文章快速检索     高级检索
  中国水土保持科学   2021, Vol. 19 Issue (2): 92-97.  DOI: 10.16843/j.sswc.2021.02.012
0

引用本文 

卢雪, 张云奇, 龙翼, 裴曾莉, 吴喆虹, 徐明阳, 张德丞. 三峡库区喀斯特洼地小流域产沙强度WaTEM/SEDEM模拟——以巫山县常家洼洼地流域为例[J]. 中国水土保持科学, 2021, 19(2): 92-97. DOI: 10.16843/j.sswc.2021.02.012.
LU Xue, ZHANG Yunqi, LONG Yi, PEI Zengli, WU Zhehong, XU Mingyang, ZHANG Decheng. Modeling sediment yield using WaTEM/SEDEM for a small catchment of karst depression in the Three Gorges Reservoir region: A case study of the Changjiawa depression catchment of Wushan county[J]. Science of Soil and Water Conservation, 2021, 19(2): 92-97. DOI: 10.16843/j.sswc.2021.02.012.

项目名称

国家重点研发计划专项"黄陵覆背斜地质构造区石漠化演变过程及机制"(2016YFC0502301);国家自然科学基金项目"近50a沂蒙山区大型水库泥沙来源及其对流域环境演变的响应"(41671277)

第一作者简介

卢雪(1995-), 女, 硕士研究生。主要研究方向: 水土保持, 3S。E-mail: 864742795@qq.com

通信作者简介

张云奇(1976-), 男, 博士, 副教授。主要研究方向: 土壤侵蚀的核素示踪。E-mail: yunqi768@163.com

文章历史

收稿日期:2019-11-20
修回日期:2020-10-28
三峡库区喀斯特洼地小流域产沙强度WaTEM/SEDEM模拟——以巫山县常家洼洼地流域为例
卢雪 1, 张云奇 1, 龙翼 2, 裴曾莉 1, 吴喆虹 1, 徐明阳 1, 张德丞 1     
1. 四川农业大学林学院, 水土保持与荒漠化防治四川省高校重点实验室, 611130, 成都;
2. 中国科学院 水利部成都山地灾害与环境研究所, 山地表生过程与生态调控重点实验室, 610041, 成都
摘要:三峡库区喀斯特广布,人类扰动强烈,石漠化问题日趋凸显,获取可靠的小流域产沙数据是认识石漠化过程的基本依据。以WaTEM/SEDEM模型模拟三峡库区典型喀斯特洼地流域即常家洼小流域的产沙强度,以137Cs进行洼地沉积物定年得到流域产沙模数,用以模型参数校正,并用已报道喀斯特流域侵蚀产沙数据验证。结果表明:1963—2017年常家洼洼地流域产沙模数为122.91 t/(km2·a);泥沙输移系数KTc最佳组合为18和7,此时有效系数cNS达到峰值0.79;流域产沙模数和产沙量的模拟结果与实测值相关系数较高,分别为0.93和0.94,WaTEM/SEDEM模型模拟数据较为可靠。因此核示踪定年技术与WaTEM/SEDEM模型相结合获取峰丛洼地小流域侵蚀产沙强度,在缺乏监测数据的喀斯特地区有一定借鉴意义,未来对该地区的水土保持研究可选用WaTEM/SEDEM模型作为评估土壤侵蚀情况的有效工具。
关键词石漠化    喀斯特洼地    产沙强度    WaTEM/SEDEM模型    137Cs定年    
Modeling sediment yield using WaTEM/SEDEM for a small catchment of karst depression in the Three Gorges Reservoir region: A case study of the Changjiawa depression catchment of Wushan county
LU Xue 1, ZHANG Yunqi 1, LONG Yi 2, PEI Zengli 1, WU Zhehong 1, XU Mingyang 1, ZHANG Decheng 1     
1. Key Laboratory of Soil and Water Conservation & Desertification Combating of Sichuan Provincial Colleges and Universities, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China;
2. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041, Chengdu, China
Abstract: [Background] In karst area, the soil formation rate is low, and soil layer is thin and shows great spatial heterogeneity. The Three Gorges Reservoir region is the ecological security barrier in the middle and upper reaches of the Yangtze River. Karst landscape is wide in this region. In general, the karst land has complex terrain, and is subjected to intensive human disturbance and increasing rocky desertification. Reliable data of specific sediment yield (SSY) from small catchment is essential to our understanding