文章快速检索     高级检索
  中国水土保持科学   2020, Vol. 18 Issue (6): 43-52.  DOI: 10.16843/j.sswc.2020.06.006
0

引用本文 

梁春林, 王彬, 张文龙. 东北黑土区坡耕地土壤团聚体稳定性与结构特征[J]. 中国水土保持科学, 2020, 18(6): 43-52. DOI: 10.16843/j.sswc.2020.06.006.
LIANG Chunlin, WANG Bin, ZHANG Wenlong. Stability and structural characteristics of soil aggregates on sloping farmland in black soil region, Northeast China[J]. Science of Soil and Water Conservation, 2020, 18(6): 43-52. DOI: 10.16843/j.sswc.2020.06.006.

项目名称

国家重点研发计划"坡面复合侵蚀的水土保持措施防蚀机理"(2016YFE0202900);国家自然科学基金"黑土坡耕地冻融—水力复合侵蚀动力过程与量化表征"(41977060)

第一作者简介

梁春林(1995-), 男, 硕士研究生。主要研究方向:土壤侵蚀。E-mail:631946951@qq.com

通信作者简介

王彬(1983-), 男, 博士, 副教授。主要研究方向:水土保持与土壤侵蚀。E-mail:wangbin1836@bjfu.edu.cn

文章历史

收稿日期:2019-11-18
修回日期:2020-10-11
东北黑土区坡耕地土壤团聚体稳定性与结构特征
梁春林 , 王彬 , 张文龙     
北京林业大学水土保持学院 重庆三峡库区森林生态系统野外科学观测研究站, 100083, 北京
摘要:表层土壤团聚体稳定性对坡面土壤侵蚀过程具有重要影响。应用Le Bissonnais(LB)法和电镜扫描(SEM)对我国东北典型黑土区雨季前坡耕地表层(0~1 cm)与亚表层(1~10 cm)土壤团聚体稳定性和结构特征进行分析,以期为坡面水蚀防治提供理论支持。结果表明:在快速湿润(FW)、慢速湿润(SW)和机械振荡(ST)3种处理下表层土壤团聚体平均质量直径(MWD)均显著低于亚表层,且整体呈MWDFW < MWDSW < MWDST的趋势。黑土团聚体的主要破碎机制为"气爆"作用引发的消散作用,其次为黏粒膨胀作用;MWDFW可作为黑土团聚体稳定性的主要评价指标。FW处理下土壤团聚体主要向 < 0.2 mm粒级转化,表层土壤团聚体的转化比例大于亚表层土壤团聚体;SW和ST处理下土壤团聚体主要向>0.2 mm粒级转化,表层土壤团聚体的转化比例小于亚表层土壤团聚体。土壤团聚体MWD与SEM孔隙率呈显著负相关,而与土壤有机质量分数(SOM)呈显著正相关(P < 0.05)。SOM对典型黑土团聚体稳定性有促进作用,黏粒质量分数和团聚体孔隙度在一定程度上降低了土壤团聚体稳定性。
关键词Le Bissonnais法    团聚体稳定性    SEM    典型黑土区    
Stability and structural characteristics of soil aggregates on sloping farmland in black soil region, Northeast China
LIANG Chunlin , WANG Bin , ZHANG Wenlong     
Three-gorges Reservoir Area(Chongqing) Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, 100083, Beijing, China
Abstract: [Background] As an important grain production base in China, the black soil area of Northeast(NE) China suffers from serious soil erosion. Soil aggregate stability has profound impact on soil erosion processes. To compare the susceptibility of soil aggregates for surface/subsoil, different aggregate breakdown mechanisms should be considered. The objectives of this study were to assess the variations between surface soil and subsoil aggregate stability under different breakdown mechanisms, and to quantify changes of the micro-structural characteristics, provide theoretical basis for soil erosion control of slope farmland during rainy season. [Methods] Based on line-transect sampling, six typical slopes were selected as the research areas in the black soil region of NE China. Seventy-two top-surface (0-1 cm) and subsoil (1-10 cm) of undisturbed soil samples were collected from ridges and ditches on the typical slopes randomly. Soil aggregate stability was determined by Le Bissonnais (LB) method, including fast wetting (FW), slow wetting (SW) and stirring (ST) treatments, and structural characteristics were observed by scanning electron microscope (SEM). In addition, soil organic matter (SOM), cation exchange capacity (CEC), soil mechanical composition and pH were determined separately, to clarify the stability and structural differences of surface soil and subsoil aggregate. [Results] 1) The soil texture of each typical slope was loam, and the clay content was 15.6%-20%; CEC varied from 19.8 to 44.2 cmol/kg, and the surface soil was slightly higher than the subsoil. The average value of SOM in surface soil is 31.48 g/kg, which is lower than 40.78 g/kg in subsoil. The porosity of soil aggregates in the surface soil is slightly higher than that in the subsoil, but there is no significant difference. 2) Soil aggregates in FW treatment were mainly converted to < 0.2 mm particle size, and the conversion ratio of surface soil was 62.6%-76.2%, and that of subsoil < 50%;. After SW treatment, soil aggregate was mainly converted to>0.2 mm particle size, and the conversion ratio of subsoil was 1.11-5.69 times that of the surface soil. After ST treatment, the subsoil aggregate>5 mm particle size accounted for 65%, and the surface soil was 39.8%. 3) The SEM area porosity of soil aggregates varied from 7.43% to 23%, and the porosity of the surface soil aggregates was higher than that of the subsoil aggregates. Under FW treatment, soil aggregates with high porosity tended to be breakdown; the lower the SOM and CEC were, the higher the soil aggregate porosity was. Compared with subsoil aggregates, surface soil aggregates had more porosity and larger average area. [Conclusions] 1) The subsoil aggregate stability is significantly higher than that of the surface soil, and represents the order as MWDFW < MWDSW < MWDST. 2) There is a significant positive correlation between MWD and SOM of soil aggregates, and shows a significant negative correlation with soil porosity. MWDFW can be used as a key indicator for the stability of black soil aggregates. 3) The stability of soil aggregates in typical black soil area is mainly determined by pore size and quantity.
Keywords: Le Bissonnais method    soil aggregate stability    scanning electron microscope    typical black soil area    

