文章快速检索     高级检索
  中国水土保持科学   2020, Vol. 18 Issue (4): 73-83.  DOI: 10.16843/j.sswc.2020.04.009
0

引用本文 

张嘉良, 苏伯儒, 王云琦, 胡波, 王玉杰, 马超, 鲍升志. 酸雨湿润下重庆黄壤团聚体稳定性动态变化[J]. 中国水土保持科学, 2020, 18(4): 73-83. DOI: 10.16843/j.sswc.2020.04.009.
ZHANG Jialiang, SU Boru, WANG Yunqi, HU Bo, WANG Yujie, MA Chao, BAO Shengzhi. Dynamic changes of aggregate stability in yellow soil under acid rain wetting, Chongqing[J]. Science of Soil and Water Conservation, 2020, 18(4): 73-83. DOI: 10.16843/j.sswc.2020.04.009.

项目名称

林业科学技术研究项目"三峡库区典型防护林林分结构与功能调控技术"(2017-02)

第一作者简介

张嘉良(1997-), 男, 硕士研究生。主要研究方向:土壤侵蚀。E-mail:907818147@qq.com

通信作者简介

王云琦(1979-), 女, 博士, 教授。主要研究方向:森林水文及土壤侵蚀。E-mail:wangyunqi@bjfu.edu.cn

文章历史

收稿日期:2019-04-09
修回日期:2019-06-14
酸雨湿润下重庆黄壤团聚体稳定性动态变化
张嘉良 1,2, 苏伯儒 1,2, 王云琦 1,2, 胡波 3, 王玉杰 1,2, 马超 1,2, 鲍升志 4     
1. 北京林业大学水土保持学院 重庆缙云山三峡库区森林生态系统国家定位观测研究站, 100083, 北京;
2. 北京林业大学水土保持学院 重庆三峡库区森林生态系统教育部野外科学观测研究站, 100083, 北京;
3. 济南大学水利与环境学院, 250022, 济南;
4. 武汉林水工程咨询有限公司, 430070, 武汉
摘要:土壤团聚体稳定性是评价土壤质量与影响土壤侵蚀过程的重要因子, 为研究酸雨湿润对重庆黄壤团聚体的影响, 用pH为1、3和5的模拟酸雨湿润初始粒级>5~7 mm、>3~5 mm、>2~3 mm和≥1~2 mm的团聚体(pH=1, 处理TpH1; pH=3, 处理TpH3; pH=5, 处理TpH5)。之后每5 d用Le Bissonnais法中快速湿润(FW)、预湿润后震荡(WS)与慢速湿润(SW)的方法测定团聚体平均质量直径(MWD), 并将经去离子水干湿交替处理的各粒级团聚体MWD作为本底值。结果表明:1)消散作用是黄壤团聚体破碎的主要机制。2)经过TpH1、TpH3和TpH5处理后, 相较于本底值, MWDFW的平均变化率分别为1.99、1.30和1.43;MWDWS的平均变化率分别为1.03、1.22和1.19;MWDSW的平均变化率分别为1.48、0.78和0.88。3)处理TpH1、TpH3和TpH5的MWD平均变化率分别为1.50、1.10和1.16。处理TpH1的MWD变化幅度远高于TpH3和TpH5, 处理TpH3和TpH5的相同初始粒级团聚体MWD基本无显著差异。4)酸雨湿润会促进 < 0.1 mm的团聚体凝聚。TpH3和TpH5处理下>5~7 mm、>3~5 mm、>2~3 mm团聚体中>2 mm的水稳性团聚体平均变化率分别为0.87、0.98和0.23, >2~3 mm团聚体中>2 mm水稳性团聚体大幅减少。总体来看, 土壤团聚体被酸雨湿润后稳定性增大, 但这是以土壤酸化为代价的。
关键词模拟酸雨    土壤团聚体    LB法    黄壤    
Dynamic changes of aggregate stability in yellow soil under acid rain wetting, Chongqing
ZHANG Jialiang 1,2, SU Boru 1,2, WANG Yunqi 1,2, HU Bo 3, WANG Yujie 1,2, MA Chao 1,2, BAO Shengzhi 4     
1. Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, 100083, Beijing, China;
2. Three-Gorges Reservoir Area(Chongqing) Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, 100083, Beijing, China;
3. School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, China;
4. Wuhan Linshui Engineering Consulting Co., Ltd., 430070, Wuhan, China
Abstract: [Background] Soil aggregate stability is an important indicator of soil quality and susceptibility to runoff and erosion, and acid rain pollution is a serious environmental problem in Chongqing city. The change of soil physicochemical properties caused by acid rain will affect aggregate stability. In this study, the yellow soil on slope farmland in Chongqing city was used as the research object, and the effects of acid rain wetting on aggregates stability was explored. [Methods] Four initial aggregate size classes (>5-7, >3-5, >2-3 and ≥1-2 mm) were slowly capillary-wetted with three levels of simulated acid rain (treatment TpH1 with acid water pH=1; treatment TpH3 with acid water pH=3; treatment TpH5 with acid water pH=5). Soil aggregate stability was determined according to Le Bissonnais to distinguish three breakdown mechanisms: slaking, mechanical breakdown by raindrop impact and disaggregation by differential swelling, and expressed as the mean weight diameter (MWD). During the experiment, the stability of aggregates was measured with three treatment methods involving fast wetting (FW), shaking after pre-wetting (WS), and slow wetting (SW) every 5 days. The MWD of aggregates after drying-wetting cycle with deionized water was taken as background value. [Results] 1) Slaking was the main mechanism of aggregate breakdown. 2) Compared with background value, for TpH1, TpH3, and TpH5 treatment, the average change rates of MWD of fast wetting (MWDFW) were 1.99, 1.30, and 1.43, respectively; the average change rates of MWD of shaking after pre-wetting (MWDWS) were 1.03, 1.22, and 1.19, respectively; the average change rates of MWD of slow wetting (MWDSW) were 1.48, 0.78, and 0.88, respectively. 3) The average change rates of MWD for treatment TpH1, TpH3, and TpH5 were 1.50, 1.10, and 1.16, respectively. There was no significant difference in the change of aggregate stability between treatment TpH3 and TpH5. But for treatment TpH1, aggregate stability changed much more than that of TpH3 and TpH5. 4) Acid rain wetting promoted < 0.1 mm fractions to flocculate. For treatment TpH3 and TpH5, the average change rates of >2 mm proportion in >5-7, >3-5, and >2-3 mm aggregates were 0.87, 0.98, and 0.23, respectively, the >2 mm proportion in >2-3 mm were significantly reduced. The difference of initial aggregate size classes led to different responses to acid rain. [Conclusions] For three breaking mechanisms, the influence of acid rain wetting on the aggregate stability is different. Acid rain wetting significantly enhances resistance to slaking of aggregates. In general, aggregate stability increases after being wetted by acid rain, but at the cost of soil acidification. The results have certain reference value for soil and water conservation in acid rain area.
Keywords: simulated acid rain    soil aggregate    LB method    yellow soil    

