration performance were explored through the main component analysis. [Results] 1) Compared with grassland, the soil total porosity increased by 0.71%-14.45%, the organic matter content increased by 77.67%-136.89%, and the soil density decreased by 0.65%-14.37% among Populus woodland, A. fruticosa woodland and reclaimed land in the reclaimed area; the initial infiltration rate and the steady infiltration rate were shown as Populus woodland > A. fruticosa woodland > reclaimed land > grassland, and the soil infiltration rate under the same land use type decreased with the increase of soil layer thickness. 2) The fitting of the soil infiltration process to obtain a common empirical equation was the best model to describe the soil infiltration process in this area, with a coefficient between 0.961 and 0.996, and Pearson correlation analysis showed that the soil initial infiltration rate and the steady infiltration rate were significantly and negatively correlated with the soil density (P<0.01), and the infiltration rate was significantly and positively correlated with the total porosity and organic matter content (P<0.05). 3) Principal component analysis showed that soil water-stable aggregates, porosity, mechanical composition and organic matter content were the four main factors affecting soil permeability in the reclamation area, and the cumulative contribution rate of the four was 87.760%. [Conclusions] The arbor-bush reclamation model has a strong soil water infiltration capacity, and its effect on improving soil texture is better than that of grassland reclamation model. In addition, the infiltration performance is closely related to the composition of water-stable aggregates, porosity, mechanical composition and organic matter content. The research results may provide reference for the selection of soil and water conservation tree species in reclamation area.
Keywords: soil infiltration    land use type    infiltration model    principal component analysis    reclaimed area    

煤矸石是煤炭开采和洗选过程产生的岩石废弃物之一,其结构性差、大孔隙多、保水保肥能力差。矸石大量堆积形成的煤矸石山导致区域土壤贫瘠、气候干燥、蒸发剧烈,对生态环境造成严重破坏。因此,植被恢复是矿区生态修复的重要举措之一[1-2],而土壤水作为植被恢复的重要影响因子,关乎植被的生长及土壤环境的变化[3]。其中,在土壤水分循环过程中,入渗是至关重要的环节,入渗不仅影响到地表径流、降雨补给之外,还关系到土壤水分的再分布和各类溶质迁移等方面[4];因此,如何提高复垦区土壤水分的利用效率,基于土壤入渗过程来揭示复垦区土壤的水源涵养和抗侵蚀能力,对复垦区水土流失防治和植被恢复具有重要意义。

近年来,较多学者进行了一些关于复垦区土壤入渗规律的研究并取得一定进展。李叶鑫等[5]、张耿杰[6]研究表明复垦区植被恢复能有效改善土壤密度、增加土壤有机质含量、提高土壤的入渗性能。此外,吕刚等[7]研究表明复垦区乔灌复垦模式下土壤入渗性能强于草地复垦模式。续海龙等[8]研究表明复垦区乔木林对土壤入渗能力的改善强于荒地和耕地。可见,目前研究多致力于分析复垦区不同植被类型对土壤入渗特征的影响[9-10],而缺乏对土壤入渗影响因子的系统性研究;笔者以阳泉五矿矸石复垦区为研究对象。该复垦区作为阳煤集团复垦示范工程,建成时间早、植被恢复好、保存较为完整。选取该复垦区4种主要土地利用类型:紫穗槐(Amorpha fruticosa)林、杨树(Populus)林、复垦耕地和草地,探究其不同土地利用类型土壤入渗规律及其影响因素,以期为矿区植被恢复提供科学依据。

1 研究区概况

研究区位于山西省阳泉市平定县(E 112°49′~113°41′,N 37°05′~37°58′)。海拔760~906 m,地貌类型主要为中低山和黄土丘陵地形。该区属暖温带半干旱大陆性季风气候,年均降水量为585.9 mm,夏季多雨且较为集中;年均气温10.8 ℃,无霜期114~180 d,最大冻土层厚度0.68 m,地带性植被主要为暖温带落叶阔叶林,土壤类型主要为褐土、粗骨土、潮土和石质土[11]。研究区原始地貌为荒沟,于2003年依据“由上向下、分层碾压、黄土覆盖、恢复植被”的治理方针,采用附近山体黄土对煤矸石进行复垦种植,其中平台覆土1 m,边坡覆土0.5 m[12]。复垦后土地类型均为林地和耕地,主要植被有垂柳(Salix babylonica)、侧柏(Platycladus orientalis)、刺槐(Robinia pseudoacacia)、芦苇(Phragmites communis)、毛白杨(Populus tomentosa)、红叶李(Prunus cerasifera)和紫穗槐等[13]。耕地作物均为玉米(Zea mays) (优迪919),管理方式按传统方式进行粗放经营,施肥为“一炮轰(结合整地播种,一次性将肥料施入土壤,生育期间不再追肥)”,中耕除草,复垦区内无灌溉系统,水分均来源于天然降水。

