文章快速检索     高级检索
  中国水土保持科学   2020, Vol. 18 Issue (5): 112-118.  DOI: 10.16843/j.sswc.2020.05.014
0

引用本文 

崔鹏, 黄海霞, 杨琦琦. 裸果木幼苗生物量和抗氧化酶活性对土壤干旱胁迫的响应[J]. 中国水土保持科学, 2020, 18(5): 112-118. DOI: 10.16843/j.sswc.2020.05.014.
CUI Peng, HUANG Haixia, YANG Qiqi. Response of biomass and antioxidant enzyme activities of Gymnocarpos przewalskii seedlings to drought stress[J]. Science of Soil and Water Conservation, 2020, 18(5): 112-118. DOI: 10.16843/j.sswc.2020.05.014.

项目名称

甘肃农业大学学科建设专项基金"裸果木幼苗根系形态和生理特征对干旱胁迫的响应"(GSAU-XKJS-2018-110);省社科规划项目"十三五"生态环境建设与保护问题研究(12032JJ)

第一作者简介

崔鹏(1995-), 男, 硕士研究生。主要研究方向:荒漠灌木生理生态。E-mail:2441499445@qq.com

通信作者简介

黄海霞(1974-), 女, 博士, 副教授。主要研究方向:森林培育和植物逆境生理生态。E-mail:1057821914@qq.com

文章历史

收稿日期:2019-10-08
修回日期:2020-08-25
裸果木幼苗生物量和抗氧化酶活性对土壤干旱胁迫的响应
崔鹏 1, 黄海霞 1, 杨琦琦 2     
1. 甘肃农业大学林学院, 730070, 兰州;
2. 甘肃林业职业技术学院, 741020, 甘肃天水
摘要:研究干旱胁迫下荒漠稀有植物裸果木幼苗生物量及其分配格局,叶片和根系抗氧化特性的变化,以揭示其抗旱机理。通过盆栽实验,设置对照(CK)、轻度干旱胁迫(LD)、中度干旱胁迫(MD)、重度干旱胁迫(SD),土壤含水量分别控制在田间持水量的45%~50%、30%~35%、15%~20%和5%~10%,分析幼苗生物量、根冠比、丙二醛(MDA)含量和抗氧化酶活性的差异性。结果表明:干旱胁迫使裸果木幼苗生物量显著降低,根冠比增加,叶片MDA含量、过氧化氢酶(CAT)及抗坏血酸过氧化物酶(APX)活性均显著上升,超氧化物歧化酶(SOD)活性先显著上升后下降;根系中过氧化物酶(POD)活性显著降低,叶片中POD活性显著上升。干旱胁迫显著影响裸果木幼苗生长,但幼苗可通过增加根系生物量的分配比例来适应干旱。干旱胁迫对根系和叶片膜系统造成明显的过氧化伤害,膜伤害随胁迫程度增加而明显加重,根系抗氧化能力较叶片弱。叶片通过SOD、CAT、POD、APX酶的协同作用保护膜系统,根系主要通过SOD、CAT、APX酶减轻活性氧伤害。
关键词干旱胁迫    裸果木    叶片和根系    生物量    保护酶活性    
Response of biomass and antioxidant enzyme activities of Gymnocarpos przewalskii seedlings to drought stress
CUI Peng 1, HUANG Haixia 1, YANG Qiqi 2     
1. College of Forestry, Gansu Agricultural University, 730070, Lanzhou, China;
2. Gansu Vocational and Technical College of Forestry, 741020, Tianshui, Gansu, China
Abstract: [Background] Drought stress affects the biomass accumulation and distribution between the aboveground and roots, results in excessive accumulation of active oxygen and lipid peroxidation, while plants evolve antioxidant enzyme system. Gymnocarpos przewalskii originates from Tethys, is the rare relic species of the Tertiary period in the desert area of central Asia and plays an important role in keeping stable of desert ecosystem. The research is to analyze the biomass accumulation and distribution pattern of the seedlings, the antioxidant characteristics of the leaves and roots under drought stress for revealing the drought resistance mechanism and to provide some theoretical basis for rare species conservation and vegetation restoration in desert area. [Methods] Taking one-year-old seedlings of Gymnocarpos przewalskii as the experiment material and using pot experiment, four water gradients were set, including the control, light water stress, moderate water stress and severe water stress, the soil water content was kept at 45%-50%, 30%-35%, 15%-20% and 5%-10% of the field capacity respectively by weighing method, with 10 repetitions per pot experiment, leaves and roots were collected after being treated 90 d and the biomass and physiological indexes were measured. The difference in biomass, root-shoot ratio, malondialdehyde (MDA) content and antioxidant enzyme activities in leaves and roots was analyzed. [Results] Under drought stress, biomass of the whole plant and the aboveground significantly reduced, the underground biomass decreased remarkably under the moderate and severe stress, and the aboveground biomass decreased more, thus the root-shoot ratio increased and was significantly higher under the severe stress compared to the control. MDA content in roots and leaves increased remarkably under drought stress compared with the control, the higher the drought stress degree was, the more serious the peroxidation damage was, and the increase amplitude of MDA content in roots was higher than that in leaves under the same treatment. With the increase of the drought stress, superoxide dismutase (SOD) activity in leaves and roots first significantly increased then decreased, it was obviously higher than the control in roots but significantly lower in leaves under severe stress, which indicated that the scavenging effect of SOD to reactive oxygen was limited especially in leaves. Peroxidase (POD) activity markedly decreased in roots but significantly increased in leaves under stress treatments compared to the control, showing that POD played obvious antioxidation in leaves, and POD was not the key enzyme scavenging H2O2 in the roots under drought stress. Catalase (CAT) activity increased significantly in leaves and roots under drought stress. Ascorbate peroxidase (APX) activity showed increasing trend under stress treatment, the difference was significant among the treatments in roots, and it changed markedly under moderate and severe stress in leaves. [Conculsions] Drought stress clearly affected the growth of Gymnocarpos przewalskii seedlings, but it could increase biomass distribution to roots to adapt the drought. Drought stress caused obvious peroxidation damage to the leaf and root membrane system, and the damage was more serious in roots. The leaves protected the membrane system by synergistic action of SOD, CAT, POD and APX enzymes, and the roots mainly reduced damage of reactive oxygen by SOD, CAT and APX.
Keywords: drought stress    Gymnocarpos przewalskii    leaves and roots    biomass    protective enzyme activity    

