文章快速检索     高级检索
  中国水土保持科学   2020, Vol. 18 Issue (6): 140-146.  DOI: 10.16843/j.sswc.2020.06.017
0

引用本文 

刘冉, 余新晓, 蔡强国, 孙莉英, 方海燕, 贾国栋, 和继军. 坡长对坡面侵蚀、搬运、沉积过程影响的研究进展[J]. 中国水土保持科学, 2020, 18(6): 140-146. DOI: 10.16843/j.sswc.2020.06.017.
LIU Ran, YU Xinxiao, CAI Qiangguo, SUN Liying, FANG Haiyan, JIA Guodong, HE Jijun. Research progressin the effect of slope length on slope erosion, transportation and deposition processes[J]. Science of Soil and Water Conservation, 2020, 18(6): 140-146. DOI: 10.16843/j.sswc.2020.06.017.

项目名称

国家自然科学基金"黄土坡面侵蚀泥沙沉积过程与模拟"(41771314),"黄土坡面细沟形态与土壤再分布空间特征的耦合机制研究"(41977069)

第一作者简介

刘冉(1997-), 女, 硕士研究生。主要研究方向:水土保持。E-mail:liuran808@126.com

通信作者简介

和继军(1979-), 男, 博士, 教授, 博士生导师。主要研究方向:土壤侵蚀, 水土保持及区域水文。E-mail:hejiun_200018@163.com

文章历史

收稿日期:2020-07-24
修回日期:2020-09-18
坡长对坡面侵蚀、搬运、沉积过程影响的研究进展
刘冉 1, 余新晓 1, 蔡强国 2,3, 孙莉英 2, 方海燕 2,3, 贾国栋 1, 和继军 4     
1. 北京林业大学水土保持学院 水土保持国家林业局重点试验室, 100083, 北京;
2. 中国科学院地理科学与资源研究所 陆地水循环及地表过程重点试验室, 100101, 北京;
3. 中国科学院大学资源环境学院, 100049, 北京;
4. 首都师范大学 城市环境过程和数字模拟国家重点试验室培育基地 北京资源环境与GIS重点试验室, 100048, 北京
摘要:坡长是影响坡面径流侵蚀产沙过程的重要地貌因素之一,其决定着坡面水流能量的沿程变化。近年来坡长与土壤侵蚀的关系研究受到了广泛关注,通过梳理文献,将坡长对径流侵蚀产沙的影响、临界坡长的存在及其计算方法和坡面侵蚀沉积过程等方面的研究成果进行综述,发现侵蚀强度随坡长变化存在增长型、增长递减型和波动型3种动态形式,受降雨条件、坡度、坡长等因素的影响,临界坡长不是定值;坡面侵蚀、搬运、沉积过程交替发生,且坡面的长度影响坡面侵蚀-搬运波动形式。指出今后研究中需要进一步开展坡面泥沙沉积过程、临界坡长与泥沙沉积过程的耦合机制研究,加强不同质地土壤的坡长与土壤侵蚀关系的研究。
关键词坡长    侵蚀产沙    临界坡长    坡面沉积    
Research progressin the effect of slope length on slope erosion, transportation and deposition processes
LIU Ran 1, YU Xinxiao 1, CAI Qiangguo 2,3, SUN Liying 2, FANG Haiyan 2,3, JIA Guodong 1, HE Jijun 4     
1. School of Soil Water Conservation in Beijing Forestry University, Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, 100083, Beijing, China;
2. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Key Laboratory of Water Cycle and Related Land Surface Processes, 100101, Beijing, China;
3. College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China;
4. State Key Laboratory of Urban Environmental Processes and Numerical Simulation, Resources Environment and GIS Key Lab of Beijing, Capital Normal University, 100048, Beijing, China
Abstract: [Background] Slope length is one of the important geomorphological factors that affect the process of slope runoff erosion and sediment production. It determines the variation of slope water flow energy along the way, and affects sediment carrying capacity of the water flow, thereby affecting the process of soil erosion, transportation and deposition. In recent years, the research on impact of slope length on soil erosion has received considerable attention. Meanwhile, understanding the changing law of critical slope length provides an important theoretical basis for the study of sediment transport and deposition processes on slopes. [Methods] Based on the literature review, we summarized the influence of slope length on runoff erosion and sediment yield, the general law of erosion critical slope length, the calculation method of critical slope length and the influence of slope length on slope deposition. And we discussed the limitations of soil erosion in terms of slope length, and highlighted the focus of future research. The information for the methods comes from 46 core papers out of 2199 papers published in the web of science, CNKI, Baidu Academic and Science Direct in the past few decades with the keywords of "slope length soil erosion" and "slope surface deposition". [Results] 1) The relationship between slope length and soil erosion is very complicated. Due to the difference in experimental conditions, the erosion intensity varying with slope length has three dynamic forms: increasing, decreasing and fluctuating. 2) Through previous studies, we summarized the definition of the critical slope length for erosion, and pointed out that different critical slope lengths are obtained in different studies due to factors such as rainfall conditions, slope, and slope length. Moreover, the established calculation model of critical slope length is based on the experimental data of researchers, which causes certain limitations. 3)During the erosion, transportation, and deposition of the slope, the sediment is characterized by alternating strong and weak spatial changes. The existence of the critical slope length makes the influence of slope length on slope erosion and deposition more complicated. When the slope length does not reach the critical slope length, erosion and sedimentation activities cannot be fully developed.4)The key points of future research are described as follows. First of all, it is necessary to carry out further research and experiments on the sediment deposition process on the slope. Second, research on the critical slope length for erosion changes as well as experimental research on the relationship between slope lengths of different soil textures and soil erosion should be strengthened. Finally, slope length affects the wave form of slope erosion-sedimentation, and the coupling mechanism of slope length and slope erosion and sediment deposition process needs to be studied. [Conclusions] This paper summarizes the research progress and future research directions of slope length on slope erosion, transportation and deposition process, and aims to provide guidance for the research application and decision-making of soil erosion on slope length.
Keywords: slope length    soil erosion and sediment yield    critical slope length    slope deposition    