2 材料与方法 2.1 采样与调查

于2020年7月中旬,根据试验设计,对研究区地形地貌特征、植被生长状况等因素进行调查。依据立地条件一致、不受外界环境干扰的原则,在复垦区同一区域(平台,复垦年限为17 a)内选取相邻但之间无影响的草地(芦苇)、紫穗槐林、杨树林和复垦耕地作为研究对象。在4个样地中分别布设3个标准样地(20 m×20 m),随后在各标准样地的对角线及中心位置选取5个标准样方(3 m×3 m),去除地表枯落物和土石杂物,挖掘土壤剖面,用容积200 cm3的环刀,按照0~20、20~40和40~60 cm分层取样,每层3个重复。同时,取各剖面扰动土样1 kg左右装入自封袋带回室内风干,所测指标均为3个重复。研究区样地基本概况见表 1

表 1 样地基本概况 Tab. 1 Basic situation of plot
2.2 土壤理化性质测定

土壤密度、孔隙度等采用环刀法测定;重铬酸钾外加热法测定土壤有机质含量;比重计法测定土壤机械组成;湿筛法测定土壤水稳性团聚体。不同土地利用类型、土壤理化性质见表 2。土壤渗透速率采用环刀法测定,入渗试验中对入渗速率进行10 ℃修正。参考前人研究结果[14],选取 Kostiakov模型、Horton模型、Philip模型和通用经验方程4种常用模型对研究区4种土地利用类型土壤水分入渗过程进行拟合。

表 2 不同土地利用类型土壤理化性质比较 Tab. 2 Comparison of the physical and chemical properties of soils under different land use types

1) Kostiakov模型:

$ f(t)=a t^{-n}。$ (1)

式中:f(t)为入渗速率,mm/min;ab为拟合参数,量纲为1;t为时间,min。

2) Horton模型:

$ f(t)=f_{\mathrm{c}}+\left(f_{\mathrm{o}}-f_{\mathrm{c}}\right) \mathrm{e}^{-k t} 。$ (2)

式中:fcfo分别为稳渗率和初渗率,mm/min;k为经验常数。

3) 通用经验方程:

$ f(t)=a t^{-n}+b_{\circ} $ (3)

式中:ab均为经验参数;n为拟合参数。

4) Philip模型:

$ f(t)=0.5 S^{-1 / 2}+A_{\circ} $ (4)

式中:S为模型参数,表示土壤吸水能力的强弱;A为稳渗率,mm/min。

采用 SPSS 26.0软件进行方差分析、Duncan多重比较和 Pearson相关性分析,采用 Origin 2018软件作图。图表数据均为平均值±标准差。

3 结果与分析 3.1 土壤入渗特征

通常采用初渗速率、稳渗速率来评价土壤的渗透能力。笔者取前5 min的平均入渗速率作为初渗速率,稳定入渗率为单位时间内入渗量趋于稳定时的渗透速率。由图 1可知,4种土地利用类型在不同土层间入渗速率存在差异;杨树林、紫穗槐林、复垦耕地和草地表层土壤初渗速率依次为6.61、3.55、2.55和0.46 mm/min,稳渗速率依次为0.89、0.51、0.35和0.08 mm/min。表层土壤初渗速率在0.46~6.61 mm/min之间,稳渗速率在0.08~0.89 mm/min之间。其中,杨树林下表层土壤初渗速率和稳渗速率均最高,草地最低。

不同大写字母表示同一土层和不同土地利用方式下差异显著(P<0.05),不同小写字母表示相同土地利用方式和不同土层差异显著(P<0.05)。 Different capital letters indicate significant differences between the same soil layer and different land use patterns (P<0.05), and different lowercase letters indicate significant differences between the same land use methods and different soil layers (P<0.05) 图 1 不同土地利用类型和不同剖面土壤入渗特征 Fig. 1 Soil infiltration characteristics of different land use types and different profiles
3.2 土壤入渗过程模拟