植物实生苗生长阶段既是对水分最敏感的阶段,也是由于水分不足导致其死亡的重要时期[1]。植物遭受干旱胁迫时,生长受到限制,一般表现为生物量下降[2],将有限的光合产物更多地分配给根系,以适应干旱[3]。干旱胁迫会引起植物体内活性氧的过量累积,导致细胞膜脂过氧化[4],但植物为应对干旱胁迫而进化了酶促和非酶促抗氧化防御系统[5],其中以超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)和抗坏血酸过氧化物酶(ascorbate peroxidase,APX)为代表的酶类会通过协同作用清除过量的活性氧,减轻细胞的过氧化损伤[6],但因植物种类[7]和干旱胁迫程度不同[8-10]而存在差异。

裸果木(Gymnocarpos przewalskii)隶属石竹科裸果木属,起源于古地中海,是亚洲中部荒漠区稀有的第三纪孑遗植物种,耐干旱、耐瘠薄、耐风蚀沙埋,成为石质荒漠区重要的建群种之一,主要生长在海拔800~2 500 m的干河床、山前洪积扇及砾质戈壁滩等地,发挥着重要的防风固沙和水土保持作用[11]。研究[12]表明,裸果木的潜在适生区集中在西北荒漠区,年平均降水量40~200 mm,潜在蒸发率3~15之间,极端最高气温基本上在29.2~36.8 ℃之间,在气候变化的大背景下,对维护荒漠生态系统稳定具有不可替代的作用。由于其生存环境条件恶劣,以及人为活动的影响,导致其种群数量日益减小,自然繁殖能力受到明显限制,现今已处于濒危状态[13],被列为国家一级保护植物,亟待加强研究和保护。连转红[14]研究自然干旱下裸果木成年植株叶片的生理响应,但是对干旱胁迫下幼苗叶片和根系生理响应的对比研究尚未见报道。笔者通过盆栽控制实验,研究不同干旱胁迫程度下裸果木幼苗生物量分配和抗氧化酶活性的变化,探究裸果木的抗旱生理机制。