土壤团聚体是保证和协调土壤中的水肥气热,影响土壤酶的种类和活性,维持和稳定土壤疏松熟化层的关键因素[1],其稳定性是评价土壤质量的重要指标[2-3]。同时团聚体稳定性影响着土壤剥离、搬运、结皮及水分入渗等土壤侵蚀的各个过程[4],是预测土壤抗侵蚀能力的良好指标[5-6]。团聚体的稳定性与粒径分布由交换性阳离子、黏土矿物、有机质、铁、铝氧化物等内因和气候、成土过程、生物因素及农业管理措施等外因共同决定[3, 7]。有研究[8]表明热带土壤中铝氧化物对土壤的团聚作用比有机质更强。有学者[9]在我国江西发现,铁、铝氧化物是红壤微团聚体(< 0.25mm)的主要胶结物质,有机质是红壤大团聚体(≥0.25~2.00mm)的主要胶结物质。且有研究[10]也表明铁铝氧化物与有机质含量是影响我国南方土壤团聚体稳定性的主要因素。

酸雨会通过改变土壤的酸碱条件,土壤胶体的稳定性以及土壤胶结物质的数量和性质来影响土壤团聚体[11]。模拟酸雨淋溶浙江杭州红壤的实验[12]表明,水稳性大团聚体的含量随酸雨pH值的降低、持续时间的延长而减少且酸雨导致团聚体破坏率增高、稳定性降低。模拟酸雨淋溶紫色土与黄壤的研究[13]表明,酸雨的酸度愈大、降水时间愈长,土壤微龟裂密度越大、数量越多,从而破坏了微团聚体的结合,使水分运行加快,渗漏和毛管蒸发作用增强。酸雨区与非酸雨区土壤物理性质对比表明,酸雨区土壤孔隙的连续性下降,土壤团聚状况较差[14]