东北黑土区作为我国重要的粮食生产基地,其日益严峻的水土流失问题备受关注。土壤团聚体的稳定性与水土流失紧密相关,是表征土壤抗侵蚀能力的重要指标之一[1-3]。土壤团聚体稳定性受土壤有机质、土壤微生物、耕作和土地利用方式[4-5]等多方面因素影响。传统土壤团聚体稳定性研究方法由于操作便捷而被广泛使用,但在湿润方式、扰动方式和初始团聚体大小等因素的影响下,其结果难以对土壤团聚体的破坏机制进行比较和区分[6]。Le Bissonnais[7]基于土壤团聚体的主要破碎机制,提出可区分不同破碎机制下土壤团聚体稳定性的测定方法(LB法),包括快速湿润(fast wetting, FW)、慢速湿润(slow wetting, SW)和机械振荡(stirring, ST)3种处理方式。目前应用LB法对黑土区土壤团聚体稳定性研究已取得一定成果,但较多针对土壤团聚体稳定性和土壤可蚀性的整体评价[8-10];关于黑土区表层土壤(0~1 cm)与亚表层土壤(1~10 cm)团聚体稳定性差异及结构特征的研究较少。

土壤表层性质对土壤侵蚀的发生具有明显影响[11]。目前研究多针对0~20 cm土壤团聚体稳定性的平均状态进行分析[12-14]。部分学者对结皮和亚表层土壤的团聚体稳定性进行研究,发现结皮层土壤团聚体稳定性显著高于亚表层[15],也有部分学者得出两者间无明显差异的结论[16]。现有研究多关注土壤结皮发育的影响,而典型黑土区雨季前地表作物基本进入拔节期,雨滴击溅作用相对较弱,垄沟和垄上表层土壤较难发育形成明显的物理性结皮。雨季前表层土壤的抗侵蚀性能对后期集中的水力侵蚀过程具有较大影响,而针对此阶段坡耕地土壤表层与亚表层团聚体稳定性差异的研究鲜见报道。

