文章快速检索     高级检索
  中国水土保持科学   2020, Vol. 18 Issue (5): 136-143.  DOI: 10.16843/j.sswc.2020.05.017
0

引用本文 

张婉璐, 袁再健, 李定强, 郑明国, 廖义善, 蔡强国, 黄炎和, 蔡崇法, 牛德奎, 王治国. “崩岗”概念及其英文译法探析[J]. 中国水土保持科学, 2020, 18(5): 136-143. DOI: 10.16843/j.sswc.2020.05.017.
ZHANG Wanlu, YUAN Zaijian, LI Dingqiang, ZHENG Mingguo, LIAO Yishan, CAI Qiangguo, HUANG Yanhe, CAI Chongfa, NIU Dekui, WANG Zhiguo. Discussion of the "Benggang" concept and its English translation[J]. Science of Soil and Water Conservation, 2020, 18(5): 136-143. DOI: 10.16843/j.sswc.2020.05.017.

项目名称

国家重点研发计划课题"生态防护型水土流失治理技术集成与示范"(2017YFC0505404);广东省省级科技计划项目"南岭森林生态系统野外科学观测研究站"(2018B030324001);广东省重点领域研发计划"练江水体综合治理与生态修复关键技术集成及示范"(2019B110205003);广东省科学院专项资金项目(2019GDASYL-0502004)

第一作者简介

张婉璐(1991-), 女, 在站博士后。主要研究方向:水土保持与岩土力学等。E-mail:wl-zhang@foxmail.com

通信作者简介

袁再健(1976-), 男, 博士, 研究员。主要研究方向:水土保持, 面源污染与生态水文等。E-mail:zjyuan@soil.gd.cn
李定强(1963-), 男, 博士, 研究员。主要研究方向:水土保持与面源污染。E-mail:lidq@gzb.ac.cn

文章历史

收稿日期:2020-07-31
修回日期:2020-08-30
“崩岗”概念及其英文译法探析
张婉璐 1,2, 袁再健 1,2, 李定强 1,2, 郑明国 1,2, 廖义善 1,2, 蔡强国 3,4, 黄炎和 5, 蔡崇法 6, 牛德奎 7, 王治国 8     
1. 广东省科学院生态环境与土壤研究所 华南土壤污染控制与修复国家地方联合工程研究中心 广东省农业环境综合治理 重点实验室 广东省面源污染防治工程技术研究中心, 510650, 广州;
2. 梅州市国际水土保持研究院, 514000, 广东梅州;
3. 中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室, 100101, 北京;
4. 中国科学院大学资源环境学院, 100049, 北京;
5. 福建农林大学, 350002, 福州;
6. 华中农业大学水土保持研究中心, 430070, 武汉;
7. 江西农业大学林学院, 330045, 南昌;
8. 水利部水利水电规划设计总院, 100120, 北京
摘要:崩岗是我国南方丘陵区特殊的地质灾害类型,是坡面土体在多种外营力作用下,沿沟壁处不断崩坍破坏,最终形成巨大创口的侵蚀地貌现象。崩岗侵蚀通常伴随着大量的水土流失,对生态环境造成严重威胁。目前,国家对南方崩岗侵蚀治理工作日益重视,崩岗已从小众的地貌学词汇逐渐趋向大众化;且随着水土保持领域国际交流合作日益加强,关于崩岗的研究成果已逐渐引起国际关注。首先对崩岗的概念及其涵义进行介绍分析,进而探讨了崩岗的英文译法。为了更好地体现崩岗独特的文化特色与内涵,崩岗这一具有中国特色的侵蚀地貌,采用译音Benggang的方法,有助于深化国内外学者对我国崩岗侵蚀独特性的认识,进一步推进我国水土保持研究的国际化进程。
关键词崩岗侵蚀    文化特色    英文译法    水土保持    
Discussion of the "Benggang" concept and its English translation
ZHANG Wanlu 1,2, YUAN Zaijian 1,2, LI Dingqiang 1,2, ZHENG Mingguo 1,2, LIAO Yishan 1,2, CAI Qiangguo 3,4, HUANG Yanhe 5, CAI Chongfa 6, NIU Dekui 7, WANG Zhiguo 8     
1. Guangdong Engineering Research Center for Non-point Source Pollution Control, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, 510650, Guangzhou, China;
2. International Institute of Soil and Water Conservation, 514000, Meizhou, Guangdong, China;
3. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China;
4. College of Resource and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China;
5. Fujian Agriculture and Forestry University, 350002, Fuzhou, China;
6. Research Center of Water and Soil Conservation, Huazhong Agricultural University, 30070, Wuhan, China;
7. College of Forestry, Jiangxi Agricultural University, 330045, Nanchang, China;
8. China Renewable Energy Engineering Institute, 100120, Beijing, China
Abstract: [Background] Benggang is a typical geo-hazard in the tropical and subtropical areas of South China with the greatest scale of water and soil erosion and serious ecological damage. It is an erosional geomorphology that the soil in the red soil hilly of south China collapses continuously along the gully wall, under the action of hydraulic and gravity, and finally forms a huge wound. With the urgent attention of the country to the management of Benggang erosion in South China, this niche geomorphology vocabulary now gradually tends popular. In addition, with the exchange and cooperation of soil and water erosion globally, the research achievement for Benggang has attracted international attention. [Methods] In this paper, the concept and connotation of Benggang were discussed, based on the comprehensive summary of the development, morphology and destination of Benggang. On the other hand, the English translation for Benggang was analyzed by comparing the domestic and international erosional landforms, and by discussing the present translations for Benggang. [Results] 1) Benggang is usually developed in tropical and subtropical granite areas with 20-50 m weathering crust, and exists in a small amount in glutenite, argillaceous shale, phyllite and other rock areas. There are about 239, 100 Benggangs in China and the average annual sediment yield by Benggang erosion is about 67, 239, 000 t in recent decades. 2) A Benggang system can be divided into five parts: upper catchment area, collapsing wall, colluvial deposit, scour channel, and alluvial fan. Typical Benggang landforms are characterized by arc-shaped, linear-shaped, ladle-shaped, composite-shaped, and claw-shaped. 3) According to the development conditions, mechanism, and region of Benggang, it is different from the erosion landforms in foreign countries. Therefore, there is no appropriate native English word that can be used as the translation of Benggang. In addition, Benggang is also significantly different from the soil erosion landforms in China, such as landslide and debris flow, which are dominated by gravity erosion. At present, the most common English translations of Benggang include Benggang (transliteration) and collapsing gully (translating meaning). In recent three years, 23 international journal articles were published using Benggang, with an average growth rate of 56.4%, and 33 articles were published using collapsing gully, with an average growth rate of 40.1%. This shows Benggang transliteration has been recognized to a large extent. [Conculsions] Benggang transliteration is applied to highlight its unique cultural characteristics and cultural connotation, which will also contribute to the understanding of domestic and foreign scholars for Benggang's uniqueness and further promote the internationalization of soil and water conservation research in China.
Keywords: Benggang erosion    cultural characteristic    English translation    soil and water conservation    