重庆市气候湿润多雨,土壤长期被酸雨湿润。虽然自2011年以来重庆市酸雨问题不断好转,但酸雨问题一直存在,2017年均降水pH值为5.59,酸雨频率为15.3%,其中pH值为3~5的降雨占酸性降雨的52%。黄壤是重庆市的重要土地资源,占土地面积的28.78%。目前,有关酸雨对黄壤的影响的研究主要集中在土壤酸化、土壤酸缓冲能力、土壤矿物风化等方面[15-17],而针对团聚体稳定性的研究较为薄弱。笔者通过模拟酸雨湿润团聚体实验,采用LB法研究酸雨湿润下不同粒级团聚体稳定性的动态变化,旨在为重庆乃至我国西南地区的水土保持工作提供一定的依据。

1 材料与方法 1.1 土壤理化性质

供试土壤采集于重庆市缙云山,该区域属中纬度地区,为典型的亚热带季风性气候,年均气温13.6℃,年降水量1611.8mm,年均蒸发量777mm,年均日照时间1293.9h。土壤主要由三叠纪须家河组厚层石英砂岩、灰质页岩和泥质页岩为母质发育形成。黄壤分布面积1382.2hm2,是保存较好的亚热带地带性土壤。

采样地为20世纪60年代砍伐森林后开垦的坡耕地(坡度为9°),主要作物有玉米(Zea mays)、红薯(Ipomoea batatas)以及蚕豆(Vicia faba)等。土壤发育自泥质页岩,平均深度为80~120cm,剖面构型为耕作层-心土层-母质层。供试土壤样品按照对角线法取样,取耕作层(0~20cm)土壤样品,采样后混匀、风干,并挑出杂物。一部分土样用于土壤理化性质分析(表 1),采用吸管法测定机械组成,重铬酸钾外加热法测定有机质,乙酸铵交换法测定阳离子交换量,环刀法测定密度,电位法(水土比为2.5:1)测定pH。其余土样干筛制备不同粒级团聚体,并测定团聚体粒径分布(表 2)。采用Le Bissonnais法[18]测定>5~7mm、>3~5mm、>2~3mm和≥1~2mm团聚体的稳定性。

表 1 土壤基本理化性质 Tab. 1 Basic physical and chemical properties of the soil
表 2 干筛土壤团聚体粒径分布 Tab. 2 Aggregate size distribution of studied soil according to dry-sieving
1.2 实验设计

按照当地酸雨类型[19],用分析纯硫酸和硝酸按摩尔比6:1配制母液,之后用去离子水将母液稀释为pH=1、3和5的供试酸性溶液。用去离子水和供试酸性溶液分别湿润初始粒级>5~7mm、>3~5mm、>2~3mm和≥1~2mm土壤团聚体,3次重复。湿润方法采用模拟干湿交替的实验方法[20],即在托盘上放置3cm高的PVA海绵,添加溶液至2.5cm (-0.3kPa吸力),之后将100g土样置于海绵表面并将托盘放入25℃恒温室中,实验期间用相应溶液维持托盘内水头。用去离子水处理的土样在湿润2h后取出烘干(即为1次干湿交替过程)并测定团聚体稳定性,被酸性溶液湿润的土样在实验开始后的第5、10和15天取出烘干并测定稳定性。将用去离子水处理的土样的团聚体稳定性作为本底值,以消除实验过程中干湿交替本身对团聚体稳定性的影响。为方便说明,将被pH=1、pH=3和pH=5酸性溶液湿润的土样分别记作处理TpH1、处理TpH3和处理TpH5

1.3 团聚体稳定性

团聚体稳定性的测定采用Le Bissonnais法[18],该方法分别采用快速湿润(fast wetting, FW),预湿润后震荡(shaking after pre-wetting, WS)和慢速湿润(slow wetting, SW)的方法测定消散作用(slaking),机械破碎作用(mechanical breakdown)及黏粒非均匀膨胀作用(differential swelling)3种不同破碎机制下团聚体的稳定性。