笔者以典型黑土区坡耕地土壤为研究对象,基于大样带采样和LB法对坡耕地表层和亚表层土壤的团聚体稳定性进行测定和分析,以期明确黑土农耕地土壤表层与亚表层团聚体稳定性差异,为黑土区坡耕地水土流失防治提供一定的理论支持。

1 研究区概况

笔者依黏粒含量梯度在典型黑土区设置研究样带(图 1),选取海伦、克山、九三、宾县4个地区的共6个典型坡面进行采样,土壤类型以黑土为主。研究区土壤开垦年限约50~80 a,平均黑土层厚度30~80 cm,耕层土壤密度1.0~1.2 g/cm3,含水率18%~35%,土壤有机质质量分数(soil organic matter, SOM)20~60 g/kg。研究区位于漫岗丘陵区,地势平缓,平均坡度3°~5°,平均坡长一般可达数百米[17]。耕层深度约20 cm,以玉米、大豆等粮食作物为主,每年3~7月依次进行苗床、播种、中耕等农事活动。研究区年平均气温3.9 ℃,年均降雨量580 mm,且集中分布在6—9月,约占年降水量的80%。

图 1 采样点位置示意图 Fig. 1 Schematic diagram of sampling sites
2 材料与方法 2.1 采样方法和样品处理

本研究选取的6个典型农耕地坡面(海伦农场S1、克山农场S2、克山试验站S3、九三农场S4、宾县S5和滨州河S6)均采用玉米、大豆轮作的等高耕作种植方式。采样时在各典型坡面随机选取3条垄,并随机设置3处1 m×1 m样方进行土壤样品采集。在每个采样点垄沟和垄上分别采集表层(0~1 cm)和亚表层(1~10 cm)土壤各约200 g,共采集土壤样品72份。研究区降雨数据表明,各采样点自最近一次翻耕至采样前均经历2~4次侵蚀性降雨(>11.6 mm/h)[18],且前期地表条件和耕作情况基本一致。

将样品带回实验室风干后剔除石砾、根系等杂质后,沿自然节理将土壤团粒轻轻掰开,筛分出3~5 mm土壤团聚体以备测定。进行电镜扫描(scanning electron microscope, SEM)前,为避免土壤团聚体因表面颗粒的剥离形成伪孔隙,用锋利的刀片将土壤团聚体切断成两半,使其暴露光滑表面后固定在样品台上用金属镀膜法对表面做导电处理,以备孔隙扫描实验使用。土壤团聚体稳定性测定前将待测样品在40 ℃烘箱中干燥24 h,以保证前期含水量一致。

2.2 土壤团聚体性质测定 2.2.1 土壤理化性质测定方法

土壤有机质质量分数(SOM)采用重铬酸钾稀释热法测定;阳离子交换量(cation exchange capacity, CEC)采用乙酸铵交换法测定;土壤机械组成采用密度计法进行测定;土壤pH值采用电位法测定(土水比1:2.5);土壤团聚体切片电镜扫描(SEM)采用日立S-3400N Ⅱ扫描电镜显微镜扫描。土壤基本理化性质信息见表 2

表 1 土壤团聚体稳定性分级 Tab. 1 Levels of soil aggregate stability
表 2 土壤基本理化性质 Tab. 2 Basic soil properties of soil samples
2.2.2 土壤团聚体稳定性测定方法

团聚体稳定性采用LB法进行测定[7],分别测定3~5 mm土壤团聚体在3种不同处理方式下的水稳定性:1)快速湿润(FW),主要模拟土壤团聚体经快速湿润(如东北雨季时期的暴雨或干旱期的灌溉),团聚体内闭蓄气体受到“气爆”作用破碎,即消散作用;2)慢速湿润(SW),主要模拟连绵阴雨情况下土壤团聚体缓慢吸水湿润引起的黏粒膨胀破坏作用;3)机械扰动(ST),主要模拟土壤团聚体受雨滴打击和径流冲刷等机械外力所造成的破坏作用。每个样品在各处理下进行3个平行处理。

2.3 数据分析

采用土壤团聚体平均质量直径(mean weight diameter, MWD)、团聚体粒径分布(aggregate size distribution, ASD)和SEM土壤团聚体面积孔隙率表示土壤团聚体稳定性。