崩岗是我国南方热带、亚热带区域常见的侵蚀地貌类型,集中分布于长江以南,广东、江西、广西、福建、湖南等省的赤红壤、红壤分布区,在湖北和安徽省也有少量分布[1],具有明显的地带性、区域性、垂直分布等特征[2-4]。崩岗侵蚀程度大致与华南海岸线相平行,自东南向西北逐渐减弱[5]。常见于热带、亚热带地区的花岗岩区,一般风化壳厚度在20~50 m的崩岗分布最多[6],少量存在于砂砾岩、泥质页岩、千枚岩及其他岩区[4]。另外,崩岗的发育还受日照影响,阳坡的崩岗数量多于阴坡[7],其发育方向与区域构造应力场最大剪切力方向基本一致[8]。据统计,我国总共分布着大、中、小型崩岗约23万9 100个,近几十年内年均崩岗侵蚀产沙量约6 723.9万t[9],造成下游大量的农田、村庄被埋压,淤塞河流和灌排渠道,被喻为我国南方的“生态溃疡”[4]。鉴于崩岗侵蚀严重的危害性,认识崩岗侵蚀,加快侵蚀控制、治理已成为我国南方生态环境建设的重要内容之一。

崩岗作为中国特有的侵蚀地貌,有其独特的地貌特征和侵蚀机理,兼具中国地方特色及特殊语境。此外,伴随着水土保持国际合作与交流的深入,崩岗研究及成果已逐渐走向国际并引起广泛关注[10];因此,深入明确崩岗的概念及其内涵,并在此基础上探讨崩岗的英文译法,有助于进一步加强国外学者对中国水土保持工作者所做工作的认识。

1 崩岗的认识

相关文献显示,“崩岗”源于广东省梅州市五华县当地客家人对“丘陵山地冲沟源头汇水区围椅状崩塌崖壁地貌”的称谓[11],是具有中国地方特色的地貌学名词。国内最早对“崩岗”侵蚀现象的官方记录见于《德庆县志》[12]。1958年,曾昭璇先生在《韩江上游地形略论》中首次将“崩岗”地貌引入学术界,并于1960年在其《地形学原理》一书中正式将“崩岗”引入地貌学领域,成为地貌专业名词[13]。目前“崩岗”一词已应用在土壤学、水土保持学、地理学等学科中。