1 材料与方法 1.1 实验材料

以一年生裸果木实生苗为实验材料。种子采集于甘肃安西极旱荒漠国家级自然保护区自然分布的裸果木种群,育苗基质为泥炭:蛭石:珍珠岩=2:2:1,每个花盆(直径24 cm,高度35 cm)播种10粒,待成活稳定后,每盆保留3株,在甘肃农业大学林学院种苗室进行日常管护。2018年5月将花盆移至塑料大棚内,进行正常的水分管理,6月开始实施水分处理。

1.2 实验方法

实验设对照(control,CK)、轻度干旱胁迫(light drought stress,LD)、中度干旱胁迫(moderate drought stress,MD)、重度干旱胁迫(severe drought stress,SD),土壤含水量分别为田间持水量的45%~50%、30%~35%、15%~20%、5%~10%,每个处理10个重复,通过每2 d定时称量补充蒸发损失的水分,保持含水量恒定。控水90 d后开始取样,先摘取叶片,然后采集根样,置于密封袋,带回实验室后冲洗干净,将处理好的根系和叶片分成2份,1份用于生物量的测定,1份用于生理指标的测定。

1.3 指标测定

生物量测定采用烘干称量法,将根、茎叶分别称其鲜质量,于烘箱中105 ℃杀青30 min,然后75 ℃下烘干至恒质量,分别称其干质量,计算根冠比。根冠比=根干质量/茎叶干质量。MDA含量、SOD、POD、CAT活性分别采用硫代巴比妥酸法、氮蓝四唑法、愈创木酚法、紫外吸收法测定[15],APX活性参照张以顺的方法[16]测定。

1.4 数据分析

采用Excel 2010整理数据,SPSS 13.0统计分析软件进行单因素方差分析,用Duncan法进行多重比较,检测水平为0.05。

2 结果与分析 2.1 干旱胁迫对裸果木幼苗生物量和根冠比的影响

随着干旱胁迫的加剧,裸果木幼苗总生物量、地上及地下生物量均呈现下降趋势,地上部分占有更大比例(图 1)。干旱胁迫下总生物量和地上生物量均显著低于CK,随干旱程度的增大,LD、MD和SD地上部分生物量分别较CK下降了31.5%、66.0%、85.4%。LD处理下的根系生物量与CK差异不显著,MD和SD处理下降明显,降幅分别为39.3%和71.3%。干旱胁迫使地上部分生物量下降更为明显。

CK:对照.LD:轻度干旱胁迫;MD:中度干旱胁迫;SD:重度干旱胁迫。图中同类图柱字母不同时,表示处理之间差异显著(P < 0.05),含相同字母表示差异不显著(P>0.05),下同。 CK: Control. LD: Light drought stress. MD: Moderate drought stress. SD: Severe drought stress. Different letters in the same type of figures indicate significant difference among treatments (P < 0.05), the same letter indicates insignificant difference (P>0.05). The same below. 图 1 干旱胁迫对裸果木幼苗生物量和根冠比的影响 Fig. 1 Effects of drought stress on the biomass and root-shoot ratio of Gymnocarpos przewalskii seedlings

根冠比反映植物地下部分与地上部分的物质分配消长关系。随着干旱胁迫程度的加大,裸果木幼苗的根冠比呈上升趋势(图 1)。LD与MD处理下,根冠比与CK之间差异不显著,SD处理的根冠比明显高于CK和LD,分别为前两者的2.7倍和2.4倍。