将待测土样放入40℃烘箱中48h,使土样含水率一致,进行以下处理:

1) 快速湿润:将5~10g土壤团聚体倒入装有50mL去离子水的烧杯中,静置10min后用移液管移出多余的水。

2) 预湿润后震荡:将5~10g土壤团聚体倒入装有50mL体积分数为95%的酒精的烧杯中静置30min,用移液管移出多余酒精并将团聚体倒入装有50mL去离子水的250mL锥形瓶中。在锥形瓶中加去离子水至200mL,塞紧瓶盖,上下颠倒20次,静置30min后用移液管移出多余的水。

3) 慢速湿润:将5~10g团聚体静置于张力为-0.3kPa的滤纸上60min。

将经过以上3种处理的团聚体分别用酒精轻轻冲洗至0.05mm的筛子内,在酒精中螺旋震荡5次(幅度3cm),之后收集筛子上的团聚体颗粒并在40℃条件下烘干。最后将烘干后>0.05mm的颗粒通过套筛进行筛分(>2.00mm、>1.00~2.00mm、>0.50~1.00mm、>0.25~0.50mm、>0.10~0.25mm、>0.05~0.10mm)并称质量。≤0.05mm的颗粒质量由初始质量减去后>0.05mm的颗粒的质量之和得到。

土壤团聚体稳定性采用平均质量直径(mean weight diameter, MWD)表示:

$ \mathrm{MWD}=\sum\limits_{i}^{n+1} \frac{r_{i-1}+r_{i}}{2} m_{i}。$ (1)

式中:n为筛子的数量;(ri-1+ri)/2为相邻2级团聚体的平均粒径,mm;mi为第i粒级团聚体占所取土样的比例,%。对于快速湿润、预湿润后震荡和慢速湿润处理下MWD值分别采用MWDFW、MWDWS和MWDSW表示。

为体现酸雨对MWD的影响以及消除干湿交替的作用,采用变化率[20](即不同pH酸性溶液处理下各粒级土壤团聚体MWD与相应粒级本底值的比值)表示酸雨湿润对团聚体的作用。当变化率>1时,酸雨对团聚体稳定性具有增强作用,反之亦然。

1.4 数据分析

使用Excel 2010和SPSS 25进行数据整理与分析。采用单因素方差分析与LSD检验各处理的差异,显著水平为P < 0.05。

2 结果与分析 2.1 黄壤团聚体稳定性及本底值

不同破碎机制下,团聚体MWD随粒级的增大而增大(图 1)。各粒级自然黄壤土样MWDFW < MWDSW < MWDWS,且不同破碎机制之下MWD差异显著,这表明消散作用对黄壤团聚体的破坏作用最大,其次是黏粒非均匀膨胀作用,机械破碎作用对团聚体的破坏作用最小。

不同大写字母表示同一处理不同粒径之间MWD差异显著,不同小写字母表示同一粒径自然土壤与本底值差异显。 Different capital letters indicate difference significant in MWD (mean weight diameter) for the same treatment at different soil size classes, and different lowercase letters indicate difference significant in MWD for the same soil classes between natural soil aggregate and background value. MWDFW, MWDWS and MWDSW represent MWD under fast wetting, shaking after pre-wetting, and slow wetting respectively. 图 1 自然土壤团聚体MWD以及本底值 Fig. 1 Natural soil aggregate MWD and the background value

在经过1次干湿交替后,MWDFW小幅度上升,团聚体稳定性与自然条件下无显著差异,而各粒级团聚体MWDWS和MWDSW有不同程度的下降,下降幅度分别为2.4%~32.1%和18.5%~31.2%。干湿交替会影响团聚体内部孔隙,促进狭长孔隙的形成,这类孔隙对土壤中水分和空气的运输具有重要的作用[21-22],孔隙结构的改变可能略微提升了团聚体对消散作用的抵抗能力[19]。在干湿交替过程中,由于土壤矿物颗粒的膨胀和收缩的程度不同产生的微小裂痕会使团聚体在经受WS与SW处理时更加容易破裂[18, 23]