1.1 崩岗的发育过程与形态划分

作为中国南方地区最严重的水土侵蚀类型,崩岗具有其独特的发育机理及地貌特征,表现出明显的突发性、随机性、长期性、剧烈性等特点。崩岗是内、外营力相互作用的结果,内营力主要源于地球构造应力,是系统的。而以水力及重力作用为主的外营力则是随机的、不稳定的[8],对崩岗的发育过程、地貌形态及分布起着主导作用。崩岗发育的不同阶段表现出不同的侵蚀机理,源于水力、重力作用对各阶段侵蚀发育的贡献率不同[14]。研究显示绝大多数崩岗是由水力作用形成的沟蚀发育而来,因此认为崩岗发育初期水力作用起主导作用,地貌形态以沟蚀为主[15-16]。随着沟谷下切,一定高差的崩壁形成,土体由表面剥脱式侵蚀发育为坠落式的大型崩塌,此时重力侵蚀为主。目前学者们将崩岗侵蚀的演变过程分为若干阶段,如史德明[6]、丁光敏[17]将崩岗分成初期阶段、中期阶段及晚期阶段; 阮伏水[18]分为幼年期、青年期、壮年期及老年期;吴克刚等[19]和张淑光等[20]将其划分为深切期、崩塌期及夷平期/平衡期;牛德奎[21]据崩岗的阶段性地貌形态特征划分为4个阶段。实际上,由于水力、重力耦合作用的随机性与复杂性,很难对崩岗的发育过程做出十分明确的定量化区分,也无法清晰区分其与沟蚀之间的界限。

崩岗系统通常包括上方集水区、崩壁、崩积堆、下部沟道和冲积扇5部分[22],其地貌形态始终处于动态演变过程中,崩塌作用发生的初始位置、崩塌程度、崩塌方向也是随机的,因此在我国南方的低山丘陵区域分布着不同形态、大小及空间维度的崩岗。学者们根据崩岗的空间形态特征及崩岗认识的逐步深入将崩岗不断细化分类,如最初曾昭璇等[23]将崩岗分为瓢形崩岗、分支崩岗和箕形崩岗3类,张淑光等[20]分为条形、瓢形扇形和弧形4类,丘世钧[15]分为条形、叉形、瓢形、箕形、劣地状5类,丁光敏[17]进一步划分为6类。2005年,水利部组织实施的南方崩岗普查过程中则统一将南方7省的崩岗分为5类:爪形、条形、弧形、瓢形、和混合型[4],得到学术界普遍接受并沿用至今。

1.2 崩岗的概念与内涵

崩岗的定义目前说法不一,但学者们均强调了崩岗发育过程中关于崩塌、坍塌的概念。如唐克丽[24]在《中国水土保持》一书认为崩岗是指岩体或土体在重力和水力综合作用下,向临空面突然崩落的现象。王礼先等[25]在《中国水利百科全书—水土保持分册》中描述到崩岗是在水力和重力作用下,山坡土(石)体受破坏而坍塌和受冲刷的侵蚀现象。张信宝[26]将崩岗定义为:热带、亚热带地区,岩石风化形成的膨胀压密厚层土体组成的坡地上,冲沟沟头部分经不断地崩塌和陷蚀作用而形成一种围椅状侵蚀地貌。

关于崩岗的内在涵义,目前广泛认可的2种解读给“崩岗”赋予了发生学和形态学的双重涵义:1)曾昭璇[27]认为“崩岗”即为有“崩口”的山岗,是在丘陵、岗地上由崩塌作用形成的“崩口”地形;2)另有部分学者[6, 28-30]认为“崩”是指以崩坍作用为主要的侵蚀方式,“岗”指所形成的地貌形态。前者认为“崩”用来修饰“岗”,此处的“岗”也并非广义的丘陵、岗地,而是发生以崩塌作用为主最终形成“崩口”的山岗。后者以崩塌作用为主的“崩”是因,最终形成了“岗”为果。显然,前者的解释中不仅强调了崩岗区别于其他侵蚀地貌的崩塌行为,同时也形象地展示了崩塌行为对低山丘陵地所带来的破坏。

因此,为体现崩岗侵蚀地貌的独特性和地貌性,对崩岗的定义需考虑其发育机理、发育条件,强调崩塌、崩口的概念。崩岗可归纳为深厚风化层坡体在水力和重力的综合作用下,土(石)体发生以崩塌作用为主而形成的一种崩口地貌。