坡长定义是从地表径流源点到坡度减小直至有沉积出现地方之间的距离或到一个明显的渠道之间的水平距离[1]。坡长是影响坡面径流侵蚀产沙过程的重要地貌因素之一,其决定着坡面水流能量的沿程变化,通过影响水流挟沙力,进而影响土壤侵蚀、搬运和沉积过程。因此坡长因子是水蚀预报经验模型中控制土壤流失强度的一个重要因子,反映坡长对土壤侵蚀影响的量化指标[2]。1936年Cook[3]研究指出坡长是影响土壤侵蚀的重要因素之一,随后许多学者在坡长对径流侵蚀产沙的影响规律方面进行大量研究,并取得了丰富的研究成果。近年来,在坡长对土壤侵蚀过程影响研究、并建立土壤侵蚀的过程模型成了目前土壤侵蚀过程研究的热点之一。其中侵蚀临界坡长的提出是坡长与侵蚀关系研究中的重要成果,其变化规律为坡面水流和泥沙的输移规律以及侵蚀形态的波动形式和演化过程的研究提供理论依据。

在以往坡长对坡面影响的综述文章中,学者们主要阐述坡长对径流、侵蚀量和侵蚀过程的影响3方面,发现侵蚀强度随坡长变化存在增长型、增长递减型和波动型3种动态形式,但对侵蚀临界坡长以及坡长在坡面泥沙的沉积过程报道较少[4]。尽管如此,目前坡面长度对侵蚀产沙的影响,仍然需要系统的综述进展。笔者分析坡长对径流侵蚀产沙的影响;临界坡长的提出及其计算方法、坡长对坡面泥沙沉积过程影响进行归纳总结,并对土壤侵蚀在坡长方面的研究存在问题及未来研究要点进行总结和展望,以期为深入研究坡面泥沙输移、沉积过程和水土流失防治措施的布设提供重要的理论依据。