2.2 干旱胁迫对裸果木幼苗MDA含量的影响

干旱胁迫使裸果木叶片MDA含量持续增加(图 2),在MD和SD处理下,MDA含量增加显著,增幅分别为68.9%和102.2%,不同胁迫处理之间MDA含量的差异均达显著水平。与CK相比,LD、MD和SD处理下根系MDA含量均增加显著,分别为CK的1.1、1.3和2.3倍,SD处理的MDA含量也显著高于LD和MD处理。当胁迫程度相同时,根系MDA含量的增幅显著高于叶片,表明水分胁迫对根系膜系统的伤害程度更大。

图 2 干旱胁迫对裸果木幼苗丙二醛质量摩尔浓度的影响 Fig. 2 Effects of drought stress on MDA content in Gymnocarpos przewalskii seedlings
2.3 干旱胁迫对裸果木幼苗SOD和POD活性的影响

裸果木幼苗叶片和根系SOD活性均随胁迫程度的增加先上升后下降,均在MD下达到最大值(图 3)。相较于CK,叶片的SOD活性在LD、MD下增加显著,增幅分别为58.1%、83.6%;SD处理的SOD活性显著低于CK,降幅为31.7%。对根系而言,干旱胁迫使SOD活性均显著升高,LD、MD和SD分别为CK的2.3、4.5、2.9倍。除SD处理外,在其他处理下叶片SOD活性均高于根系,表明在重度干旱胁迫下根系SOD清除活性氧的能力较强。

图 3 干旱胁迫对裸果木幼苗SOD活性的影响 Fig. 3 Effects of drought stress on SOD activity of Gymnocarpos przewalskii seedlings

干旱胁迫使叶片的POD活性显著增加(图 4),SD下POD活性最高,为CK的2.7倍,不同胁迫处理之间POD活性差异也达显著水平。干旱胁迫使根系的POD活性均显著低于CK,且随着胁迫的加剧,POD活性显著地先降后升,MD处理下出现最小值,较CK降低73.0%。叶片和根系POD活性对水分胁迫的响应规律明显不同。

图 4 干旱胁迫对裸果木幼苗POD活性的影响 Fig. 4 Effects of drought stress on POD activity of Gymnocarpos przewalskii seedlings
2.4 干旱胁迫对裸果木幼苗CAT和APX活性的影响

干旱胁迫均使裸果木叶片和根系的CAT活性显著增强(图 5)。对叶片而言,随胁迫程度的加大,CAT活性持续上升,LD、MD和SD较CK分别增加76.7%、78.7%、116.1%,MD处理的CAT活性与LD、SD处理差异不显著。根系在胁迫过程中CAT活性变化规律与叶片一致,3个胁迫处理的CAT活性均显著高于CK,LD、MD和SD分别高出35.9%、62.7%和78.2%。相同的胁迫程度下,叶片CAT活性的增幅均高于根系,表现出更强的清除H2O2的能力。

图 5 干旱胁迫对裸果木幼苗CAT活性的影响 Fig. 5 Effects of drought stress on CAT activity of Gymnocarpos przewalskii seedlings

干旱胁迫下,裸果木幼苗叶片和根系APX活性均持续增加(图 6)。在LD处理下,叶片APX活性较CK变化不明显,MD、SD处理下,APX活性急剧增加,分别达到CK的4.8倍和7.8倍。根系APX活性在各胁迫处理间均存在显著差异。相较于CK,LD处理下APX活性较CK增加76.4%,MD、SD处理的APX活性分别为CK的4.7倍和8.9倍。SD处理下,根系APX活性增幅大于叶片,表现出较强的抗氧化作用。

图 6 干旱胁迫对裸果木幼苗APX活性的影响 Fig. 6 Effects of drought stress on APX activity of Gymnocarpos przewalskii seedlings
3 讨论