2 崩岗的英文译法

1996年,地貌学家Xu[31]认为当多个崩岗依次交错发育于某一坡地,则为badland,即崩岗实属一种badland地貌,但能否用常规意义上的badland来表示崩岗还有待商榷。崩岗与国外常见的badland[32-33]虽有一定的相似性,均与高强度暴雨密切有关,但其形成的物质条件、发育机理并不完全一致。目前国际上典型的badland是干旱、半干旱区badland,如西班牙Tabernas badland[34-35]、美国的Utah badland[36]、意大利Calanchi and Biancane badland[37-38]、以色列Negev badland[39-40]、加拿大Alberta badland[41-42]、南非Karoo badland[43]等(图 1),这类侵蚀地貌与我国崩岗的发育环境完全不同,且地貌形态有显著的区别。与崩岗具有相似气候条件的是地中海badland,发育于温润的地中海气候条件下,然而其地貌发育区域下部为透水性低、结构致密的基层,上覆一层厚度薄、低收缩性的扰动土层,发育机理为暴雨作用下引发地表径流不断冲刷、侵蚀上覆土层[44],这也与我国崩岗的侵蚀机制存在差异。

图 1 国外典型的badland地貌 Fig. 1 Typical badland landforms abroad

相较于上述侵蚀地貌,马达加斯加的lavaka地貌(图 2)与崩岗存在着极大的相似性,lavaka地貌常见于具备20~50 m风化层的区域内[45],地表径流及地质结构断裂是其主要的驱动力。典型的lavaka地貌呈上宽下窄的“蝌蚪”型及倒“泪珠”型[46],可分别对应我国的“条形”崩岗及“弧形”“瓢形”崩岗,因此二者发育机理及表观地貌上具有显著的可比性。然而,lavaka地貌常发育于海拔1 000~2 000 m的山体上,坡度不低于30°[47],且其形成的先决条件为频繁的地震活动[48]。而我国崩岗常见于海拔 < 500 m的低山丘陵区域[49],且无证明我国崩岗发育与地震相关。另外,已有研究表明lavaka的形成与基岩岩性无明显的关联性,受内部裂缝、纹理影响较大[45, 47],而我国崩岗绝大多数发育在花岗岩上,崩岗的发育与岩性的相关性还有待验证。因此,尽管2种地貌存在一定的外观及发育机理相似性,仍无法将lavaka地貌等同于我国的崩岗地貌。

图 2 lavaka、崩岗及印度collapsing gully地貌 Fig. 2 Lavaka landform, Benggang landform, and collapsing gully in India

总之,从崩岗发育条件、机理、区域等可知,崩岗有别于国外的侵蚀地貌,因此目前没有适当的本土英文单词可以作为崩岗的英译词汇。此外崩岗与国内常见的以重力侵蚀为主的土壤侵蚀地貌如滑坡和泥石流等也存在显著不同,同样也区别于常规的崩塌地形[6];因此,关于崩岗的英译问题必须考虑其内涵及所处区域文化等特性,因为英译不仅仅是简单的文字符号转换,还涉及到其文化价值、所处文化土壤、文化转换所涉及的出发语文化与目的语文化之间的关系等[52]。一般的英文译法可分为2种:译意及译音。其中崩岗的译意包含2类:第1类侧重于原字面意思,如slope collapse(边坡坍塌)、collapse of hillock(岗地坍塌)等,此类表达虽能直观凸显崩岗的文本涵义,但在现有的国际期刊中类似英文词汇用法似乎与崩岗的真实涵义相差较大,slope collapse侧重于表达一种边坡滑塌行为[53-54],collapse of hillock则与丘陵地带的地貌演化史有关[55-56],因此这类译法与崩岗的内在涵义有一定的差异性。第2类译意如collapsing gully,在国际崩岗学术研究领域中使用频率较高[57-59]。该译法使用gully来强调崩岗所属的侵蚀领域范畴,凸显了崩塌行为,即崩岗为1种特殊的崩塌型沟蚀地貌。因此相较第1类译法更加合适。然而国际上现有的collapsing gully(图 2(c)),如印度的沟蚀即与我国崩岗存在明显的地貌差异。因此,如使用同一英文词汇会造成2种不同地貌混淆,且也无法凸显我国崩岗的独特性。

因此,为避免英译过程中汉语文化特色的缺失,选择能侧重源语文化的译音法翻译崩岗为Benggang,并将首字母大写,更能充分体现我国崩岗独特的内在涵义,是加速崩岗侵蚀研究、强化其国际化进程的重要手段。崩岗译音单词“Benggang”,早在1992年由Xu等[60]在成都山地侵蚀、泥石流和环境研讨会论文集中首次使用,之后于1996年在国际学术期刊Catena上发表学术论文再次使用Benggang[31]。另外,2015年8月开始正式执行的由中国水利部负责编写的中华人民共和国国家标准GB 51018—2014《水土保持工程设计规范》,目前正在由水利部水利水电规划设计总院等单位牵头负责翻译为英文版本,并计划在国外正式出版,在这份英文版本中已经将“崩岗”译为“Benggang”。之后越来越多的研究者使用Benggang在各国际期刊上先后发表各自的研究成果[61-62]图 3统计了迄今目前使用频率最高的2种崩岗译法在国际期刊上发表文章数。可以看出,多数集中在近3年。其中,使用Benggang发表国际期刊论文总数为23篇,近3年平均增长率为56.4%;collapsing gully为33篇,近3年平均增长率为40.1%。由此可见,崩岗的译音已得到一定的认可,这代表一种学术的统一与进展,也是中国特色文化的体现与传承。