of the process of rocky desertification. [Methods] The WaTEM/SEDEM was used to analyze the effects of multiple factors on soil erosion, to simulate the interception of sediment by water bodies such as reservoirs, ponds, dams and river sections in the southwest karst area. The WaTEM/SEDEM model was used to assess the SSY of Changjiawa catchment, a typical karst depression catchment in the Three Gorges Reservoir region. The SSY was determined by 137Cs dating to calibrate the model parameters and verified by the reported data of SSY from karst catchment. [Results] 1) The sedimentation rate in the Changjiawa depression was 0.27 cm/a, and the SSY was 155 t/(km2·a). The simulation results were corrected using the SSY determined by 137Cs dating in the depression, and the optimal combination of the minimum and maximum KTC values of WaTEM/SEDEM were 18 and 7, with the highest cNS (Nash-Sutcliffe coefficient) of 0.79, it showed that the model simulation effect was the best. 2) Using the WaTEM/SEDEM model, the total sediment deposition and SSY of Changjiawa small catchment since 1963 were 557 t and 122.91 t/(km2·a), which was higher than that in most karst catchments, which was mainly related to the lithology of the basin and the intense human activities. 3) WaTEM/SEDEM model simulation results were verified by published erosion and sediment modulus data. The correlation coefficients of the simulation results of SSY and sediment yield (SY) were 0.93 and 0.94, implying the simulated data reflected the actual erosion and sediment modulus situation in this area, and 137Cs data had good correction effect on WaTEM/SEDEM model parameters. [Conclusions] The combination of nuclear tracer dating technology and the WaTEM/SEDEM model may produce reliable SSY from small catchment of peak cluster depression, which is useful in karst areas lacking monitoring data. In the future, the WaTEM/SEDEM model may be used to assess sediment yield at the scale of depression catchment in this region.
Keywords: rocky desertification    karst depression    sediment yield    WaTEM/SEDEM model    137Cs dating    

三峡库区是长江中上游重要生态屏障,碳酸盐岩分布广泛。由于岩溶裂隙发育,成土速率缓慢,土层浅薄且空间异质性大,在樵采垦殖等人类活动作用下,坡地土壤易于流失,石漠化问题日趋凸显,影响到库区生态安全。但三峡库区喀斯特土壤侵蚀研究起步晚,监测资料较少,建立适用的土壤侵蚀预报模型,可有效预测土壤流失,有益于认识石漠化过程[1]。比利时鲁汶大学构建的WaTEM/SEDEM模型能分析多个因子对土壤侵蚀产沙的影响,模拟水库、塘坝及河段等水体对泥沙的拦截作用,已成功在世界应用,在我国贵州喀斯特区、黄土高原和东北黑土区等地也取得较好研究成果。笔者初次尝试用于三峡库区喀斯特小流域的侵蚀产沙模拟。

常家洼洼地为该区典型喀斯特峰丛洼地,洼地面积约0.38 hm2,流域面积约11.99 hm2,空间尺度、地貌特征、岩性基础、土壤类型、人类活动和土地利用覆被变化等方面在三峡库区均具有典型性和代表性(图 1)。笔者以三峡库区常家洼流域为研究对象,用137Cs做洼地沉积物定年得到洼地沉积速率和流域产沙模数,以校正WaTEM/SEDEM模型参数,参考其他已报道喀斯特流域侵蚀产沙数据验证模型,进而开展三峡库区喀斯特洼地小流域侵蚀产沙模拟计算,为库区石漠化防治提供数据支撑。