1 坡长对径流侵蚀产沙的影响

国内外采用野外调查、野外试验监测以及天然降雨与人工模拟降雨相结合的研究手段,开展了大量关于坡长对坡面侵蚀产流产沙影响的研究。

关于坡长和径流的关系的研究,国内外学者主要得到以下几种结论。一些学者认为,随着坡长的增加径流量逐渐减少[5]。另一些学者认为,陡坡条件下,随着坡长的增加径流量没有发生明显变化[6]。第三种观点认为,坡长与径流之间的关系不是单一的线性变化[7]:在坡度与降雨量较小、且土壤渗透能力较强时,坡长超过一定长度,坡地径流量减少,出现“径流退化”现象[8];孔亚平等[9]模拟不同降雨强度下2.5、5、7.5和10m坡长降雨试验得出,径流量与坡长呈线性关系。因此大降雨强度时易形成结皮,坡面径流损失较小,使径流量与坡长具有较好的线性关系。而方海燕等[10]通过分析实测资料得出径流随坡长增加先增大而后减小。试验坡长超过20m,且降雨入渗随坡长增加呈波动形式,而入渗量的变化是径流随坡长延长有增有减的主要原因。

关于坡长对侵蚀量影响的研究,学者主要持以下3种观点。第一种观点认为,径流量、侵蚀量随坡长的增加而增加,侵蚀量增加使水流含沙量增加,径流侵蚀能力减弱,二者相互消长,导致从上坡到下坡侵蚀量差异不明显[11]。第二种观点认为,从上坡到下坡,随水深逐渐增加,侵蚀量也逐渐增加[12]。第三种观点认为,随坡长增加,径流能量多消耗于搬运泥沙,导致侵蚀能力逐渐减弱[13]

然而,多数研究表明随坡长的增加,侵蚀量的变化并非单一的不变、增大或减小。王玲玲等[14]通过室内冲刷试验得出,随着坡长的增加(4、8、16m),坡面侵蚀速率呈波动的强弱交替变化,并指出存在临界侵蚀坡长。地表覆盖物可以减少径流或土壤流失,且随着坡长增加(10.7~50.0m)其作用更加明显[15]。Kinnell[16]指出 < 1m的坡长会助长侵蚀,此时,剥离和运输受雨滴冲击产生的能量消耗控制,但随着坡长和坡度的增加,水流的剥离可能导致细沟的发展。Liu等[17]研究也表明林灌草覆被坡面,随坡长增加侵蚀强度减弱,这是因为长坡坡面径流变弱或泥沙在坡面沉积的可能性较大。尽管试图在土壤性质一致的地区进行操作,但重复试验表明,同一事件造成的土壤流失有相当大的差异。坡长、坡度和降雨强度等因素也影响坡面上发生的侵蚀类型,坡面径流深度的时间和空间变化会导致侵蚀应力的变化,这些都使坡长与侵蚀强度的关系复杂化。

2 临界坡长及其计算方法

研究不同降雨条件下,坡度等各因素与侵蚀临界坡长的关系,对于深入了解坡长与侵蚀关系,研究坡面侵蚀、搬运、沉积过程具有重要意义。

前人研究中所涉及到的多数为发生细沟侵蚀的临界坡长[18-19],但是,有许多的研究表明,存在影响坡面侵蚀量变化的临界坡长。侵蚀与坡长关系中的临界坡长指在一定的坡面长度内,侵蚀量随坡长的增长而增长,当达到一定坡长时,产生质变的坡长或是土壤侵蚀模数随坡长增加由递增过渡为减少时的坡面长度[20]。不同的学者得到不同的临界坡长值(表 1)。

表 1 影响坡面侵蚀变化的临界坡长 Tab. 1 Critical slope length affecting slope erosion changes

表 1可知,临界坡长不是定值是普遍规律,且变化范围比较大,具体的临界坡长数值与坡度、土壤有较大关系。此外,曹银真[27]认为坡面侵蚀较为剧烈的地段先出现在分水岭以下25~35和45~55m处,中间存在侵蚀较弱阶段,从分水岭向下侵蚀强度表现为由弱到强、由强到弱,反映了水流动能的消长与转换的变化过程。Ghahramani等[28]表明,坡长从5~10m泥沙输移增加,并且当坡长超过10m而减小。Sadeghi等[29]表明减少径流和产沙量的15~20m的理想坡长。Han等[23]利用缓坡侵蚀量随坡长发生波动变化,且在10~20m处侵蚀量最大、30~40m处侵蚀量较小,径流能量影响其侵蚀形式,当径流含沙量趋于输沙能力时,径流侵蚀能力减弱,因此坡长增加影响土壤剥离率。以上研究均说明了临界坡长的存在,虽然研究具体数值有所差异,但存在一般规律,即在一定距离内,侵蚀强度随坡长的增加而增加,超过一定的坡长,侵蚀强度随坡长的增加呈强弱交替变化。