图 2可见,紫穗槐林、杨树林、复垦耕地和草地土壤水分入渗速率随时间的变化曲线基本相似,入渗均随时间的延长逐渐降低并趋于稳定。入渗速率在0~10 min之间降低最快,10~50 min逐渐平缓,在50 min左右土壤达到饱和状态,入渗速率基本不再变化。入渗速率在不同土层间表现出随土层加深逐渐减小。

图 2 不同土地利用类型和不同剖面土壤入渗过程曲线 Fig. 2 Soil infiltration process curves of different land use types and profiles

将土壤入渗速率随时间的变化过程选取不同的入渗模型进行拟合,结果如表 3表 4所示。Kostiakov模型拟合系数介于0.915~0.995之间,平均相关系数为0.973;Horton模型拟合系数介于0.936~0.998之间,平均相关系数为0.977;通用经验方程拟合系数介于0.961~0.996之间,平均相关系数为0.988;Philip模型拟合系数介于0.906~0.990之间,平均相关系数为0.967。各样地的最优入渗模型决定系数在0.961~0.998之间,其中通用经验方程最多,占12个。这表明通用经验方程较 Kostiakov模型、Horton模型和 Philip模型更适宜于该区域水分入渗过程的模拟预测。

表 3 不同土地利用类型 Kostiakov模型和 Horton模型回归拟合结果 Tab. 3 Regression fitting results of Kostiakov model and Horton model for different land use types
表 4 不同土地利用类型通用经验方程和Philip模型回归拟合结果 Tab. 4 Regression fitting results of general empirical equations and Philip model for different land use types
3.3 土壤渗透性能影响因素 3.3.1 土壤理化性质对入渗的影响

土壤密度与初渗速率和稳渗速率分别呈极显著(P<0.01)和显著负相关关系(P<0.05)(表 5),总孔隙度与入渗速率呈显著正相关(P<0.05),土壤含水量与初渗速率和稳渗速率分别呈极显著(P<0.01)和显著正相关(P<0.05)。初渗速率、稳渗速率与>2 mm和>1 mm水稳性团聚体呈显著正相关(P<0.05)。初渗速率与有机质含量呈显著正相关(P<0.05)。

表 5 土壤入渗性能与影响因子相关性分析 Tab. 5 Correlative analysis between influencing factors and soil water infiltration capacity
3.3.2 土壤入渗性能主导因子筛选

通过对土壤渗透性能主成分因子筛选(表 6)可知:前4个主成分累积贡献率达87.760%,可用来解释各因子对土壤渗透性能的影响。影响土壤入渗性能的第1个主成分因子主要由水稳性团聚体组成,贡献率为44.708%,>5、>2、>1和>0.5 mm的水稳性团聚体因子负荷量较大,该类土壤水稳性团聚体含量较高;第2个主成分因子主要由土壤孔隙决定,方差贡献率为18.703%,毛管孔隙度和非毛管孔隙度在第2主成分上载荷均较高;第3个主成分因子主要由土壤机械组成决定,方差贡献率为15.540%,黏粒(<0.002 mm)、粉粒(0.002~0.02 mm)含量较多,砂粒(0.02~0.2 mm)含量相比较少,三者负荷量均较高;第4个主成分因子主要由有机质决定,因子负荷量为0.754。

表 6 土壤水分入渗能力的PCA分析 Tab. 6 PCA analysis of soil infiltration capacity

表 7可知,通过综合主成分得分评价得出不同土地利用方式下土壤水分入渗能力排序为杨树林>紫穗槐林>复垦耕地>草地。

表 7 土壤入渗能力评价 Tab. 7 Assessment of soil infiltration capacity
4 讨论

通过对复垦区4种土地利用类型土壤入渗性能测量试验,结果显示林地土壤的初渗速率和稳渗速率大于复垦耕地和草地。这与续海龙等[8]的研究结果相符。主要原因可能是林地较少受到人为扰动,保持原有的堆积状态,林内枯落物有利于减少孔隙堵塞,林木根系的生长促使下层孔隙增大,增强土壤入渗性能。但也有学者得出不同结论,如温明霞等[15]对神东集团马家塔露天煤矿复垦区研究发现,草地土壤水分下渗速率远大于林地和灌木林。两者结果不同的原因在于马家塔露天煤矿位于鄂尔多斯高原南部。该区土壤类型以风沙土为主,风沙土结构疏松多孔,水分下渗速度较快,而林地对土质结构的改良效果强于草地,土壤结构变好,土壤较为紧实,密度增大,从而导致草地的水分下渗过程强于林地和灌木。