图 1 常家洼洼地流域及三峡库区岩性分布 Fig. 1 Changjiawa depression catchment and lithology distribution in the Three Gorges Reservoir region
1 材料与方法 1.1 数据来源

WaTEM/SEDEM模型数据来源为:土地利用数据由2018年TM影像(空间分辨率为30 m)人工目视解译和野外实地勘察得到;91卫图助手下载的数字高程模型(digital elevation model,DEM),空间分辨率为30 m;进行实地测量,结合DEM以获取坡度、坡长值;重庆市巫山县降雨数据来源于中国地面气候资料日值数据集。用以模型校正的流域产沙模数,是在以137Cs进行洼地沉积物定年基础上得到[2]

1.2 WaTEM/SEDEM模型

WaTEM/SEDEM模型基本结构为:年均土壤侵蚀、年均输沙能力和泥沙流动算法模块。本研究主要利用土壤侵蚀与输沙能力模块[3]。模型输入数据包括数字高程模型(DEM)、土壤可蚀性因子、作物覆盖与管理因子、降雨侵蚀力、土地利用图等。

由于长江流域降水近年来并无明显变化,因此采用逐年月平均雨量估算降雨侵蚀力R[4]。已有学者利用Williams等[5]提出的基于详细土壤颗粒组成数据在西南喀斯特地区计算K值,故本文也采用此法。CP因子主要通过查阅相关文献,再结合研究区实际情况得到(表 1)。

表 1 研究区土地管理因子C值和水土保持措施因子P Tab. 1 Land management factor C and soil and water conservation measure factor P in the study area
1.3 WaTEM/SEDEM模型的校正

该模型仅输沙能力系数KTC需要校正,KTC值有一定范围,若地面植被覆盖较好,KTC值也较低,反之较高。本研究利用137Cs数据校正模型,确定KTC低值与高值的取值范围,得到KTC-lowKTC-high每一参数组合,将所有可能组合输入模型,采用Nash等提出的模型有效系数(cNS)[6],确定最佳KTC组合值,公式如下:

$ {c_{{\rm{NS}}}} = 1 - \frac{{\sum\limits_{i = 1}^n {{{\left( {{O_i} - {P_i}} \right)}^2}} }}{{\sum\limits_{i = 1}^n {{{\left( {{O_i} - {O_{{\rm{mean}}}}} \right)}^2}} }}。$ (1)

式中:n为观测数目;Oi为观测值;Omean为观测平均值;Pi为预测值。

2 结果与分析

运行WaTEM/SEDEM模型前需为参数KTC赋值,结合不同地类土壤侵蚀强度分布情况,给不同的土地利用类型赋值,其中:坡耕地赋高值,即KTC-high为12~22;林地赋低值,KTC-low为2~12。将此范围内不同的KTC-highKTC-low值两两组合,得到多个流域产沙数据。结合137Cs定年所得侵蚀产沙数据,利用式(1)得NS值。由图 2可知最佳KTC-highKTC-low数值是18和7,此时模型有效系数cNS为0.79。

图 2 常家洼流域模型参数KTC-highKTC-low校正结果 Fig. 2 Calibration results of KTC-high and KTC-low in Changjiawa basin

根据最佳KTC-highKTC-low组合值,运行WaTEM/SEDEM模型,得到1963年来常家洼洼地流域产沙模数为122.91 t/(km2·a)。总结已发表文献中喀斯特地区侵蚀产沙强度研究成果验证137Cs校正后的模型结果(表 2)。由图 3可知:模拟所得产沙模数和实测数值相关系数分别为0.93,相关性较高。

表 2 已发表文献中喀斯特地区小流域产沙模数 Tab. 2 Sediment moduli of reported karst catchments in the published literature
图 3 流域产沙模数与产沙量实测值与模拟值 Fig. 3 Measured and modeled sediment moduli and sediment moduli in the catchment
3 讨论