基于研究资料的不同,学者提出了不同的临界坡长计算方法。陈永宗等[30]利用实测资料分别建立不同坡长、单位面积侵蚀量与最大30min降雨强度的经验关系:

$ {M_{\rm{s}}} = A + B{I_{30}} $ (1)

式中:Ms为单位面积侵蚀量,kg/m2I30为最大30min降雨强度,mm/min;A为常数;B为系数。揭示在坡面上,当坡长超过40m,单位面积侵蚀量减小,并结合不同坡长、含沙量与最大30min降雨强度的经验关系:

$ {S_{\rm{w}}} = A + B{I_{30}} $ (2)

式中Sw为含沙量。揭示当达到临界坡长时,随坡长的增长,单位面积侵蚀量减小,含沙量趋于稳定;并且超过临界坡长的坡段,单位面积侵蚀量大大减少。当坡长大于临界坡长时,需要消耗一定的能量输送上部侵蚀的泥沙,坡面用于侵蚀和细沟发育的能量较小,且细沟的产生会使临界坡长的长度增加。在研究表明降雨特性影响着侵蚀量与坡长的关系中,对实测资料建立径流量、最大30min降雨强度的二次多项式回归模型(图 1)。

图 1 不同I30下,径流量与坡长的关系 Fig. 1 Relationship between runoff and slope length under different maximum 30min rainfall intensity

图 1表明,不同I30将有不同的临界坡长,坡长超过临界值坡面径流量将减少,但该模型还不能检验坡长超过60m后径流量变化情况。雷廷武等[31]基于水流输沙能力的含沙量,对不同坡度及不同流量下侵蚀产沙量随沟长的变化试验数据进行回归分析,建立如下模型:

$ S = C{\left( {1 - {{\rm{e}}^{ - \beta x}}} \right)^D} $ (3)

式中:S为侵蚀产沙量,g/mL;β为衰减系数;x为沟长,m;CD回归系数;C为含沙量能够达到的最大极限。其中坡度对径流输沙能力影响明显,当坡度增大时,侵蚀加剧,水流含沙量达到饱和的坡长变短。姚璟等[32]指出在短坡下含沙量随坡长的延长呈波动变化趋势,降雨强度≤60mm/h时临界坡长为4m,降雨强度>60mm/h时为3m。而李君兰等[33]研究指出,含沙量是坡度和降雨强度共同作用的结果。总而言之,侵蚀产沙受降雨条件、坡度、坡长等因素的影响,即使单一因子发生改变,临界坡坡长都会发生改变。以上模型均只是根据研究者试验资料推导得到的结果,具有一定的局限性,但是揭示了坡长对产流量影响的一般规律,以及一定条件下径流输沙能力。土壤侵蚀的剥蚀、搬运、沉积过程在很大程度上受水流的水力学特性及输沙能力的影响[34],为土壤坡面侵蚀、搬运、沉积过程的定量化研究提供理论基础。

3 坡长对坡面沉积的影响

水文和沉积学资料表明,径流频率和大小与坡长呈负相关。山坡越长,沿山坡流动不连续的可能性就越高,这种不连续性导致了长斜坡底部的沉积过程[35]。目前用来监测和模拟坡面上的土壤侵蚀沉积过程,主要方法有侵蚀针法、示踪法和高精度DEM法等。