图 3 使用Benggang及collapsing gully国际期刊发表的论文数 Fig. 3 Number of publications related to Benggang and collapsing gully
3 结束语

崩岗作为广泛发育于我国南方红壤区的水土侵蚀类型,表现出独特的水力、重力双重作用下导致的剧烈坍塌行为。根据崩岗的内涵将其归纳为膨胀压密的深厚风化层坡体在水力和重力的综合作用下,土(石)体发生以崩塌作用为主而形成的一种崩口地貌,这种说法形象地展示了崩塌行为对丘陵、岗地区带来的局部创伤,而且体现了崩岗发育过程的独特性。此外,采用译音法翻译崩岗Benggang,有助于加强国内外学者们对我国崩岗侵蚀独特性的认识,突出崩岗独特的文化特色与内涵,推进我国南方水土保持研究的国际化进程。

4 参考文献
[1]
冯明汉, 廖纯艳, 李双喜, 等. 我国南方崩岗侵蚀现状调查[J]. 人民长江, 2009, 40(8): 66.
FENG Minghan, LIAO Chunyan, LI Shuangxi. Investigation on status of hill collapsing and soil erosion in southern China[J]. Yangtze River, 2009, 40(8): 66.
[2]
李双喜, 桂惠中, 丁树文. 中国南方崩岗空间分布特征[J]. 华中农业大学学报, 2013, 32(1): 83.
LI Shuangxi, GUI Huizhong, DING Shuweng. Features of special layout of hill collapse in South China[J]. Journal of Huazhong Agricultural University, 2013, 32(1): 83.
[3]
陈晓安, 杨洁, 肖胜生, 等. 崩岗侵蚀分布特征及其成因[J]. 山地学报, 2013, 31(6): 716.
CHEN Xiaoan, YANG Jie, XIAO Shengsheng, et al. Distribution characteristics and causes of collapse erosion[J]. Journal of Mountain Science, 2013, 31(6): 716.
[4]
刘希林, 连海清. 崩岗侵蚀地貌分布的海拔高程与坡向选择性[J]. 水土保持通报, 2011, 31(4): 32.
LIU Xilin, LIAN Haiqing. Distribution choices of elevation and slope orientation of collapsing hills[J]. Bulletin of Soil and Water Conservation, 2011, 31(4): 32.
[5]
牛德奎, 郭晓敏, 左长清, 等. 我国南方红壤丘陵区崩岗侵蚀的分布及其环境背景分析[J]. 江西农业大学学报, 2000, 22(2): 204.
NIU Dekui, GUO Xiaomin, ZUO Changqing, et al. Analysis of the distribution and environmental surroundings of collapsed hills land of red soil in South of China[J]. Acta Agriculturae Universitatis Jiangxiensis, 2000, 22(2): 204.
[6]
史德明. 我国热带, 亚热带地区崩岗侵蚀的剖析[J]. 水土保持通报, 1984, 4(3): 32.
SHI Deming. Collapsed gully erosion in tropical and sub-tropical regions of China[J]. Bulletin of Soil and Water Conservation, 1984, 4(3): 32.
[7]
吴克刚, 陆兆熊, 郭鼎. 华南花岗岩风化壳崩岗侵蚀:德庆县深涌小流域为例[J]. 热带地貌, 1992(1): 11.
WU Kegang, LU Zhaoxiong, GUO Ding. Collapsed gullyerosion of granite weathering crust in South China:A case study of Deqing county Deepchung small watershed[J]. Tropical Geomorphology, 1992(1): 11.
[8]
祝功武. 崩岗的选择性发育成因及防治:以五华县为例[J]. 热带地理, 1991, 11(2): 152.
ZHU Gongwu. The causes and prevention of collapse profile's selective growth:Case study of Wuhua[J]. Tropical Geography, 1991, 11(2): 152.
[9]
梁音, 宁堆虎, 潘贤章, 等. 南方红壤区崩岗侵蚀的特点与治理[J]. 中国水土保持, 2009(1): 31.
LIANG Yin, NING Duihu, PAN Xianzhang, et al. atures and way of governance of benggang in red soil region ofsouthern China[J]. Soil and Water Conservation in China, 2009(1): 31.
[10]
LANDA E R, FELLER C. Soil and culture[M]. New York: Springer, 2010.
[11]
张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析:以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810.
ZHANG Dalin, LIU Xilin. Analysis of the grain size properties and flow body classes of the mud sand flow:An example of Liantanggang collapsing hill and gully in Wuhuacounty of Guangdong[J]. Advances in Earth Science, 2014, 29(7): 810.
[12]
谢富崇. 德庆县志[M]. 广州: 广东人民出版社, 1996: 58.
XIE Fuchong. Deqing county annals[M]. Guangzhou: Guangdong Renmin Press, 1996: 58.
[13]
廖义善, 唐常源, 袁再健, 等. 南方红壤区崩岗侵蚀及其防治研究进展[J]. 土壤学报, 2018, 55(6): 1297.
LIAO Yishan, TANG Changyuan, YUAN Zaijian. Research progress on benggang erosion and its prevention measure in red soil region of southern china[J]. Acta Pedologica Sinica, 2018, 55(6): 1297.