本研究以137Cs进行洼地沉积物定年,得到流域产沙模数,校正模型参数,并未直接以137Cs示踪法测算坡面侵蚀强度。这是因为喀斯特坡地多裸岩出露,景观破碎,是历史时期侵蚀产沙已造成的结果,无法直接进行137Cs示踪,相比之下,以137Cs进行洼地定年反推流域产沙模数的方法更为可行。洼地137Cs定年得到的产沙数据,用以模型校正得到最佳KTC-highKTC-low是18和7, 大于李国强等[15]利用137Cs示踪法在拜泉县得到的KTC最佳值(8和4),Lieskovsky等[16]在斯洛伐克得到的KTC组合值为0.8和0.4,盛美玲等[17]在东北黑土区得到的KTC组合值为0.55和0.38。这一现象系因喀斯特地区土层浅薄,侵蚀强度低,也反映出坡地土壤侵蚀对植被覆盖状况更为敏感,植被一旦破坏,侵蚀随即加速,易于诱发石漠化。Liu等[3]在黄土高原采用WaTEM/SEDEM模型,得到KTC最佳值(20和15),大于本研究,系因黄土高原土层厚度一般超过50 m,而常家洼流域所在喀斯特地区土层厚度一般少于50 cm,可供流失的土壤存量远少于黄土高原。本研究最佳KTC-highKTC-low组合,得到cNS值为0.79,此时模型模拟效果最好,WaTEM/SEDEM模型在三峡库区喀斯特地区的适用性也较好。

常家洼洼地面积为0.38 hm2,2处采样点位置具有代表性,模型模拟产沙模数(SSY)与产沙量(SY)数据和实测数值相关性较高,说明所得137Cs数据可反映该地区侵蚀产沙情况,利用该数据对模型参数的校正效果也较好。根据已有喀斯特地区洼地泥沙沉积速率研究, 可知除林地与石质坡地,西南喀斯特山地多数坡地土壤流失速率介于10~100 t/(km2·a)之间。通过WaTEM/SEDEM模型模拟所得常家洼流域产沙模数为122.91 t/(km2·a),高于多数喀斯特流域,原因在于:1)WaTEM/SEDEM模型结果准确性依赖137Cs数据的采集质量与校准精度,本研究利用137Cs核素示踪法获得的侵蚀产沙强度较大,导致模拟结果也偏大;2)实地踏勘发现,常家洼流域的岩层并不是纯碳酸盐岩,还存在少量碎屑岩夹层,碎屑岩化学溶蚀特性不突出,风化成土速率较快,成为洼地泥沙的重要来源;3)当地在1958年曾大规模樵采,植被破坏,加速侵蚀。

根据表 2得到流域面积与产沙模数散点图(图 4),可知流域面积相近情况下,常家洼小流域侵蚀产沙强度较高,且喀斯特地区小流域产沙模数随面积增大有逐渐变小的趋势。这与前人的研究一致,即在坡面是泥沙主要来源的区域,流域产沙模数会随面积的增大而减少。喀斯特地区小流域产沙模数随面积增大逐渐变小,主要原因是流域连通性和泥沙输移比一般随流域面积的增加而降低,这与非喀斯特地区基本一致[18-19]

图 4 喀斯特地区流域面积与产沙模数的关系 Fig. 4 Relationship between area and sediment modulus of the catchment in karst region

虽然WaTEM/SEDEM模型对研究区模拟效果较好,且广泛应用于我国水蚀区,但仍有一定的局限性。WaTEM/SEDEM的侵蚀建模方式可能会限制模型输出效率,为提高准确性,要对尽可能多的侵蚀过程建模,但这对西南喀斯特地区是一个挑战。在之后的研究中,需进一步完善模型校准参数,以保证预测与实测产沙强度之间侵蚀过程的一致性,使WaTEM/SEDEM模型成为评估土壤侵蚀情况的有效工具。