田培等[36]利用侵蚀针法和染色法研究坡面侵蚀产沙空间分布,指出坡面径流流量小时沉积作用明显,大流量时发生泥沙沉积的坡长随流量增大逐渐延长。杨维鸽等[37]利用137Cs示踪得出坡顶、坡上、坡中和坡下主要表现为侵蚀,坡脚主要表现为沉积。Zhang等[38]利用Gd、Sm、Pr、La和Nd这5种稀土元素示踪物研究了模拟降雨条件下,4m长、10%均匀斜坡上的泥沙动态,指出随着坡长的增加,土壤侵蚀率先增大后减小。李鹏等[39]通过室内颜色示踪研究指出,坡面上部以侵蚀为主,下部以搬运上部来沙为主,搬运明显抑制了土壤的剥离。由于上方来水来沙汇流至坡脚,挟沙量渐趋饱和,其侵蚀力减弱,出现沉积。田均良[40]利用元素示踪法对坡面侵蚀土体的颗粒在坡面上的运移、沉积状况进行了研究,结果表明坡面侵蚀泥沙在低降雨强度、长历时降雨侵蚀过程中,沉积明显,输沙比较低,且沉积的泥沙多来自于坡面的中上部;短历时、高降雨强度下的坡面以侵蚀产沙为主。董元杰等[41]利用磁示踪剂研究坡面土壤侵蚀,初步认为在模拟60mm/h降雨强度条件下,坡面土壤以面蚀侵蚀为主,上坡位侵蚀明显,下坡位次之,中坡位最小。以上研究呈现泥沙在坡面的侵蚀、搬运、沉积过程中呈强弱交替的空间变化特征,这与坡面径流侵蚀力的变化有关,当坡面径流含沙量逐渐达到饱和或趋于稳定时,径流输沙能力下降,使其中部分径流泥沙发生沉积,随着径流含沙量减少,其输沙能力又会增加,再次导致土壤剥蚀和搬运[42]

Parsons等[43]指出,不同坡长坡面分离的泥沙颗粒的输送距离有限,由于试验条件的不同,不同坡位的输沙顺序与输沙距离理论不一致,并且系统中同时发生了再剥离、运移和沉积过程。因此临界坡长的存在使坡长对坡面侵蚀沉积的影响比较复杂,当坡面长度没有达到临界坡长时,侵蚀与沉积活动不能得到充分发展。而目前RUSLE和CSLE都依据的是产沙量随坡长的增加而增加,而对于坡长对侵蚀沉积规律的影响没有很好考虑。因此,建议在构建土壤侵蚀模型时,充分考虑坡长的复杂作用。

4 存在的问题与展望

许多学者在坡长对坡面土壤侵蚀影响方面的研究得到了一定的成果,但由于坡长与土壤侵蚀关系复杂性和影响因素的不确定性,存在着许多亟待解决的问题。

1) 前人就坡长对径流侵蚀产沙影响进行了大量研究,但有关坡面薄层水流泥沙沉积过程及机理研究尚未成熟。在今后需要进一步开展坡面泥沙沉积过程研究试验,丰富坡面沉积基础理论。

2) 由于坡长与坡面侵蚀关系的复杂性,涉及到影响侵蚀变化的临界坡长的研究较少,对临界坡长变化规律研究不够深人。由于侵蚀过程随土壤、坡度和降雨特性的不同而变化,现有的临界坡长的计算方法存在一定局限性。并且需加强不同土壤质地的坡长与土壤侵蚀关系的试验研究。

3) 如何定量刻画坡面分离、搬运、沉积过程的问题在我国至今尚未完全解决[44],坡面长度影响坡面侵蚀—沉积的波动形式,需开展坡长与坡面侵蚀泥沙沉积过程的耦合机制研究。