[14]
张大林, 刘希林. 崩岗侵蚀地貌的演变过程及阶段划分[J]. 亚热带资源与环境学报, 2011, 6(2): 23.
ZHANG Dalin, LIU Xilin. Evolution and phases division of collapsed gully erosion landform[J]. Journal of Subtropical Resources and Environment, 2011, 6(2): 23.
[15]
丘世钧. 红土坡地崩岗侵蚀过程与机理[J]. 水土保持通报, 1994, 14(6): 31.
QIU Shijun. The process and mechanism of red earth slope disintegration erosion[J]. Bulletin of Soil and Water Conservation, 1994, 14(6): 31.
[16]
季翔, 黄炎和, 林金石. 崩岗侵蚀沟的时空侵蚀特征及预测[J]. 山地学报, 2019, 37(1): 86.
JI Xiang, HUANG Yanhe, LIN Jinshi. Prediction and characteristics of spatial-temporal erosion of Benggang gully[J]. Mountain Research, 2019, 37(1): 86.
[17]
丁光敏. 福建省崩岗侵蚀成因及治理模式研究[J]. 水土保持通报, 2001, 21(5): 10.
DING Guangmin. Causes and control patterns of collapse gully erosion in Fujian province[J]. Bulletin of Soil and Water Conservation, 2001, 21(5): 10.
[18]
阮伏水. 福建崩岗沟侵蚀机理探讨[J]. 福建师范大学学报(自然科学版), 1996, 12(S1): 24.
RUAN Fushui. Study on erosion mechanism of collapse gully in Fujian[J]. Journal of Fujian Normal University (Natural Science Edition), 1996, 12(S1): 24.
[19]
吴克刚, Clarke D, Dicenzo P. 华南花岗岩风化壳的崩岗地形与土壤侵蚀[J]. 中国水土保持, 1989(2): 2.
WU Kegang, CLARKE D, DICENZO P. On the landform subject to benggang (gully-slope collapse) relative to soil erosion in efflorescent shell of granite in South China[J]. Soil and Water Conservation in China, 1989(2): 2.
[20]
张淑光, 钟朝章. 广东省崩岗形成机理与类型[J]. 水土保持通报, 1990, 10(3): 8.
ZHANG Shuguang, ZHONG Chaozhang. The mechanism and types of the hillock collapsing forming in Guangdong province[J]. Bulletin of Soil and Water Conservation, 1990, 10(3): 8.
[21]
牛德奎. 赣南山地丘陵区崩岗侵蚀阶段发育的研究[J]. 江西农业大学学报, 1990, 12(1): 29.
NIU Dekui. Study on the development process of the collapse in hill area in southern Jiangxi province[J]. Acta Agriculturae Universitatis Jiangxiensis, 1990, 12(1): 29.
[22]
阮伏水. 福建省崩岗侵蚀与治理模式探讨[J]. 山地学报, 2003, 21(6): 675.
RUAN Fushui. Study on slump gully erosion and its control in Fujian province[J]. Journal of Mountain Science, 2003, 21(6): 675.
[23]
曾昭璇, 黄少敏. 中国东南部花岗岩地貌与水土流失问题[J]. 华南师范大学学报(自然科学版), 1977(2): 46.
ZENG Zhaoxuan, HUANG Shaomin. The granite landscapes and problem of soil erosion in the Southeast of China[J]. Journal of Guangdong Normal University (Natural Science), 1977(2): 46.
[24]
唐克丽. 中国水土保持[M]. 北京: 科学出版社, 2004: 80.
TANG Keli. Soil and water conservation in China[M]. Beijing: Science Press, 2004: 80.
[25]
王礼先, 孙保平, 余新晓. 中国水利百科全书:水土保持分册[M]. 北京: 中国水利水电出版社, 2004: 48.
WANG Lixian, SUN Baoping, YU Xinxiao. Encyclopedia of water conservancy in China:Soil and water conservation[M]. Beijing: China Water Power Press, 2004: 48.
[26]
张信宝. 关于中国水土流失研究中若干理论问题的新见解[J]. 水土保持通报, 2019, 39(6): 302.
ZHANG Xinbao. New opinion on several theoretical issures in researches of soil erosion in China[J]. Bulletin of Soil and Water Conservation, 2019, 39(6): 302.
[27]
曾昭旋. 从暴流地貌看崩岗发育及其整治[J]. 福建水土保持, 1992(1): 18.
CENG Zhaoxuan. Landfall development and its control in view of violent rainoff's landform[J]. Fujian Soil and Water Conservation, 1992(1): 18.
[28]
李思平. 广东省崩岗侵蚀规律和防治的研究[J]. 自然灾害学报, 1992, 1(3): 68.
LI Siping. Study on erosion law and control of slope disintegration in Guangdong province[J]. Journal of Natural Disasters, 1992, 1(3): 68.