已有研究[16-17]表明,土壤密度、有机质含量、各粒级含量和团聚体等土壤理化性质对土壤的入渗性能影响较大。土壤密度决定土壤的紧实和松散程度。密度越大,土壤孔隙越小,则土壤的透水通气性能越差,导致土壤渗透能力减弱[18]。土壤有机质含量通过促进土壤团聚体的形成,进而增强土壤的渗透性能。经过对复垦区前期野外调查发现,杨树林和紫穗槐林地枯落物丰富,有机质归还量大,团聚体结构稳定、密度小,土质疏松,孔隙度大,入渗性能较好。草地根系细且发育深度较低是造成入渗速率小的关键因素。研究区多为短历时降雨,土壤初渗速率越大,降雨产生的地表径流就越少,土壤所拦蓄的水分就越多,这对矿区植被的生长具有重要意义[19]。不同土地利用类型土壤的初渗速率大于稳渗速率。一方面是因为表层土壤遇水快速湿润过程中土壤团聚体迅速膨胀崩解,加之原状土表面细颗粒的堵塞,导致土壤孔隙连通性变差,造成入渗速率明显减小;另一方面,复垦区下层土壤较为紧实,密度大,导致下层土壤入渗性能差,入渗速率偏低,且本文研究发现入渗速率与土壤密度呈显著负相关。这与杨政等[19]研究结果相符。

针对不同土地利用类型土壤入渗规率进行的模拟研究发现,通用经验方程的拟合程度明显优于 Kostiakov模型、Horton模型和 Philip模型,这与刘洁等[20]的研究结果相符。对于 Kostiakov方程,其模型是假设起始入渗速率无穷大,随时间的无限延长,入渗速率将趋近于0。但在本研究中,由于在垂直入渗的过程中有重力势的存在,入渗速率随时间的无限延长将接近稳渗速率从而保持稳定,这较为符合土壤水动力学[9]。通用经验方程是在 Kostiakov模型垂直入渗的基础上增加常数项b,来反映时间无限长的情况下在重力作用下达到稳定入渗[20]。根据拟合得到的相关系数大小,通用经验方程对该区域土壤入渗过程的模拟效果最好。白中科和康示勇指出[21-22],矿区复垦地与黄土高原相比土壤更易发生水土流失,导致地貌加重,土壤水蚀模数增加59%;复垦后水蚀模数减少至原地貌的34%。因此,对矿区复垦后土壤水分运移规律及其影响因子还需深入研究,从而为我国矿区复垦工作的开展和植被恢复提供科学依据。

5 结论

1) 不同土地利用类型的入渗速率存在差异,初渗速率和稳渗速率均表现为杨树林>紫穗槐林>复垦耕地>草地;初渗速率和稳渗速率均随土层厚度增加逐渐减小,但同一土地利用类型在不同土层间入渗速率不存在显著差异。

2) 对不同土地利用类型下土壤水分入渗过程的拟合发现通用经验方程的相关拟合系数最好,决定系数均在0.961以上;各样地的最优入渗模型决定系数在0.961~0.998之间,其中通用经验方程最多占12个,通用经验方程较 Kostiakov模型、Horton模型和 Philip模型,可以较好地模拟预测该区土壤水分的入渗过程。

3) 土壤初渗速率和稳渗速率均与土壤密度呈极显著负相关(P<0.01),入渗速率与总孔隙度和有机质含量均呈显著正相关关系(P<0.05);主成分分析表明土壤水稳性团聚体、孔隙度、机械组成和有机质含量是影响土壤渗透性的4个主要因子,四者累积贡献率达87.760%。通过计算各土地利用类型土壤入渗能力综合得分,得出不同土地利用类型土壤入渗能力由强到弱依次为杨树林地(0.813)、紫穗槐林地(0.243)、复垦耕地(-0.117)和草地(-0.937)。