根系作为植物吸收水分的主要器官,对土壤水分变化非常敏感并会产生一系列生理应答,与植物的抗旱性密切相关[17]。叶片则作为光合作用的主要部位,也会对水分亏缺产生生理响应。生物量是衡量植物幼苗生长状况的重要指标,干旱程度加剧时,植物幼苗会通过改变生物量和增加根冠比等方式来应对[18]。本研究发现,裸果木幼苗地上生物量随着胁迫程度的加剧逐渐下降,LD和MD处理下降缓慢,在SD处理时,幼苗生物量急剧下降,表明干旱胁迫会明显影响裸果木幼苗生物量的生产,地上部分生物量下降更快,这与李冬梅等[19]的研究结果相一致。植物增大根部光合产物的分配有利于其适应干旱环境[20],土壤水分减少时,裸果木幼苗就会将生长中心向根系转移,以吸收更多水分,尤其在SD处理下,通过这种方式来实现对有限水分的最大利用,以保证生存。

MDA是膜脂过氧化最重要的产物之一,其含量的高低在一定程度上可以反映植物膜系统受伤害程度[21]。干旱胁迫下,MDA含量的变化程度能很好地反映植物的抗旱性强弱[22]。本研究中,MD和SD处理均使裸果木叶片中的MDA含量显著增加,对叶片的细胞膜系统造成明显伤害,莫荣利等[23]研究水分胁迫下桑树MDA含量的变化,也得出相似的结论。根系MDA含量在LD处理时就显著升高,说明根系膜系统对干旱胁迫较为敏感,SD处理则造成膜系统伤害明显加剧,这与红砂根系MDA含量对干旱胁迫的响应规律一致[24]。相同干旱胁迫条件下,裸果木根系MDA含量增幅明显高于叶片,说明根系对干旱胁迫更为敏感,根的质膜受损程度大于叶片,麻疯树幼苗对干旱胁迫也表现出相似的生理应答[25]

在遭受干旱胁迫时,植物会启动抗氧化酶防御系统,清除活性氧[26]。SOD作为植物清除活性氧的第一道防线,通过歧化作用将O2-转化为H2O2[6]。本研究结果发现,在LD、MD处理下,裸果木叶片和根系中的SOD酶有效地发挥了清除O2-的作用,但在SD处理下,SOD活性显著下降,干旱胁迫下花棒[27]SOD活性也表现出类似的变化规律,表明SOD对植物体自由基的清除能力存在阈值,重度胁迫超出了SOD的作用范围。CAT、POD能够清除H2O2,使其转化为H2O和O2,通常与SOD酶协同作用进一步减轻活性氧的伤害[6]。本研究发现,裸果木叶片POD和CAT活性随干旱胁迫加剧持续升高,明显地发挥了清除H2O2的作用,这与紫花苜蓿[28]在干旱胁迫下的抗氧化作用方式相一致。连转红[14]研究表明,随着干旱的持续,裸果木叶片POD活性则先下降后上升,与本研究结果略有不同,这可能是由于研究对象的年龄不同,胁迫程度存在差异。LD和MD胁迫使根系中POD活性显著下降,SD处理下又表现为上升,可能是因为逆境胁迫下POD具有双重作用:一方面具有抗氧化能力[29],另一面还可能参与不饱和脂肪酸的过氧化[30]。说明POD并不是裸果木根系中清除H2O2的主要酶类,重度水分胁迫又加剧了质膜的过氧化。APX也是重要的H2O2清除酶,与CAT和POD共同构成了植物体内清除活性氧的第二道防线[31]。本实验结果表明,MD和SD处理诱导裸果木叶片和根系中的APX活性显著增强,对清除H2O2发挥了积极作用,与光核桃根系[32]APX活性对干旱胁迫的响应规律类似,而多年生的裸果木叶片中APX活性随干旱的加剧则表现出先升后降的趋势[14],与本研究结果不一致,可能是实验材料和干旱强度不同所致。