4 结论

1) 1963—2017年常家洼洼地流域产沙模数为122.91 t/(km2·a),比一般西南喀斯特地区高。

2) 常家洼小流域产沙模数和产沙量模拟结果与已有喀斯特地区侵蚀产沙数据的相关系数较高,WaTEM/SEDEM模型模拟数据较为可靠。

3) 以洼地沉积物137Cs定年得到的流域产沙数据校正WaTEM/SEDEM模型,进而模拟小流域侵蚀产沙强度,在三峡库区喀斯特流域有很好的适用性,未来可作为评估该地区土壤侵蚀情况的有效手段。

感谢蔡强国等审稿老师提出的宝贵修改意见和建议。
5 参考文献
[1]
谢云, 岳天雨. 土壤侵蚀模型在水土保持实践中的应用[J]. 中国水土保持科学, 2018, 16(1): 27.
XIE Yun, YUE Tianyu. Application of soil erosion models for soil and water conservation[J]. Science of Soil and Water Conservation, 2018, 16(1): 27.
[2]
裴曾莉, 龙翼, 张云奇, 等. 近100年喀斯特槽谷区洼地沉积速率与流域产沙强度[J]. 水土保持学报, 2020, 34(2): 23.
PEI Zengli, LONG Yi, ZHANG Yunqi, et al. Deposition rate and sediment yield of watershed in karst trough-valley area[J]. Journal of Soil and Water Conservation, 2020, 34(2): 23.
[3]
LIU Yu, FU Bojie. Assessing sedimentological connectivity using WaTEM/SEDEM model in a hilly and gully watershed of the Loess Plateau, China[J]. Ecological Indicators, 2016, 66: 259. DOI:10.1016/j.ecolind.2016.01.055
[4]
章文波, 付金生. 不同类型雨量资料估算降雨侵蚀力[J]. 资源科学, 2003, 25(1): 35.
ZHANG Wenbo, FU Jinsheng. Rainfall erosivity estimation under different rainfall amount[J]. Resources Science, 2003, 25(1): 35. DOI:10.3321/j.issn:1007-7588.2003.01.006
[5]
WILLIAMS J R, RENARD K G, DYKE P T. EPIC: A new method for assessing erosion's effect on soil productivity[J]. Journal of Soil and Water Conservation, 1983, 38(5): 381.
[6]
NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part I: A discussion of principles[J]. Journal of Hydrology, 1970, 10(3): 282. DOI:10.1016/0022-1694(70)90255-6
[7]
何永彬, 张信宝, 贺秀斌. 利用137Cs示踪和孢粉分析法对喀斯特峰丛草地洼地泥沙沉积及侵蚀环境的研究[J]. 水土保持通报, 2013, 33(1): 246.
HE Yongbin, ZHANG Xinbao, HE Xiubin. Sediment deposition and erosion environment in a karst peak-cluster grassland depression studied by 137Cs tracing technology and pollen analysis[J]. Bulletin of Soil and Water Conservation, 2013, 33(1): 246.
[8]
LI Zhenwei, XU Xianli, ZHANG Yaohua, et al. Reconstructing recent changes in sediment yields from a typical karst watershed in southwest China[J]. Agriculture, Ecosystems and Environment, 2019, 269: 62. DOI:10.1016/j.agee.2018.09.024
[9]
YAN Dongchun, ZHANG Xinbao, WEN Anbang, et al. Assessment of sediment yield in a small karst catchment by using 137Cs tracer technique[J]. International Journal of Sediment Research, 2012, 27(4): 547. DOI:10.1016/S1001-6279(13)60012-8
[10]
何永彬, 李豪, 张信宝, 等. 贵州茂兰峰丛森林洼地泥沙堆积速率的137Cs示踪研究[J]. 地球与环境, 2009, 37(4): 366.
HE Yongbin, LI Hao, ZHANG Xinbao, et al. Study on sediment accumulation rate in karst peak-cluster forest depression catchment using 137Cs method in the Maolan area of Guizhou province[J]. Earth And Environment, 2009, 37(4): 366.