$ {\rm{MWD}} = \sum\limits_{i = 1}^n {{x_i}} {w_i}。$ (1)

式中:MWD为土壤团聚体平均质量直径,mm;xi为筛分某一粒级的2个土壤筛孔径的平均直径,mm;wi指筛分出某一粒级的质量占所取土壤样品质量的比例,%;MWDFW、MWDSW和MWDST分别为FW、SW、ST处理下的土壤团聚体MWD,mm。参照土壤团聚体稳定性分级标准[6]划分团聚体稳定性等级(表 1)。电镜扫描(SEM)结果(图 2)采用Photoshop软件转换为黑白二元图像后,通过孔隙阈值调试(80~120),获取最佳平均阈值(误差 < 1%);随后,使用Image-pro plus软件进行土壤团聚体孔隙比例(%)测算。土壤团聚体面积孔隙率计算式[19]如下:

$ n = \frac{{{S_{\rm{a}}}}}{S} \times 100\% 。$ (2)
X行为SEM扫描图;Y行为对应的孔隙提取图。 X rows are SEM scans; Y rows are corresponding pore extraction pictures. 图 2 SEM下团聚体孔隙提取 Fig. 2 Aggregate pore extraction under SEM image

式中:n为团聚体面积孔隙率,%;S为团聚体横切面面积,cm2Sa为横切面中孔隙的面积,cm2

采用SPSS 25和Excel 2016完成数据分析和整理。采用单因素方差分析与LSD对数据进行差异性检验(P < 0.05)。

3 结果与分析 3.1 土壤基本理化性质特征

各典型坡面土壤质地均为壤土,黏粒质量分数15.6%~20%(表 2);pH 5.4~6.0,呈弱酸性;CEC变化于19.8~44.2 cmol/kg之间,整体呈表层土壤略高于亚表层土壤的趋势。土壤团聚体SEM面积孔隙率结果表明,土壤表层团聚体孔隙率整体略高于亚表层,但未表现出显著差异。土壤SOM变化于20.1~52.7 g/kg之间,整体呈表层显著低于亚表层的现象。其中,表层SOM平均值为31.48 g/kg,变异系数27.89%;亚表层SOM平均值为40.78 g/kg,变异系数21.12%。干湿交替作用将显著减少土壤有机碳矿化量[20],且采样前表层土壤受风蚀、降雨径流冲刷和干湿交替作用影响,造成表层土壤团聚体SOM低于亚表层[21-22]

3.2 土壤表层与亚表层团聚体MWD特征

各样点表层土壤团聚体MWD均小于下层土壤团聚体MWD,且整体表现为MWDFW<MWDSW<MWDST。该发现与王彬[8]、张孝存等[9]在典型黑土区所得结论一致,但受土壤质地的影响导致本研究与Algayer等[15]、郭曼等[23]、曾全超等[24]在黄土高原地区得到的MWDFW<MWDST<MWDSW结论不同。黄土和黑土胶体矿物性质对土壤团聚体破碎机制具有明显影响。黑土以水云母类蒙脱石矿物为主[8],极易在SW处理下吸水膨胀破坏;而黄土多以胀缩性较弱的高岭石矿物为主,吸水膨胀破坏作用微弱。本研究中最小土壤团聚体MWD为FW处理下S1的垄沟表层(0.17 mm);而最大值出现在ST处理下S4的垄上亚表层土壤团聚体(1.40 mm)(图 3)。依据土壤团聚体稳定性分级标准(表 1),亚表层土壤团聚体稳定性等级较表层整体高一级别。

不同小写字母表示同一地点不同处理方式间团聚体稳定性差异;不同大写字母表示不同地点相同处理方式下团聚体稳定性差异(P < 0.05)。 Different lowercase letters indicate significant difference of aggregate stability among different treatments at the same sampling site; different capital letters indicate significant difference of aggregate stability among different sampling sites for the same treatment (P < 0.05). 图 3 不同部位土壤团聚体MWD Fig. 3 Soil aggregate MWD in different parts