4 结论

1) 干旱胁迫明显限制了裸果木幼苗生物量的积累,对地上部分的影响更大,幼苗能通过减少地上部分的水分散失,增加根系光合产物的分配比例以应对干旱。

2) 干旱胁迫对根系和叶片细胞膜系统均造成了明显的过氧化伤害,胁迫程度越大,膜伤害越严重,根系的抗氧化保护能力较叶片弱。

3) 叶片通过SOD、CAT、POD、APX酶的协同作用保护质膜系统,根系主要通过SOD、CAT、APX酶的保护减轻活性氧伤害,重度干旱胁迫超出了叶片和根系SOD酶清除自由基的作用范围。

5 参考文献
[1]
韩一林.毛竹对干旱、高温及协同胁迫的生理生化响应[D].北京: 中国林业科学研究院, 2017: 2.
HAN Yilin. Physiological and biochemical responses of Phyllostachys edulis to drought, heat and synergistic stress[D].Beijing: Chinese Academy of Forestry.2017: 2 http://cdmd.cnki.com.cn/Article/CDMD-82201-1017271733.htm
[2]
杨建伟, 孙桂芳, 赵丹, 等. 干旱胁迫对3种灌木生长及叶水分生理的影响[J]. 林业与生态科学, 2018, 33(4): 423.
YANG Jianwei, SUN Guifang, ZHAO Dan, et al. Effects of drought stress on the growth of three shrubs and their leaf water physiology[J]. Forestry and Ecological Sciences, 2018, 33(4): 423.
[3]
单立山.西北典型荒漠植物根系形态结构和功能及抗旱生理研究[D].兰州: 甘肃农业大学, 2013: 4.
SHAN Lishan. Study onroot morphological structure, function and drought resistance physiology of typical desert plants in northwest China[D].Lanzhou: Gansu Agricultural University, 2013: 4.
[4]
李洁, 周春娥, 梁志英, 等. 干旱胁迫对乌头部分生理指标的影响[J]. 中国水土保持科学, 2011, 9(3): 93.
LI Jie, ZHOU Chune, LIANG Zhiying, et al. Impacts of drought stress on physiological characteristics of Aconitums[J]. Science of Soil and Water Conservation, 2011, 9(3): 93.
[5]
曹昀, 纪欣圣, 国志昌, 等. 土壤水分含量对虉草幼苗保护酶与渗透调节物质的影响[J]. 干旱区地理, 2018, 41(4): 780.
CAO Yun, JI Xinshenng, GUO Zhichang, et al. Effects of soil moisture content on antioxidase and osmoregulation substrate content of Phalaris arundinacea seedlings[J]. Arid Land Geography, 2018, 41(4): 780.
[6]
白娟, 龚春梅, 王刚, 等. 干旱胁迫下荒漠植物红砂叶片抗氧化特性[J]. 西北植物学报, 2010, 30(12): 2444.
BAI Juan, GONG Chunmei, WANG Gang, et al. Antioxidative characteristics of Reaumuria soongorica under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(12): 2444.
[7]
SINHABABU A, KAR R K. Comparative responses of three fuel wood yielding plants to PEG-induced water stress at seedling stage[J]. Acta Physiologiae Plantarum, 2003, 25(4): 403. DOI:10.1007/s11738-003-0022-3
[8]
郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应[J]. 植物生理学报, 2018, 54(12): 1839.
GUO Yanyang, LIU Jia, ZHU Yali, et al. Responses of photosynthetic and antioxidant enzyme activities in maize leaves to drought stress[J]. Plant Physiology Journal, 2018, 54(12): 1839.
[9]
姜宗庆, 李成忠, 余乐, 等. 干旱胁迫对薄壳山核桃叶片丙二醛含量和3种抗氧化酶活性的影响[J]. 上海农业学报, 2019, 35(1): 7.
JIANG Zongqing, LI Chengzhong, YU Le, et al. Effects of drought stress on MDA content and 3 antioxidant enzymes activities in leaves of Carya illinoensis[J]. Acta Agriculturae Shanghai, 2019, 35(1): 7.
[10]
殷东生, 魏晓慧. 干旱胁迫对风箱果幼苗生长、光合生理和抗氧化酶活性的影响[J]. 东北林业大学学报, 2019, 47(1): 26.