2.2 团聚体MWD动态变化

经酸性溶液湿润后,各粒级团聚体MWDFW增大(图 2)。实验结束后(15d),处理TpH5中初始粒级>5~7mm、>3~5mm、>2~3mm和≥1~2mm团聚体MWDFW分别上升22.6%、36.2%、53.5%和97.8%。其中除>5~7mm团聚体MWDFW未显著增大外,其余粒级都有显著增大,且团聚体粒级越小,增大的幅度越大。处理TpH3中,除了在第5天与第10天>3~5mm团聚体以及在第15天≥1~2mm团聚体MWDFW显著低于处理TpH5、T pH3和TpH5,2种处理之间无显著差异。对于处理TpH1,各粒级团聚体MWDFW随时间迅速上升,在第15天时显著高于其他2种处理。整体来看,MWDFW在TpH1、TpH3和TpH5 3种处理下的平均变化率为1.99、1.30和1.43。

小写字母不同代表变化率存在显著差异,下同。 Different lowercase letters indicate significant differences in rate of change. The same below. 图 2 酸雨湿润对不同粒级团聚体MWDFW的影响 Fig. 2 Effects of acid rain wetting on aggregate MWDFW among different aggregate sizes

酸雨湿润后团聚体MWDWS变化情况如图 3所示。总体来看,处理TpH1、TpH3和TpH5下MWDWS的平均变化率分别为1.03、1.22和1.19。对于TpH1,各粒级团聚体MWDWS先降低后上升。TpH3和TpH5基本无显著差异,其中>5~7mm、>2~3mm团聚体变化幅度较小(变化率0.85~1.19),≥1~2mm、>3~5mm团聚体MWDWS随实验时间逐步增大。在第15天时,处理TpH3中>3~5mm和≥1~2mm团聚体MWDWS显著增大40.1%和52.8%;处理TpH5中>3~5mm和≥1~2mm团聚体MWDWS显著增大47.4%和52.7%。

图 3 酸雨湿润对不同粒级团聚体MWDWS的影响 Fig. 3 Effects of acid rain wetting on aggregate MWDWS among different aggregate sizes

本实验中,酸雨湿润总体上提升了团聚体抵抗消散作用与机械破碎作用的能力。自然条件下,土壤团聚体MWDFW与MWDWS间有显著的正相关关系,且二者与土壤中铁、铝离子含量呈显著的正相关关系[24]。最近的研究[25]也表明:MWDFW与MWDWS之间相关关系显著,且受无定形与络合铁离子含量影响最为显著。酸性条件会促进土壤中游离态的铁、铝离子向无定形态与络合态转化[12, 26]。黄壤中含有大量的铝元素,酸性环境可能促使土壤铝离子向无定形态与络合态转化,从而提高了TpH3和TpH5处理中团聚体抵抗消散作用与机械破碎的能力。此外,根据Wu等[27]的研究,自然条件下MWDFW与MWDWS随土壤pH的降低而升高;Regelink等[28]也发现土壤pH越低则土壤团聚体稳定性越高。这一现象是因为pH降低增强了水合铁、铝氧化物和黏土矿物对有机质的吸附能力,使矿物表面可以负荷更多的腐殖酸[29-30];pH降低还可以降低负电荷物质(黏土矿物、有机质)之间的静电斥力[31-32]。静电斥力的降低会抑制团聚体分散,提高团聚体的稳定性[33-34]。因此,酸性溶液也可能降低土壤的pH从而提升团聚体的稳定性。

与FW与WS处理的情况相一致,不同粒级团聚体在相同酸性溶液作用下MWDSW的变化情况不同(图 4)。处理TpH3与处理TpH5下各粒级团聚体变化趋势基本相同,>5~7mm团聚体在第5天显著降低后无显著变化;>3~5mm和>2~3mm团聚体第5天显著降低后在第10~15天时有所上升,在实验结束时与本底值无显著差异;≥1~2mm团聚体无显著变化。这可能是因为酸性环境促进有机质溶解从而降低大团聚体稳定性,也有可能是因为酸的作用改变了黏土矿物的结构[14]。而在TpH1中,团聚体MWDSW变化幅度较大,第10天和第15天时,被pH=1的酸性溶液湿润的团聚体MWDSW显著高于被pH=3,pH=5湿润的团聚体。总体来看,处理TpH1、TpH3和TpH5下MWDSW的平均变化率分别为1.48、0.78和0.88。