3种破碎机制下垄上、垄沟表层与亚表层土壤团聚体的水稳定性与Darboux等[16]在模拟降雨下得到土壤沉积性结皮MWD低于苗床松散土壤团聚体MWD的结论相似;但由于地表情况不同导致本研究与Algayer等[15]得出结皮层团聚体MWD显著高于下层的结论不一致。Algayer等[15]主要关注连续降雨、土壤结皮发育情况的团聚体稳定性,导致表层结皮MWD显著高于结皮下层。大量研究表明,干湿交替作用在一定程度上致使土壤团聚体粒径明显减小[25-26]。本研究中,表层和亚表层土壤在中耕45 d左右内仅受2~4次侵蚀性降雨影响,与胡波等[27]的实验条件相近;多次自然降雨后表层未完全发育的土壤结皮MWD会逐渐高于亚表层,且前期干湿交替作用将增大表层与亚表层土壤团聚体MWD的差异[27]

3.3 表层与亚表层土壤团聚体粒级分布特征

Barthes等[28]通过模拟降雨实验发现,土壤侵蚀量与表层>0.2 mm的土壤团聚体含量存在负相关关系。故本研究选用>0.2 mm土壤团聚体含量作为衡量团聚体稳定性的指标之一。

FW处理下表层土壤团聚体主要集中在 < 0.2 mm粒级,占总含量的62.6%~76.2%,而亚表层土壤团聚体中 < 0.2 mm粒级所占比例 < 50%(图 4)。FW处理下,表层土壤团聚体较下层更易被分散。SW处理下表层和亚表层土壤团聚体主要集中在>0.2 mm粒级,但亚表层土壤团聚体>2mm粒级所占比例是表层的1.11~5.69倍。结果表明,SW处理下表层土壤团聚体较亚表层更易破碎。ST处理下>0.2 mm粒级的水稳性团聚体比例最高,但表层与亚表层>0.5 mm团聚体粒级所占比例呈显著差异。亚表层土壤团聚体经ST处理后>0.5 mm粒级占总量的65%,而表层为39.8%,与亚表层土壤团聚体>1 mm粒级所占比例相当。上述结果说明,尽管SW和ST处理下表层与亚表层土壤团聚体>0.2 mm粒级的总体含量差异不明显;亚表层土壤团聚体向大团聚体转化比例显著高于表层土壤。

G、P、M、O分别表示垄上表层、垄沟表层、垄上亚表层、垄沟亚表层。 G, P, M and O represent surface soil in ridge, surface soil in ditch, subsoil in ridge, and subsoil in ditch. 图 4 土壤团聚体粒径分布 Fig. 4 Soil aggregate size distribution
3.4 土壤团聚体稳定性影响因素

土壤团聚体MWD与SOM呈显著正相关(表 3),与王彬[8]、张孝存等[9]的研究结果一致。黑土团聚体的破坏形式以消散和黏粒膨胀为主,SOM能有效增加土壤团聚体抵抗消散和黏粒膨胀作用[4];这与本研究发现的表层SOM低于亚表层,而亚表层土壤团聚体MWD高于表层的发现一致。土壤孔隙率与MWDFW、MWDSW和MWDST均呈显著负相关关系(P<0.05)。土壤孔隙率越高,团聚体内闭蓄气体的“气爆”作用越强,抵抗机械破坏的能力也相应下降。此外,黏粒质量分数与MWDFW呈显著负相关,这与卢升高等[6]在富铁土壤研究中得到结论相似;说明黏粒质量分数对团聚体稳定性具有明显影响,尤其在暴雨、灌溉等条件下,黏粒质量分数成为判断土壤团聚体稳定性的重要指标。同时由于临界效应[8],本研究中FW处理下土壤团聚体稳定性变化敏感性和参数响应较为适宜,故可选用MWDFW为典型黑土团聚体稳定性评价指标。

表 3 MWD与土壤性质各参数的相关系数 Tab. 3 Correlation coefficient between mean weight diameter of aggregate and soil properties
3.5 SEM土壤团聚体孔隙特征