YIN Dongsheng, WEI Xiaohui. Influence of drought stress on growth, photosynthetic physiology and antioxidant enzyme activities of Physocarpus amurensis seedlings[J]. Journal of Northeast Forestry University, 2019, 47(1): 26.
[11]
傅立国. 中国植物红皮书[M]. 北京: 科学出版社, 1992: 368.
FU Liguo. China plant red data book[M]. Beijing: Science Press, 1992: 368.
[12]
马松梅, 张明理, 张宏祥, 等. 利用最大熵模型和规则集遗传算法模型预测孑遗植物裸果木的潜在地理分布及格局[J]. 植物生态学报, 2010, 34(11): 1327.
MA Songmei, ZHANG Mingli, ZHANG Hongxiang, et al. Predicting potential geographical distributions and patterns of the relic plant Gymnocarpos przewalskii using maximum entropy and genetic algorithm for rule-set prediction[J]. Chinese Journal of Plant Ecology, 2010, 34(11): 1327.
[13]
王立龙, 王亮, 张丽芳, 等. 不同生境下濒危植物裸果木种群结构及动态特征[J]. 植物生态学报, 2015, 39(10): 980.
WANG Lilong, WANG Liang, ZHAG Lifang, et al. Structure and dynamic characteristics of Gymnocarpos przewalskii in different habitats[J]. Chinese Journal of Plant Ecology, 2015, 39(10): 980.
[14]
连转红.裸果木叶片对自然干旱的生理响应[D].兰州: 甘肃农业大学, 2018: 9.
LIAN Zhuanhong. Physiological response of Gymnocarpos przewalskii leaf to natural drought[D].Lanzhou: Gansu Agricultural University, 2018: 9.
[15]
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 210.
GAO Junfeng. Plant physiology experiment guide[M]. Beijing: Higher Education Press, 2006: 210.
[16]
张以顺. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2009: 135.
ZHANG Yishun. Plant physiology experiment course[M]. Beijing: Higher Education Press, 2009: 135.
[17]
汪攀, 陈奶莲, 邹显花, 等. 植物根系解剖结构对逆境胁迫响应的研究进展[J]. 生态学杂志, 2015, 34(2): 550.
WANG Pan, CHEN Nailian, ZOU Xianhua, et al. Advances in research on response of plant root anatomy to stress[J]. Journal ofEcology, 2015, 34(2): 550.
[18]
单立山, 李毅, 石万里, 等. 土壤水分胁迫对红砂幼苗生长和渗透调节物质的影响[J]. 水土保持通报, 2015, 35(6): 106.
SHAN Lishan, LI Yi, SHI Wanli, et al. Effects ofsoil water stress on growth and osmotic adjustment substances of Reaumuria songarica seedlings[J]. Soil and Water Conservation Bulletin, 2015, 35(6): 106.
[19]
李冬梅, 焦峰, 雷波, 等. 黄土丘陵区不同草本群落生物量与土壤水分的特征分析[J]. 中国水土保持科学, 2014, 12(1): 33.
LI Dongmei, JIAO Feng, LEI Bo, et al. Characteristics of biomass and soil moisture of different herb communities in loess hilly region[J]. Science of Soil and Water Conservation, 2014, 12(1): 33.
[20]
李芳兰, 包维楷, 吴宁. 白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J]. 生态学报, 2009, 29(10): 5406.
LI Fanglan, BAO Weikai, WU Ning. Morphological and physiological responses of Sophora davidii seedlings to different stress drought stress[J]. Acta Ecologica Sinica, 2009, 29(10): 5406.
[21]
ZHANG Shize, HUA Baozhen, ZHANG Fan. Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci(Hemiptera:Aleyrodidae) infestation[J]. Arthropod-Plant Interactions, 2008, 2(4): 209. DOI:10.1007/s11829-008-9044-5