6 参考文献
[1]
王丽艳, 张成梁, 韩有志, 等. 煤矸石山不同植被恢复模式对土壤侵蚀和养分流失的影响[J]. 中国水土保持科学, 2011, 9(2): 93.
WANG Liyan, ZHANG Chengliang, HAN Youzhi, et al. Effects of different vegetation restoration patterns in gangue pile on soil erosion and nutrient loss[J]. Science of Soil and Water Conservation, 2011, 9(2): 93. DOI:10.3969/j.issn.1672-3007.2011.02.017
[2]
胡振琪, 龙精华, 王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报, 2014, 39(8): 1751.
HU Zhenqi, LONG Jinghua, WANG Xinjing. Self-healing, natural restoration and artificial restoration of ecological environment for coal mining[J]. Journal of China Coal Society, 2014, 39(8): 1751.
[3]
郑海峰, 米俊珍, 周永利, 等. 不同植被复垦对露天矿土壤水热环境的影响[J]. 露天采矿技术, 2019, 34(5): 1.
ZHENG Haifeng, MI Junzhen, ZHOU Yongli, et al. Effect of different vegetation reclamation on soil hydrothermal environment in open-pit mine[J]. Opencast Mining Technology, 2019, 34(5): 1.
[4]
王佳坤, 郭月峰, 祁伟, 等. 内蒙古砒砂岩土壤水平入渗特性及适用模型研究[J]. 内蒙古农业大学学报(自然科学版), 2021, 42(5): 46.
WANG Jiakun, GUO Yuefeng, QI Wei, et al. Horizontal infiltration characteristics and applicable models of pisha sandstone soil in Inner Mongolia[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2021, 42(5): 46.
[5]
李叶鑫, 吕刚, 王道涵, 等. 用3种测定方法分析排土场复垦区的表层土壤的饱和导水率[J]. 中国水土保持科学, 2019, 17(5): 65.
LI Yexin, LÜ Gang, WANG Daohan, et al. Analyzing the saturated hydraulic conductivity of surface soil in a dump by three measuring methods[J]. Science of Soil and Water Conservation, 2019, 17(5): 65.
[6]
张耿杰. 矿区复垦土地质量监测与评价研究[D]. 北京: 中国地质大学, 2013: 71.
ZHANG Gengjie. Study on monitoring and evaluation of the quality of reclaimed land in mining area: A case study in Pingshuo Mining Area[D]. Beijing: China University of Geosciences, 2013: 71.
[7]
吕刚, 傅昕阳, 李叶鑫, 等. 海州露天煤矿排土场复垦区不同土地利用类型土壤入渗特征[J]. 水土保持学报, 2017, 31(3): 123.
LÜ Gang, FU Xinyang, LI Yexin, et al. Soil infiltration characteristics under different land utilization types in the dump reclamation area of the Haizhou Open-cast Coal Mine[J]. Journal of Soil and Water Conservation, 2017, 31(3): 123.
[8]
续海龙, 魏忠义. 抚顺西露天矿复垦矸石山不同植被类型水分入渗研究[J]. 江西农业学报, 2009, 21(9): 169.
XV Hailong, WEI Zhongyi. Study on water infiltration of different vegetation types of Gangue mountain reclaimed in Fushun west openpit mine[J]. Acta Agriculturae Jiangxi, 2009, 21(9): 169.
[9]
付微, 邵明安, 黄明斌. 神府东胜煤田复垦区土壤入渗特性的试验研究[J]. 水土保持学报, 2008, 22(3): 14.
FU Wei, SHAO Ming'an, HUANG Mingbin. Experimental study of soil infiltration for reclamation land in Shenmu-Fugu Dongsheng Coal Mine Area[J]. Journal of Soil and Water Conservation, 2008, 22(3): 14.
[10]
杨国敏, 王力. 黑岱沟矿区排土场土壤水的氢氧稳定性同位素特征及入渗规律[J]. 煤炭学报, 2015, 40(4): 944.
YANG Guomin, WANG Li. Characteristics of stable isotopes and infiltration rule of soil water at dumping site in Heidaigou opencast coal mine[J]. Journal of China Coal Society, 2015, 40(4): 944.
[11]
李木楠, 李志娟, 李素清, 等. 山西阳泉矿区煤矸石山自然定居植物群落优势种种间关系[J]. 应用与环境生物学报, 2015, 21(6): 1143.
LI Munan, LI Zhijuan, LI Suqing, et al. Interspecific association of dominant species in naturally colonized plant communities on coal gob piles of the Yangquan mining area in Shanxi, China[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(6): 1143.