5 参考文献
[1]
WISCHMERIER W H, SMITH D D, UHLAND R E. Evaluation of factors in the soil loss equation[J]. Agricultural Engineering, 1958, 39(8): 458.
[2]
秦伟, 朱清科, 张岩. 通用土壤流失方程中的坡长因子研究进展[J]. 中国水土保持科学, 2010, 8(2): 117.
QIN Wei, ZHU Qingke, ZHANG Yan. Advance in researches on slop length factor in Universal Soil Loss Equation[J]. Science of Soil and Water Conservation, 2010, 8(2): 117. DOI:10.3969/j.issn.1672-3007.2010.02.020
[3]
COOK H L. The nature and controlling variables of the water erosion process[J]. Soil Science Society of American Proceeding, 1936, 1: 60.
[4]
孔亚平, 张科利, 曹龙熹. 土壤侵蚀研究中的坡长因子评价问题[J]. 水土保持研究, 2008, 15(4): 43.
KONG Yaping, ZHANG Keli, CAO Longxi. Appraise slope length factors in soil erosion study[J]. Research of Soil and Water Conservation, 2008, 15(4): 43.
[5]
GOVERS G. Rill erosion on arable land in central Belgium:Rates, controls and predictability[J]. Catena, 1991, 18(2): 133. DOI:10.1016/0341-8162(91)90013-N
[6]
AGASSI M, BENHUR M. Effect of slope length, aspect and phosphogypsum on runoff and erosion from steep slopes[J]. Soil Research, 1991, 29(2): 197. DOI:10.1071/SR9910197
[7]
BRYAN R B, POESEN J. Laboratory experiments on the influence of slope length on runoff, percolation and rill development[J]. Earth Surface Processes & Landforms, 1989, 14(3): 227.
[8]
朱显谟. 黄土高原水蚀的主要类型及有关因素[J]. 水土保持通报, 1981, 1(3): 13.
ZHU Xianmo. Main types and related factors of water erosion in the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 1981, 1(3): 13.
[9]
孔亚平, 张科利, 唐克丽, 等. 坡长对侵蚀产沙过程影响的模拟研究[J]. 水土保持学报, 2001, 15(2): 17.
KONG Yaping, ZHANG Keli, TANG Keli, et al. Impacts of slope length on soil erosion process under simulated rainfall[J]. Journal of Soil and Water Conservation, 2001, 15(2): 17. DOI:10.3321/j.issn:1009-2242.2001.02.005
[10]
方海燕, 蔡强国, 李秋艳. 黄土丘陵沟壑区坡面产流能力及影响因素研究[J]. 地理研究, 2009, 28(3): 589.
FANG Haiyan, CAI Qiangguo, LI Qiuyan. Study on the runoff generation capacity of slope surface and its influencing factors in a hilly loess region on the Loess Plateau[J]. Geographical Research, 2009, 28(3): 589.
[11]
LAWS J O, PARSONS D A. The relationship of raindrop site to intensity[J]. Eos, Transactions American Geophysical Union, 1943(24): 452.
[12]
ZINGG A W. Degree and length of land slope as it affects soil loss in runoff[J]. Agricultural Engineering, 1940, 21(2): 59.
[13]
LANGBEIN W B, SUCHUMM S A. Yield of sediment in relation to mean precipitation[J]. Eos, Transactions American Geophysical Union, 1958(39): 230.
[14]
王玲玲, 范东明, 王文龙, 等. 水蚀风蚀交错区不同坡长坡面产流产沙过程[J]. 人民黄河, 2016, 38(3): 74.
WANG Lingling, FAN Dongming, WANG Wenlong, et al. A field experiment of runoff and sediment yielding processes of different slopes in water and wind erosion crisscross region[J]. Yellow River, 2016, 38(3): 74.
[15]
SMETS T, POESEN J, BOCHET E. Impact of plot length on the effectiveness of different soil-surface covers in reducing runoff and soil loss by water[J]. Progress in Physical Geography, 2008, 32(6): 654. DOI:10.1177/0309133308101473
[16]
KINNELL P I A. A review of the design and operation of runoff and soil loss plots[J]. Catena, 2016(145): 257.