[22]
罗青红, 宁虎森, 何苗, 等. 5种沙地灌木对干旱胁迫的生理生态响应[J]. 林业科学, 2017, 53(11): 29.
LUO Qinghong, NING Husen, HE Miao, et al. Ecophysiological responses of five sandy shrubs to drought stress[J]. Scientia Silvae Sinicae, 2017, 53(11): 29.
[23]
莫荣利, 李勇, 于翠, 等. 水分胁迫对桑树生理生化特性的影响[J]. 湖北农业科学, 2017, 56(24): 4815.
MO Rongli, LI Yong, YU Cui, et al. Effect of water stress on physiological-biochemical characteristics of Morus alba[J]. Hubei Agricultural Sciences, 2017, 56(24): 4815.
[24]
种培芳, 李航逸, 李毅. 荒漠植物红砂根系对干旱胁迫的生理响应[J]. 草业学报, 2015, 24(1): 72.
CHONG Peifang, LI Hangyi, LI Yi. Physiological responses of seeding roots of the desert plant Reaumuria soongorica to drought stress[J]. Acta Prataculturae Sinica, 2015, 24(1): 72.
[25]
庄国庆, 王文国, 王胜华, 等. 干旱胁迫下麻疯树幼苗根和叶的生理应答变化[J]. 四川大学学报(自然科学版), 2009, 46(6): 1845.
ZHUANG Guoqing, WANG Wenguo, WANG Shenghua, et al. Different physiological response to drought stress in root and leaf of seedlings of Jatropha cureas L.[J]. Journal of Sichuan University(Natural Science Edition), 2009, 46(6): 1845.
[26]
SOFO A, DIHIO B, XILOYANNIS C, et al. Antioxidant defenses in olive trees during drought stress:Changes in activity of some antioxidant enzymes[J]. Functional Plant Biology, 2005, 32(1): 45. DOI:10.1071/FP04003
[27]
韩刚, 党青, 赵忠. 干旱胁迫下沙生灌木花棒的抗氧化保护响应研究[J]. 西北植物学报, 2008(5): 1007.
HAN Gang, DANG Qing, ZHAO Zhong. Response of antioxidation protection system of Hedysarum scoparium to drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008(5): 1007.
[28]
吴淼, 刘信宝, 丁立人, 等. PEG模拟干旱胁迫下硅对紫花苜蓿萌发及生理特性的影响[J]. 草地学报, 2017, 25(6): 1258.
WU Miao, LIU Xinbao, DING Liren, et al. Effects of silicon on germination and physiological characteristics of Medicago sativa under drought stress simulated by PEG[J]. Acta Agrestia Sinica, 2017, 25(6): 1258.
[29]
尹永强, 胡建斌, 邓明军. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J]. 中国农学通报, 2007, 23(1): 105.
YIN Yongqiang, HU Jianbin, DENG Mingjun. Latest development of antioxidant system and responses to stress in plant leaves[J]. Chinese Agricultural Science Bulletin, 2007, 23(1): 105.
[30]
NIINOMI A, MORIMOTO M, SHIMIZU S. Lipid peroxidation by the[J]. Plant and Cell Physiology, 1987, 28(4): 731.
[31]
卜楠, 俞丽蓉, 马万里, 等. 不同水分条件下沙漠豆生理指标的变化[J]. 中国水土保持科学, 2012, 10(6): 77.
BU Nan, YU Lirong, MA Wanli, et al. Physiological changes of Swainsona formosa under different water conditions[J]. Science of Soil and Water Conservation, 2012, 10(6): 77.
[32]
田艳.干旱胁迫下光核桃根系响应机制初步研究[D].哈尔滨: 东北林业大学, 2016: 2.
TIAN Yan. Theresponding mechanism of physiology and proteomics in Prunus mira roots under drought[D].Harbin: Northeast Forestry University, 2016: 2.