文章快速检索     高级检索
  中国水土保持科学   2023, Vol. 21 Issue (5): 1-8.  DOI: 10.16843/j.sswc.2023.05.001
0

引用本文 

李红, 鲍玉海, 贺秀斌. 水体浊度不同测量原理的对比分析[J]. 中国水土保持科学, 2023, 21(5): 1-8. DOI: 10.16843/j.sswc.2023.05.001.
LI Hong, BAO Yuhai, HE Xiubin. Comparative analysis of different measurement principles of water turbidity[J]. Science of Soil and Water Conservation, 2023, 21(5): 1-8. DOI: 10.16843/j.sswc.2023.05.001.

项目名称

国家自然科学基金重点项目"长江上游水库消落带土壤侵蚀机理及其生态利用模式"(U2040207);四川省科技计划重点研发项目"大型水库消落带土壤—植被演变机理与植被恢复技术研究"(2022YFS0471)

第一作者简介

李红(1992-), 女, 博士生。主要研究方向: 水土保持。E-mail: lihong@imde.ac.cn

通信作者简介

贺秀斌(1967-), 男, 博士, 研究员。主要研究方向: 水土保持。E-mail: xiubinh@imde.ac.cn

文章历史

收稿日期:2022-11-16
修回日期:2023-03-10
水体浊度不同测量原理的对比分析
李红 1,2, 鲍玉海 1, 贺秀斌 1     
1. 中国科学院、水利部成都山地灾害与环境研究所, 610299, 成都;
2. 中国科学院大学, 100049, 北京
摘要:浊度是河流、湖泊、水库等水体水质检测的重要指标之一。浊度计作为浊度测量的常用仪器,测量原理多种,为在当前水质评价工作中获取水体的真实浊度。通过梳理浊度计测量水体浊度的原理,分析不同测量原理的优劣势。表明浊度计的测量原理分为透射式,散射式,透射散射式,其中散射式的具有多种入射角度。研究发现:1)就浊度计的光源而言,红外LED的稳定性和光学系统更稳定。2)透射式适用于>2 000 NTU的水体。90°散射式、后向散射式、表面散射式分别适用于浊度 < 2 000 NTU、10~4 000 NTU、0~1 000 NTU范围内的水体。透射散射式灵敏度高,但测量范围有一定的局限性。3)不同适用场景下,实验室式精度较高。现场在线式可连续监测,其测量精度仅次于实验室台式。便携式便于移动测量,但精度和量程也较小。通过总结不同测量原理浊度计的适用性,确定适用于不同水体浊度监测的方法与仪器,可为水质监测与评价提供参考。
关键词水质    水体浊度    浊度计    测量原理    
Comparative analysis of different measurement principles of water turbidity
LI Hong 1,2, BAO Yuhai 1, HE Xiubin 1     
1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610299, Chengdu, China;
2. University of Chinese Academy of Sciences, 100049, Beijing, China
Abstract: [Background] Turbidity is one of the important indexes of water quality detection in rivers, lakes, and reservoirs. As a common instrument and equipment for water turbidity measurement, the turbidity meter has a wide variety of measurement methods. In the current water quality evaluation work, the applicable conditions and scope of the turbidity meter are often ignored, and the true turbidity of the water body cannot be obtained, This paper summarizes numerous literature, sorts out the advantages and disadvantages of various measurement methods of turbidity, and helps readers to choose turnitacturometer in an appropriate environment. [Methods] In the measurement method of turbidity, the calculation method, remote sensing inversion method, analogy method, turbidification method and photoelectric detection method are obtained. The calculation method calculates the turbidity through the sediment chlorophyll in the water, and the remote sensing inversion method is to reverse the turbidity by using the empirical model. The comparison method is to replace the turbidity. The photoelectric detection method is to obtain the turbidity by judging the light intensity absorbed or reflected by the liquid to be measured. When the turbidity value of the tested solution is >10 000, a desktop laboratory neopidometer can be used to determine the diluted tested liquid. [Results] From the selection of turbidimeter light source, the color, stability, luminescence intensity, measurement of particles and optical system of tungsten halogen lamp and infrared LED are analyzed. The comparison shows that infrared LED has wider applicability. Measurement methods are divided into indirect measurement and direct measurement, indirect method is divided into calculation method, remote sensing inversion method, analogy method. Direct measurement methods include: turbidimetric method, photoelectric detection method. The current commonly used method is photoelectric detection method in direct measurement. According to the optical path principle of photoelectric detection method, incident light can be divided into transmitted light, scattered light and transmitted scattered light, among which the scattered light can be divided into 90° scattering method, rear scattering method, front scattering method, surface scattering method, underwater scattering method, etc. Based on the principle of turbidity measurement, the upper limit of commercially available turbidity meters is 9 999 NTU. When the turbidity of water sample is greater than the upper limit, in order to meet the needs of emergency detection, the bench laboratory turbidity meter (measuring range 0~9 999 NTU) can be used for dilution determination of high turbidity water sample. For different application scenarios, laboratory, on-site online and portable have their own characteristics. [Conclusions] 1) For the turbidimeter's light source, infrared LED stability and optical system are more stable. 2) The transmission formula, 90° scattering formula, back scattering formula and surface scattering formula are applicable to water bodies with turbidity >2 000, < 2 000, 10~4 000 and < 1 000 NTU The transmission scattering type sensitivity is high, but the measurement range is limited3) In different application scenarios, the accuracy of the field is second only to the laboratory; portable accuracy and measurement range are limited.In the present paper summarizes the applicability of turbidity meter in different measuring principles, points out the methods and instruments suitable for turbidity monitoring in different water bodies, and provides reference for water quality monitoring and evaluation.
Keywords: water quality    water body turbidity    turbidimeter    measurement principle    