[11]
白晓永, 张信宝, 王世杰, 等. 普定冲头峰丛洼地泥沙沉积速率的137Cs法测定[J]. 地球与环境, 2009, 37(2): 142.
BAI Xiaoyong, ZHANG Xinbao, WANG Shijie, et al. Estimating sediment deposition rates by the cs-137 technique in Karst depression of Chongtou, Puding county, Guizhou province[J]. Earth and Environment, 2009, 37(2): 142.
[12]
李豪, 张信宝, 文安邦, 等. 喀斯特峰丛洼地泥沙堆积的137Cs示踪研究-以丫吉试验场为例[J]. 地球与环境, 2016, 44(1): 57.
LI Hao, ZHANG Xinbao, WEN Anbang, et al. Assessment of sediment rate of a karst hill peak-cluster depression catchment using 137Cs technique: A case study on Yaji experimental site[J]. Earth and Environment, 2016, 44(1): 57.
[13]
李豪, 张信宝, 白晓永, 等. 桂西北喀斯特丘陵区峰丛洼地小流域泥沙堆积的137 Cs示踪研究[J]. 泥沙研究, 2010, 2(1): 17.
LI Hao, ZHANG Xinbao, BAI Xiaoyong, et al. Study on sediment deposition in a peak-cluster depression catchment using 137Cs technique in karst hilly area, NW Guangxi[J]. Journal of Sediment Research, 2010, 2(1): 17.
[14]
张信宝, 白晓永, 李豪, 等. 西南喀斯特流域泥沙来源、输移、平衡的思考-基于坡地土壤与洼地、塘库沉积物137Cs含量的对比[J]. 地球与环境, 2017, 45(3): 247.
ZHANG Xinbao, BAI Xiaoyong, LI Hao, et al. Contrast of 137Cs content in slope soil with depressions, and pond sediments: Sediments sources, transportation and balance of karst basin in SW China[J]. Earth and Environment, 2017, 45(3): 247.
[15]
李国强, 方海燕. 基于137Cs示踪和WaTEM/SEDEM模型的黑土区小流域侵蚀产沙模拟[J]. 陕西师范大学学报(自然科学版), 2015, 43(3): 86.
LI Guoqiang, FANG Haiyan. Modeling soil erosion and sediment yield in a small catchment of the black soil region using137Cs technique and WaTEM/SEDEM[J]. Journal of Shanxi Normal University(Natural Science Edition), 2015, 43(3): 86.
[16]
LIESKOVSKY J, KENDERESSY P. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyard: A case study in VRÁBLE(Slovakia) using WaTEM/SEDEM[J]. Land Degradation and Development, 2012, 25(3): 288.
[17]
盛美玲, 方海燕, 郭敏. 东北黑土区小流域侵蚀产沙WaTEM/SEDEM模型模拟[J]. 资源科学, 2015, 37(4): 815.
SHENG Meiling, FANG Haiyan, GUO Min. Modeling soil erosion and sediment yield using WaTEM/SEDEM model for the black soil region of Northeast China[J]. Resources Science, 2015, 37(4): 815.
[18]
ZHANG Yunqi, LONG Yi, LU Xue, et al. Dating reservoir deposits to assess the recently changing sediment yields from a medium-sized agricultural catchment[J]. Land Degradation and Development, 2019, 30(16): 1939.
[19]
PENG Xudong, DAI Quanhou, LI Changlan, et al. Role of underground fissure flow in near-surface rainfall-runoff process on a rock mantled slope in the karst rocky desertification area[J]. Engineering Geology, 2018, 243(4): 10.