[29]
吴志峰, 钟伟青. 崩岗灾害地貌及其环境效应[J]. 生态科学, 1997, 16(2): 91.
WU Zhifeng, ZHONG Weiqing. Gravity gully erosion and its influence[J]. Ecologic Science, 1997, 16(2): 91.
[30]
熊平生. 中国南方红壤丘陵区崩岗侵蚀基本问题研究综述[J]. 亚热带水土保持, 2016, 28(4): 28.
XIONG Pingsheng. Review on the basic problems of Benggang in red soil hilly region of South China[J]. Subtropical Soil and Water Conservation, 2016, 28(4): 28.
[31]
XU Jiongxin. Benggang erosion:The influencing factors[J]. Catena, 1996, 27(3/4): 249.
[32]
COCCO S, BRECCIAROLI G, AGNELLI A, et al. Soil genesis and evolution on Calanchi (badland-like landform) of central Italy[J]. Geomorphology, 2015, 248(1): 33.
[33]
ALONSO-SARRIA F, ROMERO-DIAZ A, RUIZ-SINOGA J D, et al. Gullies and badland landscapes in Neogene basins, region of Murcia, Spain[J]. Landform Analysis, 2011(17): 161.
[34]
CANTON Y, DOMINGO F, SOLE-BENET A, et al. Hydrological and erosion response of a badlands system in semiarid SE Spain[J]. Journal of Hydrology, 2001, 252(1): 65.
[35]
CANTON Y, BARRIO DEL G, SOLE-BENET A, et al. Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain[J]. Catena, 2004, 55(3): 341. DOI:10.1016/S0341-8162(03)00108-5
[36]
GODFREY A E, EVERITTB L, DUQUE J F M. Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA[J]. Geomorphology, 2008, 102(2): 242. DOI:10.1016/j.geomorph.2008.05.002
[37]
PHILLIPS C P. The badlands of Italy:A vanishing landscape?[J]. Applied Geography, 1998, 18(3): 243. DOI:10.1016/S0143-6228(98)00005-8
[38]
BATTAGLIA S, LEONI L, SARTORI F. Mineralogical and grain size composition of clays developing Calanchi and Biancane erosional landforms[J]. Geomorphology, 2003, 49(1): 153.
[39]
YAIR A, LAVEE H, BRYAN R B, et al. Runoff and erosion processes and rates in the Zin valley badlands, northern Negev, Israel[J]. Earth Surface Processes, 1980, 5(3): 205. DOI:10.1002/esp.3760050301
[40]
KUHN N J, YAIR A. Spatial distribution of surface conditions and runoff generation in small arid watersheds, Zin Valley Badlands, Israel[J]. Geomorphology, 2004, 57(3): 183.
[41]
CAMBELL I A. Stream discharge, suspended sediment and erosion rates in the Red Deer River basin, Alberta, Canada[J]. International Association of Hydrology Science, 1977(122): 244.
[42]
KASANIN-GRUBIN M. Clay mineralogy as a crucial factor in badland hillslope processes[J]. Catena, 2013, 106: 54. DOI:10.1016/j.catena.2012.08.008
[43]
BOARDMAN J, FOSTER I D L, ROWNTREE K M, et al. Long-term studies of land degradation in the Sneeuberg uplands, eastern Karoo, South Africa:A synthesis[J]. Geomorphology, 2017(285): 106.
[44]
POESEN J, NACHTERGAELE J, VERSTRAETEN G, et al. Gully erosion and environmental change:Importance and research needs[J]. Catena, 2003, 50(2): 91.
[45]
VOARINTSOA N R G, COX R, RAZANATSEHENO M O M, et al. Relation between bedrock geology, topography and lavaka distribution in Madagascar[J]. South African Journal of Geology, 2012, 115(2): 225. DOI:10.2113/gssajg.115.225
[46]
WELLS N A, ANDRIAMIHAJA B, RAKOTOVOLOLONA H S. Patterns of development of lavaka, Madagascar's unusual gullies[J]. Earth Surface Processes and Landforms, 1991, 16(3): 189. DOI:10.1002/esp.3290160302
[47]