欧美等国家都将水体浊度作为饮用水卫生标准和水质安全检测重要参数[1-2]。我国大多数自来水厂都将浊度列为出厂水必须测量的指标[3]。水体浊度不仅是水质监测与评价的重要指标,也常作为水体泥沙含量的替代性指标[4-5]。随着浊度测量仪器的不断完善,浊度在水质、泥沙、微生物、饮料、油品等质量检测方面会有更广泛的应用[6-7]。浊度是一种光学效应[8],是光线与溶液中的悬浮物等相互作用的结果,水体浊度反映水体中悬浮颗粒物、胶体、浮游生物和微生物等物质的特征与数量[9-10],通常可通过测量水体中散射光的量或透射光的量来表达[11]。影响浊度的因素包括物理因素、化学因素、生物因素和其他环境因子等[12]。浊度的测量方法较多[13],因测试环境与目的不同而各具优势。浊度计作为测定浊度的专用仪器,由于测量方法与原理不同,市场上呈现出不同种类、测量精度、测量范围的浊度计,但各类浊度计的适用条件与应用范围尚未有系统梳理,导致难以选择适当的浊度计[14-15]。笔者在了解浊度基本概念的基础上,论述浊度的测量原理,系统比较各原理的适用性与优劣势,提出不同场景与环境下对浊度计的选择依据,以期为水质监测与评价提供参考。

1 浊度计光源的选择

浊度是水体透明度的量度,反映光在水体中受阻碍的程度,表现为一种光学效应,测量浊度的浊度计是一种光学测量仪器[16]。在测量光源的选择上,常见的有峰值波长在400~600 nm卤素钨灯和峰值波长在(860±30)nm红外LED,美国颁布的USEPA180.1标准和国际标准化组织颁布的ISO7027[17]标准中对二者的特征有详细介绍(表 1)。波长400~600 nm的卤素钨灯光源,对水体中小颗粒的散射较灵敏,由于散射作用对可见光中蓝光(波长400~500 nm)较敏感,受水体色度影响较大,导致测量结果偏小;波长在(860±30)nm左右的红外LED光源,浊度测量基本不受水体色度影响,且无需复杂的光学校正,稳定性较好。

表 1 浊度计光源的比较 Tab. 1 Comparison of turbidimeter light sources
2 浊度的测量方法

浊度测量的方法主要有间接推算法和直接测量法(图 1)。间接推算法包括推算法、遥感反演法、类比法。推算法是测量水体中的泥沙、叶绿素等特定悬浮物的浓度,通过建立悬浮物浓度与浊度之间的经验关系,进而推算水体浊度[18]。遥感反演法是利用遥感光谱特征通过经验模型、半经验模型或理论模型反演水体浊度[19-21]。类比法包括色度计法和烛光浊度计法,色度计法是利用色度直接代替浊度的方法;烛光浊度计法则是配置一定浓度的硅藻土标准溶液,放置烛光上观测,通过对比标准液和待测液高度,获取浊度的方法。直接测量法包括比浊法、光电探测法。比浊法包括目测比浊法和分光光度计法,2种方法是采用肉眼观测并与标准液比色的方式得出浊度值。光电探测法是通过光电探测浊度计测量浊度,是当前水环境质量评价实际工作中常用的一种方法[22-27],按光路测量原理入射光分为透射光、散射光和透射散射光(表 2)。