土壤团聚体SEM面积孔隙率变化于7.43%~23.00%之间,变异系数29.22%,且表层土壤团聚体孔隙率均高于亚表层(表 2)。该结果与王彬[8]在典型薄层黑土区发现的表层土壤总孔隙度大于次表层的表聚现象相似。其原因主要是土壤表层土壤受风蚀[29]和径流分选[30]作用呈粗骨化,致使表层土壤孔隙度高于亚表层。

SEM土壤孔隙率与MWDFW、SOM和CEC均呈负相关关系(图 5)。其中,SEM土壤孔隙率与MWDFW呈极显著负相关关系(R=-0.89,P<0.01);与SOM和CEC呈显著负相关关系,相关系数分别为-0.61(P<0.05)和-0.47(P<0.05)。上述结果表明,FW处理下随土壤孔隙率的增大,土壤团聚体破坏程度越大;SOM和CEC越低,土壤团聚体孔隙率越高。其主要原因是由于土壤SOM和CEC越低,团聚体颗粒越分散,土壤孔隙率越低[31]

图 5 土壤SEM孔隙率与其他土壤性质的相关关系 Fig. 5 Correlation between soil SEM porosity and other soil properties

相对受干扰较低的亚表层土壤团聚体,表层土壤团聚体的孔隙平均面积更大,数目更多;但在孔隙丰度、feret直径和成圆率等表征孔隙形状特征的指标上,表层和亚表层差异不显著(表 4)。结合土壤表层和亚表层团聚体稳定性差异,说明土壤团聚体孔隙面积和数量是影响其稳定性的主要因素。

表 4 团聚体SEM孔隙特征 Tab. 4 Aggregate SEM pore characteristics
4 结论

1) 典型黑土区雨季前坡耕地表层(0~1 cm)和亚表层(1~10 cm)土壤团聚体MWD在LB法的3种处理方式下均表现为表层显著低于亚表层,且整体呈MWDFW < MWDSW < MWDST的趋势。FW处理下土壤团聚体主要向 < 0.2 mm粒级转化,土壤表层的转化比例显著高于亚表层;SW和ST处理下主要向>0.2 mm粒级转化,土壤表层转化比例显著低于亚表层。典型黑土团聚体破碎的主要机制是消散作用,其次为黏粒膨胀,机械扰动对团聚体的破坏性最小。

2) 土壤团聚体MWD与SOM呈显著正相关关系,MWDFW与土壤黏粒质量分数表现出负相关关系,土壤孔隙率与MWD、SOM、CEC均呈显著负相关关系(P<0.05)。FW处理下土壤团聚体稳定性变化最为敏感,可选择MWDFW作为典型黑土团聚体稳定性关键评价指标。

3) SEM下土壤团聚体孔隙特征表明,土壤表层和亚表层团聚体的单孔隙面积大小和孔隙数目存在明显差异,而孔隙形态特征无显著差异。研究区土壤团聚体主要通过孔隙大小和数量来表征土壤团聚体稳定性程度。