WELLS N A, ANDRIAMIHAJA B. The initiation and growth of gullies in Madagascar:Are humans to blame?[J]. Geomorphology, 1993, 8(1): 1. DOI:10.1016/0169-555X(93)90002-J
[48]
COX R, ZENTNER D B, RAKOTONDRAZAFY A F M, et al. Shakedown in Madagascar:Occurrence of lavakas (erosional gullies) associated with seismic activity[J]. Geology, 2010, 38(2): 179. DOI:10.1130/G30670.1
[49]
李双喜, 桂惠中, 丁树文. 中国南方崩岗空间分布特征[J]. 华中农业大学学报, 2013, 32(1): 83.
LI Shuangxi, GUI Huizhong, DING Shuwen. Features of special layout of hill collapse in South China[J]. Journal of Huazhong Agricultural University, 2013, 32(1): 83.
[50]
LIAO Yishan, YUAN Zaijian, ZHUO Muning, et al. Coupling effects of erosion and surface roughness on colluvial deposits under continuous rainfall[J]. Soil and Tillage Research, 2019, 191: 98. DOI:10.1016/j.still.2019.03.016
[51]
SHIT P K, POURGHASEMIH R, BHUNIA G S. Gully erosion studies from India and surrounding regions[M]. Springer Nature, 2019.
[52]
许钧. 尊重、交流与沟通:多元文化语境下的翻译[J]. 中国比较文学, 2001(3): 80.
XU Jun. Respect, exchange and communication:On translation in the present global multicutural context[J]. Comparative Literature in China, 2001(3): 80.
[53]
KILBURN C R, PETLEY D N. Forecasting giant, catastrophic slope collapse:Lessons from Vajont, Northern Italy[J]. Geomorphology, 2003, 54(1/2): 21.
[54]
CHENG M Y, HOANG N D. Slope collapse prediction using Bayesian framework with k-nearest neighbor density estimation:Case study in Taiwan[J]. Journal of Computing in Civil Engineering, American Society of Civil Engineers, 2016, 30(1): 04014116. DOI:10.1061/(ASCE)CP.1943-5487.0000456
[55]
THONG J T L, LUO P, CHOI W K, et al. Evolution of hillocks during silicon etching in TMAH[J]. Journal of Micromechanics and Microengineering, 2000, 11(1): 61.
[56]
GRAAS C D. Stress-related phenomena in capped aluminum-based metallizations[J]. MRS Online Proceedings Library Archive, 1992(265): 211.
[57]
DENG Yusong, XIA Dong, CAI Chongfa, et al. Effects of land uses on soil physic-chemical properties and erodibility in collapsing-gully alluvial fan of Anxi county, China[J]. Journal of Integrative Agriculture, 2016, 15(8): 1863. DOI:10.1016/S2095-3119(15)61223-0
[58]
XIA Dong, DING Shuwen, LONG Li, et al. Effects of collapsing gully erosion on soil qualities of farm fields in the hilly granitic region of South China[J]. Journal of Integrative Agriculture, 2016, 15(12): 2873. DOI:10.1016/S2095-3119(16)61348-5
[59]
XIA Jinwen, CAI Chongfa, WEI Yujie, et al. Granite residual soil properties in collapsing gullies of south China:Spatial variations and effects on collapsing gully erosion[J]. Catena, 2019, 174: 469. DOI:10.1016/j.catena.2018.11.015
[60]
XU Jiongxin, ZENG Guohua. Benggang erosion in subtropical granite crust geoecosystems: An example from Guangdong province[A]. Erosion, Debris Flows and Environment in Mountain Regions[C]. IAHS, 1992(209): 455.
[61]
LIAO Yishan, YUAN Zaijian, ZHENG Minguo, et al. The spatial distribution of Benggang and the factors that influence it[J]. Land Degradation & Development, 2019, 30(18): 2323.
[62]
JIANG Fangshi, HUANG Yanhe, WANG Ming, et al. Effects of rainfall intensity and slope gradient on steep colluvial deposit erosion in southeast China[J]. Soil Science Society of America Journal, 2014, 78(5): 1741. DOI:10.2136/sssaj2014.04.0132