图 1 水体浊度的测量方法 Fig. 1 Methods for measuring turbidities of water bodies
表 2 浊度测量原理与公式 Tab. 2 Principles and formulas for turbidity measurement
2.1 透射光法

透射光法也称衰减光法,其测量原理是当一束入射光通过被测水体时,由于水中悬浮物等有阻拦、反射或吸收作用,使得透过水体的光强减弱,其减弱的程度与水中悬浮物数量等特征成一定相关性,可换算成浊度值[28]。根据朗伯-比尔定律[29],水体浊度与透光率的负对数呈线性关系,可通过测量透过被测水体的光强,来得到浊度值。

2.2 散射光法

散射光法是测量光束通过被测水体时产生的散射光强度,根据散射光强度与浊度的关系换算成浊度值[30],两者关系一般表现为瑞利公式[31]。按测量散射光与入射光的方向与方位,可将散射法分为90°散射法、后方散射法、前方散射法、表面散射法、水下散射法等(图 2)。

图 2 浊度计测量原理示意图 Fig. 2 Schematic diagram of turbidimeter measurement principle
2.3 透射散射光法

透射散射光法是同时测量光源通过待测水样时的透射光和散射光强度,并按两者光强度比值确定浊度值的大小[32]。透射散射光法能同时测出透射光和散射光强度,有效地提高测量的准确度和适应性。

2.4 高浊度稀释法

基于浊度的测定原理,目前市售浊度计的测定上限为9 999 NTU。当水样浊度>1万NTU时,为满足应急检测的需要,可利用台式实验室浊度计(量程为0~9 999 NTU)对高浊度水样进行稀释测定。其具体操作步骤如下:

1) 取原水置于锥形瓶中,加入一定体积比例(n)的稀释用蒸馏水,摇匀。

2) 取混匀后的稀释水样清洗样品瓶,摇匀后迅速在台式浊度计上进行测定,读取稀释后水样浊度值(s)。

3) 原水体浊度(Y)=稀释后浊度(s)×稀释比例(n)×经验系数(ɑ)。

3 不同测量方法的应用

在测量光源的选择上,常见的有峰值波长在400~600 nm卤素钨灯和峰值波长在(860±30)nm红外LED,两者各具特色,红外LED在色度上受影响小,发光稳定性好,无需配置复杂光学系统。卤素钨灯光强强,分辨力好,对小颗粒敏感。

浊度测量的方法主要有推算法、遥感反演法、类比法、比浊法和光电探测法。随着科技的发展,如今光电探测法被广泛使用,通常采用浊度计来获取浊度。浊度计的光路测量原理分别是透射光法、散射光法、透射散射光法。透射光法根据朗伯-比尔定律。散射光法的入射光和散射光强的关系表现为瑞利公式[35],根据入射和散射光的角度可分为90°散射法、后方散射法、前方散射法、表面散射法等。透射散射光法是测量透射光和散射光强度,按两者光强度比值确定浊度值。目前市售浊度计的测定上限为9 999 NTU,在暴雨季河流水体浊度通常>1万NTU,为满足应急检测的需要,可对超高浊度水样进行稀释测定。

影响水体浊度的因素众多,浊度的变化范围大,仅依照一种光学测量原理与方法很难达到实际精度和实时环境要求。因此实际应用中通常需按水样情况和水体环境,选择不同测量方法的浊度计及方案。当水体浊度较小时,大部分入射光都直接透射了,衰减的光强很弱,浊度小幅度的变化引起的透射光变化也很小,故利用透射光法测定低浊度会产生较大误差,且对监测仪器光电接收,稳定性和放大器件的分辨率的要求非常高,所以透射光法不适用于低浊度的测量,更适用于高浊度监测[35]。在低浊度水体中,散射光对悬浮微粒的散射作用明显,并且散射光曲线线性较好,散射光法在低浊度测量时显示出较高的灵敏度和准确度。但当水体浊度超过一定值时,会发生多次散射。此时散射光强快速下降,导致散射光强不能准确反映水体的实际浊度。因此散射光适用于中、低浊度的测量。透射散射光法能同时测出透射光和散射光强度,不仅保持透射光法和散射光法方法各自的优点,而且消除老化光源对测量值准确度的影响,有效提高测量的准确度和灵敏度,但由于透射光和散射光比值只在一定范围成呈线性关系,故测量范围有一定的局限性,且设备成本较高,故尚未广泛推广。在表 3表 4中对各测量原理进行优劣势的分析,并列举出应用场景和代表性浊度计。