[17]
LIU Jianbo, GAO Guangyao, WANG Shuai, et al. Combined effects of rainfall regime and plot length on runoff and soil loss in the Loess Plateau of China[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2019, 3(109): 397.
[18]
郑粉莉. 发生细沟侵蚀的临界坡长与坡度[J]. 中国水土保持, 1989(8): 23.
ZHENG Fenli. Critical slope length and slope for rill erosion[J]. Soil and Water Conservation in China, 1989(8): 23.
[19]
张科利, 唐克丽, 王斌科. 黄土高原坡面浅沟侵蚀特征值的研究[J]. 水土保持学报, 1991, 5(2): 8.
ZHANG Keli, TANG Keli, WANG Binke. A study on characteristic value of shallow gully erosion genesis on slope farmland in the Loess Plateau[J]. Journal of Soil and Water Conservation, 1991, 5(2): 8.
[20]
陈晓安, 蔡强国, 张利超, 等. 黄土丘陵沟壑区不同降雨强度下坡长对坡面土壤侵蚀的影响[J]. 土壤通报, 2011, 42(3): 724.
CHEN Xiaoan, CAI Qiangguo, ZHANG Lichao. Impact of slope length on soil erosion under different rainfall intensity in a hilly loess region on the Loess Plateau[J]. Chinese Journal of Soil Science, 2011, 42(3): 724.
[21]
罗来兴. 甘肃华亭粮食沟坡侵蚀量的野外观测及其初步分析结果[J]. 地理学资料, 1958(2): 118.
LUO Laixing. Field observation and preliminary analysis results of grain gully slope erosion in Huating, Gansu[J]. Geographical Information, 1958(2): 118.
[22]
蔡强国. 坡长在坡面侵蚀产沙过程中的作用[J]. 泥沙研究, 1989(4): 90.
CAI Qiangguo. Role of slope length in the process of slope erosion and sediment yield[J]. Journal of Sediment Research, 1989(4): 90.
[23]
HAN Zhen, ZHONG Shouqin, NI Jiupai, et al. Estimation of soil erosion to define the slope length of newly reconstructed gentle-slope lands in hilly mountainous regions[J]. Scientific Reports, 2019(9): 4676.
[24]
CUI Ming, CAI Qiangguo, ZHU Axing, et al. Soil erosion along a long slope in the gentle hilly areas of black soil region in Northeast China[J]. Journal of Geographical Sciences, 2007, 17(3): 375. DOI:10.1007/s11442-007-0375-4
[25]
汪晓勇, 郑粉莉. 黄土坡面坡长对侵蚀-搬运过程的影响研究[J]. 水土保持通报, 2008, 28(3): 4.
WANG Xiaoyong, ZHENG Fenli. Effects of slope length on detachment and transport processes on a loessial hillslope[J]. Bulletin of Soil and Water Conservation, 2008, 28(3): 4.
[26]
付兴涛, 张丽萍. 坡长对红壤侵蚀影响人工降雨模拟研究[J]. 应用基础与工程科学学报, 2015, 23(3): 474.
FU Xingtao, ZHANG Liping. Impact of slope length on red soil erosion under simulated rainfall[J]. Journal of Basic Science and Engineering, 2015, 23(3): 474.
[27]
曹银真. 土壤侵蚀过程中的地貌临界[J]. 中国水土保持, 1987(10): 21.
CAO Yinzhen. Landform criticality in soil erosion process[J]. Soil and Water Conservation in China, 1987(10): 21.
[28]
GHAHRAMANI A, ISHIKAWA Y, GOMI T. Slope length effect on sediment and organic litter transport on a steep forested hillslope:Upscaling from plot to hillslope scale[J]. Hydrol Res Lett, 2011(5): 16.
[29]
SADEGHI S H R, BASHARI S M, RANGAVAR A S. Plot sizes dependency of runoff and sediment yield estimates from a small watershed[J]. Catena, 2013(102): 55.
[30]
陈永宗, 景可, 蔡强国. 黄土高原现代侵蚀与治理[M]. 北京: 科学出版社, 1988: 112.
CHEN Yongzong, JING Ke, CAI Qiangguo. Modern erosion and management of the Loess Plateau[M]. Beijing: Science Press, 1988: 112.
[31]
雷廷武, 张晴雯, 赵军, 等. 细沟侵蚀动力过程输沙能力试验研究[J]. 土壤学报, 2002, 39(4): 480.