5 参考文献
[1]
NCⅡZAH A D, ZAKINDIKI I I C. Physical indicators of soil erosion, aggregate stability and erodibility[J]. Archives of Agronomy and Soil Science, 2015, 61(6): 827. DOI:10.1080/03650340.2014.956660
[2]
周虎, 吕贻忠, 李保国. 土壤结构定量化研究进展[J]. 土壤学报, 2009, 46(3): 501.
ZHOU Hu, LÜ Yizhong, LI Baoguo. Advancement in the study on quantification of soil structure[J]. Acta Pedologica Sinica, 2009, 46(3): 501. DOI:10.3321/j.issn:0564-3929.2009.03.018
[3]
MADARI B, MACHADO L O A, TORRES E, et al. No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil[J]. Soil & Tillage Research, 2005, 80(1/2): 185.
[4]
卢金伟, 李占斌. 土壤团聚体研究进展[J]. 水土保持研究, 2002, 9(1): 81.
LU Jinwei, LI Zhanbin. Advance in soil aggregate study[J]. Research of Soil and Water Conservation, 2002, 9(1): 81.
[5]
王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005, 36(3): 415.
WANG Qingkui, WANG Silong. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3): 415. DOI:10.3321/j.issn:0564-3945.2005.03.031
[6]
卢升高, 竹蕾, 郑晓萍. 应用Le Bissonnais法测定富铁土中团聚体的稳定性及其意义[J]. 水土保持学报, 2004, 18(1): 7.
LU Shenggao, ZHU Lei, ZHENG Xiaoping. Le Bissonnais method of measuring aggregate stability in ferrisols and its implications[J]. Journal of Soil Water Conservation, 2004, 18(1): 7.
[7]
LE BISSONNAIS Y. Aggregate stability and assessment of soil crustability and erodibility:I. Theory and methodolog[J]. European Journal of Soil Science, 2010, 48(1): 39.
[8]
王彬.东北典型薄层黑土区土壤可蚀性关键因子分析与土壤可蚀性计算[D].陕西杨凌: 西北农林科技大学, 2009: 79.
WANG Bin. Key factors and calculation of soil erodibility in the typical eroded black soil area of Northeast China[D]. Yangling, Shaanxi: Northwest A&F University, 2009: 79.
[9]
张孝存, 郑粉莉. 基于Le Bissonnais法的东北黑土区土壤团聚体稳定性研究[J]. 陕西师范大学学报(自然科学版), 2009, 37(5): 82.
ZHANG Xiaocun, ZHENG Fenli. Study on soil aggregate stability of farmland based on Le Bissonnais method in the black soil region, Northeast China[J]. Journal of Shaanxi Normal University (Nature Science Edition), 2009, 37(5): 82.
[10]
王彬.土壤可蚀性动态变化机制与土壤可蚀性估算模型[D].陕西杨凌: 西北农林科技大学, 2013: 41.
WANG Bin. Dynamic mechanism of soil erodibility and soil erodibility calculation model[D]. Yangling, Shaanxi: Northwest A&F University, 2013: 41.
[11]
ROTH C H, EGGERT T. Mechanisms of aggregate breakdown involved in surface sealing, runoff generation and sediment concentration on loess soils[J]. Soil & Tillage Research, 1994, 32(2/3): 253.
[12]
李娅芸, 刘雷, 安韶山, 等. 应用Le Bissonnais法研究黄土丘陵区不同植被区及坡向对土壤团聚体稳定性和可蚀性的影响[J]. 自然资源学报, 2016, 31(2): 287.
LI Yayun, LIU Lei, AN Shaoshan, et al. Research on the effect of vegetation and slope aspect on the stability and erodibility of soil aggregate in loess hilly region based on Le Bissonnais method[J]. Journal of Natural Resources, 2016, 31(2): 287.
[13]
周虎, 吕贻忠, 杨志臣, 等. 保护性耕作对华北平原土壤团聚体特征的影响[J]. 中国农业科学, 2007, 40(9): 1973.
ZHOU Hu, LV Yizhong, YANG Zhichen, et al. Effects of conservation tillage on soil aggregates in Huabei Plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1973. DOI:10.3321/j.issn:0578-1752.2007.09.017
[14]
HE Y B, XU C, GU F, et al. Soil aggregate stability improves greatly in response to soil water dynamics under natural rains in long-term organic fertilization[J]. Soil & Tillage Research, 2018, 184(3): 281.
[15]
ALGATER B, WANG B, BOURENNANE H, et al. Aggregate stability of a crusted soil:differences between crust and sub-crust material, and consequences for interrill erodibility assessment. An example from the Loess Plateau of China[J]. European Journal of Soil Science, 2014, 65(3): 325. DOI:10.1111/ejss.12134