表 3 不同测量方法浊度测定方法的优劣势比较 Tab. 3 Comparison of the advantages and disadvantages of turbidity measurement methods
表 4 不同应用场景浊度计的特征 Tab. 4 Characteristics of turbidity meters in different application scenarios
4 结论

1) 浊度计的光源有多种选择,常见的有峰值波长在400~600 nm卤素钨灯和峰值波长在(860±30)nm红外LED。浊度计的3种测量原理中透射光法、散射光法和透射散射光法对应测量原理和环境有所不同。

2) 透射光法浊度计适用于浊度>2 000 NTU的水体,测量范围大,但测量精度偏低,受水样色度影响大。90°散射光法浊度计则对浊度<2 000 NTU的水体测量十分具有优势,对光源和电路稳定性要求低,受水体色度影响小。后向散射光法浊度计对10~4 000 NTU范围内的测量精确度高,不易受环境影响,适用于泥沙分布较均匀、含沙量低于1.0 kg/m3的水体。水下散射光法浊度计测量精度高,稳定性好,但操作复杂。表面散射光法浊度计适用于<1 000 NTU的水体,其探测器窗口不受污垢干扰,但在线测量易导致误差。透射散射光法灵敏度高,适用性广,抗干扰能力强,但成本高,测量范围有一定的局限性。

3) 针对不同浊度计的适用场景而言,实验室式精度较高,量程最高,但难以进行连续监测。现场在线式测量精度次于实验室式,可连续监测,在野外普遍使用。便携式浊度计便于移动测量,成本较低,但精度较低,测量量程也较小。