LEI Tingwu, ZHANG Qingwen, ZHAO Jun, et al. Laboratory study on sediment transport capacity in the dynamic process of rill erosion[J]. Acta Pedologica Sinica, 2002, 39(4): 480.
[32]
姚璟, 付兴涛. 坡长对离石黄土坡面径流含沙量影响的模拟降雨研究[J]. 应用基础与工程科学学报, 2018, 26(3): 493.
YAO Jing, FU Xingtao. Impact of slope length on sediment concentration in runoff under simulated rainfall in Lishi loess region[J]. Journal of Basic Science and Engineering, 2018, 26(3): 493.
[33]
李君兰, 蔡强国, 孙莉英, 等. 降雨强度、坡度及坡长对细沟侵蚀的交互效应分析[J]. 中国水土保持科学, 2011, 9(6): 8.
LI Junlan, CAI Qiangguo, SUN Liying, et al. Analysis of interaction effects of rainfall intensity, slope degree and slope length on rill erosion[J]. Science of Soil and Water Conservation, 2011, 9(6): 8. DOI:10.3969/j.issn.1672-3007.2011.06.002
[34]
LEI T W, NEARING M A, HAGHIGHI K, et al. Rill erosion and morphological evolution:A simulation model[J]. Water Resources Research, 1998, 34(11): 3157. DOI:10.1029/98WR02162
[35]
WISCHMERIER W H, SMITH D D, UHLAND R E. Evaluation of factors in the soil loss equation[J]. Agricultural Engineering, 1958, 39(8): 458.
[36]
田培, 潘成忠, 许新宜, 等. 坡面流速及侵蚀产沙空间变异性试验[J]. 水科学进展, 2015, 26(2): 178.
TIAN Pei, PAN Chengzhong, XU Xinyi, et al. Field experiment investigation into the spatial variability of overland flow velocity and soil erosion[J]. Advance in Water Science, 2015, 26(2): 178.
[37]
杨维鸽, 郑粉莉, 王占礼, 等. 地形对黑土区典型坡面侵蚀-沉积空间分布特征的影响[J]. 土壤学报, 2016, 53(3): 572.
YANG Weige, ZHENG Fenli1, WANG Zhanli, et al. Effects of topography on spatial distribution of soil erosion and deposition on hillslope in the typical of black soil region[J]. Acta Pedologica Sinica, 2016, 53(3): 572.
[38]
ZHANG X C, NEARING M A, GARBRECHT J D. Gaining insights into interrill erosion processes using rare earth element tracers[J]. Geoderma, 2017(299): 63.
[39]
李鹏, 李占斌, 郑良勇. 黄土陡坡径流侵蚀产沙特性室内试验研究[J]. 农业工程学报, 2005, 21(7): 44.
LI Peng, LI Zhanbin, ZHENG Liangyong. Indoor experiment of characteristics of runoff erosion in loess steep slope[J]. Transactions of the CSAE, 2005, 21(7): 44.
[40]
田均良. 侵蚀泥沙坡面沉积研究初报[J]. 水土保持研究, 1997, 4(2): 58.
TIAN Junliang. A primary report for a study on deposition of erosion sediments on slope[J]. Research of Soil and Water Conservation, 1997, 4(2): 58.
[41]
董元杰, 史衍玺, 孔凡美, 等. 基于磁测的坡面土壤侵蚀空间分布特征研究[J]. 土壤学报, 2009, 46(1): 148.
DONG Yuanjie, SHI Yanxi, KONG Fanmei, et al. Magnetic-measurement-based spatial distribution of soil erosion on slope[J]. Acta Pedologica Sinica, 2009, 46(1): 148.
[42]
李勉, 杨剑锋, 侯建才, 等. 137Cs示踪法研究黄土丘陵区坡面侵蚀空间变化特征[J]. 核技术, 2009, 32(1): 52.
LI Mian, YANG Jianfeng, HOU Jiancai, et al. The spatial variance of hill slope erosion in loess hilly area by 137Cs tracing method[J]. Nuclear Techniques, 2009, 32(1): 52.
[43]
PARSONS A J, BRAZIER R E, WAINWRIGHT J. Scale relationships in hillslope runoff and erosion[J]. Earth Surface Processes and Landforms, 2006, 31(11): 1384. DOI:10.1002/esp.1345
[44]
郑粉莉, 高学田. 坡面汇流汇沙与侵蚀-搬运-沉积过程[J]. 土壤学报, 2004, 41(1): 134.
ZHENG Fenli, GAO Xuetian. Up-slope runoff and sediment and down-slope erosion-transport-deposition processes[J]. Acta Pedologica Sinica, 2004, 41(1): 134. DOI:10.3321/j.issn:0564-3929.2004.01.022