[16]
DARBOUX F, LE BISSONNAIS Y. Changes in structural stability with soil surface crusting:Consequences for erodibility estimation[J]. European Journal of Soil Science, 2010, 58(5): 1107.
[17]
王彬, 郑粉莉, 王玉玺. 东北典型薄层黑土区土壤可蚀性模型适用性分析[J]. 农业工程学报, 2012, 28(6): 126.
WANG Bin, ZHENG Fenli, WANG Yuxi. Adaptability analysis on soil erodibility models in typical thin layer black soil area of Northeast China[J]. Transactions of the CSAE, 2012, 28(6): 126.
[18]
高峰, 詹敏, 战辉. 黑土区农地侵蚀性降雨标准研究[J]. 中国水土保持, 1989(11): 21.
GAO Feng, ZAN Min, ZHAN Hui. Study on agricultural land erosion rainfall standard on black soil region[J]. Soil and Water Conservation in China, 1989(11): 21.
[19]
熊承仁, 唐辉明, 刘宝琛, 等. 利用SEM照片获取土的孔隙结构参数[J]. 地球科学(中国地质大学学报), 2007, 32(3): 415.
XIONG Chenren, TANG Huiming, LIU Baochen, et al. Using SEM photos to gain the pore structural parameters of soil samples[J]. Earth Science(Journal of China University of Geosciences), 2007, 32(3): 415.
[20]
孟凯, 王德录, 张兴义, 等. 黑土有机质分解、积累及其变化规律[J]. 土壤与环境, 2002, 11(1): 42.
MENG Kai, WANG Delu, ZHANG Xingyi, et al. Decomposition, accumulation and their variant pattern of organic matter in black soil area[J]. Soil and Environmental Sciences, 2002, 11(1): 42.
[21]
杨润城.海伦黑土农田风蚀监测研究[D].哈尔滨: 东北农业大学, 2018: 51.
YANG Runcheng. Monitoring study in wind erosion in Hailun of the typical mollisols farmland in Northeast China[D]. Harbin: Northeast Agricultural University, 2018: 51.
[22]
何超, 王磊, 郑粉莉, 等. 垄作方式对薄层黑土区坡面土壤侵蚀的影响[J]. 水土保持学报, 2018, 32(5): 24.
HE Chao, WANG Lei, ZHENG Fenli, et al. Effects of ridge tillage on hillslope soil erosion in thin layer black soil region[J]. Journal of Soil and Water Conservation, 2018, 32(5): 24.
[23]
郭曼, 郑粉莉, 安韶山, 等. 应用Le Bissonnais法研究黄土丘陵区土壤团聚体稳定性[J]. 中国水土保持科学, 2010, 8(2): 68.
GUO Man, ZHENG Fenli, AN Shaoshan, et al. Application of Le Bissonnais method to study soil aggregate stability in the Hilly-gully region[J]. Science of Soil and Water Conservation, 2010, 8(2): 68.
[24]
曾全超, 董扬红. 基于Le Bissonnais法对黄土高原森林植被带土壤团聚体及土壤可蚀性特征研究[J]. 中国生态农业学报, 2014, 22(9): 1093.
ZENG Quanchao, DONG Yanghong. Soil aggregate stability and erodibility under forest vegetation in the Loess Plateau using the Le Bissonnais method[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1093.
[25]
DENEF K, SIX J, PAUSTIAN K, et al. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics[J]. Soil Biology and Biochemistry, 2001, 33(15): 2145.
[26]
SHIEL R S, ADEY M A, LODDER M. The effect of successive wet/dry cycles on aggregate size distribution in a clay texture soil[J]. Journal of Soil Science, 1988, 39(1): 71.
[27]
胡波, 王玉杰, 王彬, 等. 自然降雨条件下结皮层团聚体稳定性变化特征研究[J]. 农业机械学报, 2017, 48(6): 225.
HU Bo, WANG Yujie, WANG Bin, et al. Dynamics of stability of soil crust under natural rainfall event[J]. Transactions of the CSAM, 2017, 48(6): 225.
[28]
BATHES B, ROOSE E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002, 47(2): 133.
[29]
ZHANG C L, ZOU X Y, YANG P, et al. Wind tunnel test and 137Cs tracing study on wind erosion of several soils in Tibet[J]. Soil & Tillage Research, 2007, 94(2): 269.
[30]
沈海鸥, 肖培青, 李洪丽, 等. 黑土坡面不同粒级泥沙流失特征分析[J]. 农业工程学报, 2019, 35(20): 111.
SHENG Haiou, XIAO Peiqing, LI Hongli, et al. Analysis of sediment particle loss at different gradations on Mollisol hillslopes[J]. Transactions of the CSAE, 2019, 35(20): 111.
[31]
LAL R, LAL L, LAL S K L. Physical management of soils of the tropics:priorities for the 21st century[J]. Soil Science, 2000, 165(3): 191.