5 参考文献
[1]
奚宏, 张志兰, 史东梅, 等. 三峡库区刘家沟小流域径流泥沙特征及趋势分析[J]. 中国水土保持科学, 2022, 20(4): 1.
XI Hong, ZHANG Zhilan, SHI Dongmei, et al. Runoff and sediment characteristics and trend analysis of Liujiagou small watershed in the Three Gorges Reservoir Area[J]. Science of Soil and Water Conservation, 2022, 20(4): 1.
[2]
PETUS C, CHUST G, GOHIN F, et al. Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery[J]. Continental Shelf Research, 2010, 30(5): 379. DOI:10.1016/j.csr.2009.12.007
[3]
PANIGRAHI S, WIKNER J, PANIGRAHY R C, et al. Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika Lagoon, India)[J]. Limnology, 2009, 10(2): 73. DOI:10.1007/s10201-009-0262-z
[4]
王海军, 王洪铸, 潘保柱, 等. 长江亚热带浅水湖群藻类浊度与非藻类浊度的变异规律[J]. 水生生物学报, 2017, 41(2): 414.
WANG Haijun, WANG Hongzhu, PAN Baozhu, et al. Variations of algal and non-algal turbidity among the Yangtze subtropical shallow lakes[J]. Acta Hydrobiologica Sinica, 2017, 41(2): 414.
[5]
MOREIRA V, LEBRON Y, DE PAULA E, et al. Recycled reverse osmosis membrane combined with pre-oxidation for improved arsenic removal from high turbidity waters and retrofit of conventional drinking water treatment process[J]. Journal of Cleaner Production, 2021, 312: 127859. DOI:10.1016/j.jclepro.2021.127859
[6]
BRAGA A, FILION Y. Initial stages of particulate iron oxide attachment on drinking water PVC pipes characterized by turbidity data and brightfield microscopy from a full-scale laboratory[J]. Environmental Science: Water Research & Technology, The Royal Society of Chemistry, 2022, 8(6): 1195.
[7]
何嘉莉, 袁耀芬, 周沛良, 等. 自来水厂混凝剂自动精准投加系统建设与运行[J]. 中国给水排水, 2021, 37(18): 139.
HE Jiali, YUAN Yaofen, ZHOU Peiliang, et al. Construction and operation of automatic and accurate coagulant dosing system in waterworks[J]. China Water & Wastewater, 2021, 37(18): 139. DOI:10.19853/j.zgjsps.1000-4602.2021.18.026
[8]
CABALLERO I, NAVARRO G. Application of extended full resolution MERIS imagery to assist coastal management of the area adjacent to the Guadalquivir estuary[J]. Progress in Oceanography, 2018, 165: 215. DOI:10.1016/j.pocean.2018.06.007
[9]
XU Xiuquan, FAN Haoming, CHEN Xiaoyu, et al. Estimating low eroded sediment concentrations by turbidity and spectral characteristics based on a laboratory experiment[J]. Environmental Monitoring and Assessment, 2020, 192(2): 1.
[10]
LAWLER D M, PETTS G E, FOSTER I D L, et al. Turbidity dynamics during spring storm events in an urban headwater river system: the Upper Tame, West Midlands, UK[J]. The Science of the Total Environment, 2006, 360(1): 109.
[11]
MOHD KHAIRI M T, IBRAHIM S, MD YUNUS M A, et al. A review on the design and development of turbidimeter[J]. Sensor Review, 2015, 35(1): 98. DOI:10.1108/SR-01-2014-604
[12]
左辉. 浊度的检测原理及方法[J]. 中国计量, 2012(4): 86.
ZUO Hui. Turbidity detection principle and method[J]. China Metrology, 2012(4): 86. DOI:10.3969/j.issn.1006-9364.2012.04.073
[13]
黄旭. 水质分析中的浊度检测探析[J]. 全面腐蚀控制, 2022, 36(1): 95.
HUANG Xu. Discussion on turbidity detection in water quality analysis[J]. Total Corrosion Control, 2022, 36(1): 95.
[14]
管轶华, 项志强, 郜晚蕾, 等. 一种在线式超低量程浊度高精度测量传感器研制[J]. 无线通信技术, 2022, 31(1): 30.
GUAN Yihua, XIANG Zhiqiang, GAO Wanlei, et al. Development of an online ultra-low range high-precision turbidity measurement sensor[J]. Wireless Communication Technology, 2022, 31(1): 30.
[15]
KITCHENER B G, WAINWRIGHT J, PARSONS A J. A review of the principles of turbidity measurement[J]. Progress in Physical Geography: Earth and Environment, SAGE Publications Ltd, 2017, 41(5): 620. DOI:10.1177/0309133317726540
[16]
ZHOU Qu, WANG Jianru, TIAN Liqiao, et al. Remotely sensed water turbidity dynamics and its potential driving factors in Wuhan, an urbanizing city of China[J]. Journal of Hydrology, 2021, 593: 125893. DOI:10.1016/j.jhydrol.2020.125893
[17]
王志丹. 光学浊度传感器的设计与实现[D]. 南京: 南京信息工程大学, 2016: 9.
WANG Zhidan. Design and Realization of optical turbidity sensor[D]. Nanjing: Nanjing University of Information Science & Technology, 2016: 9.
[18]