[12]
李瑶, 冯昶瑞, 周膂卓, 等. 阳泉矿区煤矸石山复垦地不同植被根际土壤酶活性季节变化[J]. 应用与环境生物学报, 2021, 27(2): 416.
LI Yao, FENG Changrui, ZHOU Luzhuo, et al. Ecological relationship of herb communities under different vegetation in coal gangue hill reclamation sites in Yangquan mining area[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(2): 416.
[13]
郝志远, 李素清. 阳泉矿区煤矸石山复垦地不同植被下草本植物群落生态关系[J]. 应用与环境生物学报, 2018, 24(5): 1158.
HAO Zhiyuan, LI Suqing. Ecological relationships in herbaceous plant communities under different plantations on reclaimed coal gob piles in the Yangquan mining area, China[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5): 1158.
[14]
徐勤学, 李春茂, 陈洪松, 等. 喀斯特峰丛坡地灌木林地与梯田旱地土壤水分入渗特征[J]. 农业工程学报, 2018, 34(8): 124.
XV Qinxue, LI Chunmao, CHEN Hongsong, et al. Characteristics of soil moisture infiltration in shrub land and terraces dryland in Karst peaks hillslopes[J]. Transactions of the CSAE, 2018, 34(8): 124.
[15]
温明霞, 邵明安, 周蓓蓓. 马家塔露天煤矿复垦区不同土地利用类型的土壤水分入渗过程研究[J]. 水土保持研究, 2009, 16(4): 170.
WEN Mingxia, SHAO Ming'an, ZHOU Beibei. Study on soil water infiltration processes in different land use types in Majiata reclaimed regions[J]. Research of Soil and Water Conservation, 2009, 16(4): 170.
[16]
吕刚, 翟景轩, 李叶鑫, 等. 辽西北风沙地不同植物群落土壤入渗特性[J]. 干旱地区农业研究, 2018, 36(4): 133.
LÜ Gang, ZHAI Jingxuan, LI Yexin, et al. Soil infiltration characteristics of different plant community in sandy land of northwestern Liaoning[J]. Agricultural Research in the Arid Areas, 2018, 36(4): 133.
[17]
冯锦萍, 樊贵盛. 土壤入渗传输函数输入变量分析[J]. 节水灌溉, 2015, 40(2): 1.
FENG Jinping, FAN Guisheng. Input variable analysis of soil infiltration transfer function[J]. Water Saving Irrigation, 2015, 40(2): 1.
[18]
林代杰, 郑子成, 张锡洲, 等. 不同土地利用方式下土壤入渗特征及其影响因素[J]. 水土保持学报, 2010, 24(1): 33.
LIN Daijie, ZHENG Zicheng, ZHANG Xizhou, et al. Characteristic and influencing factors of soil infiltration of different land use patterns[J]. Journal of Soil and Water Conservation, 2010, 24(1): 33.
[19]
杨政, 王冬, 刘玉, 等. 矿区排土场人工草地土壤水分及入渗特征效应[J]. 草业学报, 2015, 24(12): 29.
YANG Zheng, WANG Dong, LIU Yu, et al. Soil moisture and infiltration characteristics for artificial pasture planted on opencast coal mining tailings[J]. Acta Prataculturae Sinica, 2015, 24(12): 29.
[20]
刘洁, 李贤伟, 纪中华, 等. 元谋干热河谷三种植被恢复模式土壤贮水及入渗特性[J]. 生态学报, 2011, 31(8): 2331.
LIU Jie, LI Xianwei, JI Zhonghua, et al. Soil water holding capacities and infiltration characteristics of three vegetation restoration models in dry-hot valley of Yuanmou[J]. Acta Ecologica Sinica, 2011, 31(8): 2331.
[21]
白中科, 赵景逵, 李晋川, 等. 大型露天煤矿生态系统受损研究: 以平朔露天煤矿为例[J]. 生态学报, 1999, 19(6): 870.
BAI Zhongke, ZHAO Jingkui, LI Jinchuan, et al. Ecosystem damage in a large opencast coal mine: A case study on Pingshuo Surface Coal Mine, China[J]. Acta Ecologica Sinica, 1999, 19(6): 870.
[22]
康世勇. 马家塔露天矿土地复垦方式探讨[J]. 露天采煤技术, 1998, 14(2): 48.
KANG Shiyong. Discussion on land reclamation methods in Majiata open pit mine[J]. Opencast Mining Technology, 1998, 14(2): 48.