兰羽, 张顺星. 一种直射式光电浊度计的设计[J]. 国外电子测量技术, 2013, 32(1): 53.
LAN Yu, ZHANG Shunxing. Design of a direct-injection photoelectric nephelometer[J]. Foreign Electronic Measurement Technology, 2013, 32(1): 53.
[19]
TRIARDIANTO E, MANSYUR M. Utilization of laser turbidimeter to measure the concentration of starch suspension as a model for measurement of sperm turbidity[J]. KESANS: International Journal of Health and Science, 2022, 1(11): 934. DOI:10.54543/kesans.v1i11.98
[20]
SAMPEDRO Ó, SALGUEIRO J R. Turbidimeter and RGB sensor for remote measurements in an aquatic medium[J]. Measurement, 2015, 68: 128.
[21]
水质-浊度的测定浊度计法: HJ 1072-2019[S]. 北京: 中国环境出版集团出版, 2020: 1.
Water quality-determination of turbidity turbidimeter method: HJ 1072-2019[S]. Beijing: Published by China Environmental Publishing Group, 2020: 1.
[22]
BRIGHT C E, MAGER S M. A national-scale study of spatial variability in the relationship between turbidity and suspended sediment concentration and sediment properties[J]. River Research and Applications, 2020, 36(8): 1449.
[23]
周正, 万茜婷, 龙超. 基于MODIS数据的悬浮物遥感反演研究[J]. 人民长江, 2014, 45(18): 95.
ZHOU Zheng, WAN Qianting, LONG Chao. Study on remote sensing retrieval of suspended sediment concentration based on MODIS data[J]. Yangtze River, 2014, 45(18): 95.
[24]
许鹏, 杜萍, 申茜, 等. 基于GF-1 WFV影像的浑河悬浮物浓度和浊度遥感反演研究[J]. 沈阳师范大学学报(自然科学版), 2017, 35(2): 180.
XU Peng, DU Ping, SHEN Qian, et al. Research on remote sensing inversion mode of suspended matter density and turbidity based on GF-1 WFV image data in Hunhe rive[J]. Journal of Shenyang Normal University (Natural Science Edition), 2017, 35(2): 180.
[25]
王震, 乔璐璐, 王云飞. 东中国海表层悬浮体浓度卫星遥感反演研究进展[J]. 沉积学报, 2016, 34(2): 292.
WANG Zhen, QIAO Lulu, WANG Yunfei. Progress on retrieval models of suspended sediment concentration from satellite images in the Eastern Chinaseas[J]. Acea Sedimentologica Sinica, 2016, 34(2): 292.
[26]
陈聪, 陆庆. 浊度计法测定水中浊度的适用性研究及建议[J]. 化工设计通讯, 2021, 47(3): 61.
CHEN Cong, Lu Qing. Research and suggestion on the applicability of turbidity meter method to measure turbidity in water[J]. Chemical Engineering Design Communications, 2021, 47(3): 61.
[27]
刘建华, 李平, 张成成, 等. 浊度计法测定工业废水中的悬浮物[J]. 绿色科技, 2015(11): 181.
LIU Jianhua, LI Ping, ZHANG Chengcheng, et al. Determination of suspended solids in industrial waste water by turbidimetric method[J]. Journal of Green Science and Technology, 2015(11): 181.
[28]
张旭云, 孙宇颖, 邓君萍. 浊度计法测定水样浊度的探讨[J]. 山西建筑, 2010, 36(21): 176.
ZHANG Xuyun, SUN Yuying, DENG Junping. Discussion on water sample turbidity measurement with turbidimeter method[J]. Shanxi Architecture, 2010, 36(21): 176.
[29]
张文祥, 杨世伦. OBS浊度标定与悬沙浓度误差分析[J]. 海洋技术, 2008, 27(4): 5.
ZHANG Wenxiang, YANG Shilun. Turbidity calibration of OBS and errors analysis of suspended sediment concentration[J]. Marine Technology, 2008, 27(4): 5.
[30]
张恺, 张玉钧, 殷高方, 等. 综合散射法与透射法测量水浊度的研究[J]. 大气与环境光学学报, 2011, 6(2): 100.
ZHANG Kai, ZHANG Yujun, YIN Gaofang, et al. Measurement of water turbidity combined with scattering and transmission method[J]. Journal of Atmospheric and Environmental Optics, 2011, 6(2): 100.
[31]
勾晶晶, 李健. 浊度计在悬移质泥沙测验中的误差分析[J]. 长江技术经济, 2020(5): 43.
GOU Jingjing, LI Jian. Erroranalysis of turbidimeter in suspended sediment test[J]. Technology and Economy of Changjiang, 2020(5): 43.
[32]
JASTRAM J D, ZIPPER C E, ZELAZNY L W, et al. Increasing precision of turbidity-based suspended sediment concentration and load estimates[J]. Journal of Environmental Quality, 2010, 39(4): 1306.
[33]
康亚, 龚丽萍. 浊度测量原理的探讨[J]. 电子测试, 2013(8): 245.
KANG Ya, GONG Liping. The study of turbidity measurement[J]. Electronic Test, 2013(8): 245.
[34]
BRIGHT C E, MAGER S M, HORTON S L. Predicting suspended sediment concentration from nephelometric turbidity in organic-rich waters[J]. River Research and Applications, 2018, 34(7): 640.
[35]
蔡岳. 散射式红外浊度计[D]. 武汉: 华中科技大学, 2013: 12.
CAI Yue. Measurement of water turbidity combined with scattering and transmission meathod[D]. Wuhan: HuaZhong University of Science and Technology, 2013: 12.