图 4 酸雨湿润对不同粒级团聚体MWDSW的影响 Fig. 4 Effects of acid rain wetting on aggregate MWDSW among different aggregate sizes

综合3种破碎机制来看,处理TpH1、TpH3和TpH5下MWD平均变化率分别为1.50、1.10和1.16,变化率变异系数为0.45、0.27和0.25。由图 23和4可知,在处理TpH3和TpH5之间,同一初始粒级团聚体的稳定性基本无显著差异,而在处理TpH1中,团聚体稳定性变化的幅度远高于处理TpH3和TpH5。在pH < 2.5时,土壤矿物被破坏并生成新的矿物,这一过程还伴随着大量阳离子与铁铝离子的溶出[35-36],从而极大程度地改变土壤性质。不同粒级团聚体在相同酸性溶液作用下MWD变化情况不同,这一结果可能由于不同粒级团聚体中胶结物质不同[37-38],而酸对不同胶结物质的影响不同,其中机理还需深入研究。

有模拟酸雨淋溶赤红壤的实验[39]表明酸雨显著降低了土壤团聚体在快速湿润处理下的稳定性,略微提升了团聚体抵抗机械破碎和黏粒非均匀膨胀的能力。本实验结果与其结果的差异可能来源于实验方法与土样的不同。本实验采取了酸性溶液湿润团聚体的方法,这样减少了土壤中各元素因淋溶作用的流失,且赤红壤中黏土矿物主要为1:1型的高岭石,而黄壤中含有大量2:1型的蛭石[40]

2.3 团聚体粒径分布

为深入了解酸雨湿润对团聚体稳定性的影响,对酸雨湿润后不同破碎机制下团聚体粒径分布百分比进行分析。在FW处理下(图 5),处理TpH3和TpH5中 < 0.10mm的团聚体质量大幅下降;>0.10~0.25mm团聚体质量显著增加;>1.00~2.00mm团聚体质量有所提升,且团聚体初始粒级越小,这种现象越明显,其余粒级有所波动,但变化不大。以TpH5处理下>3~5mm团聚体为例,湿润过程中 < 0.10mm的团聚体质量平均下降36.2%;>0.10~0.25mm团聚体增加14.7%;>1.00~2.00mm团聚体增加了4.9%。而处理TpH1中>1.00mm团聚体质量随实验时间显著提升。

第0天代表本底值。下同。 The value in day 0 represents the background value. The same below. 图 5 酸雨湿润下FW处理团聚体粒径分布 Fig. 5 Aggregate size distribution after FW treatment after acid rain wetted

图 6可知,在WS处理下酸雨湿润后初始粒级为>5~7mm和>3~5mm的团聚体与初始粒级为>2~3mm和≥1~2mm的团聚体粒径分布出现显著差异。TpH3和TpH5处理下初始粒级>2~3mm、≥1~2mm团聚体中>1.00~2.00mm团聚体质量分数大幅增大(平均提高35.3%),且初始粒级>2~3mm团聚体中>2.00mm团聚体大幅减少,而初始粒级>5~7mm和>3~5mm团聚体中>1.00~2.00mm团聚体质量分数小幅提升(平均提高8.3%),初始粒级>3~5mm团聚体中>2.00mm的团聚体质量分数随时间逐步上升。处理TpH3和TpH5中 < 0.10mm和>0.25~1.00mm团聚体都有所减少。与FW相同,处理TpH1下>1.00mm团聚体质量随实验时间显著提升。

图 6 酸雨湿润下WS处理团聚体粒径分布 Fig. 6 Aggregate size distribution after WS treatment after acid rain wetted

酸雨湿润后,SW处理下团聚体粒径分布见图 7。对于TpH3和TpH5处理,除TpH5中初始粒级>3~5mm团聚体在第15天>2.00mm团聚体质量分数上升到本底值外,其他处理>2.00mm团聚体质量分数都小于本底值,平均下降15.0%;< 0.10mm团聚体质量分数平均下降9.7%;>0.25~0.10mm团聚体质量分数平均上升13.2%,此外初始粒级>3~5mm团聚体中>1.00~2.00mm团聚体质量提升19.3%,高于其他处理,而>2.00mm团聚体比其他处理下降地更多。

图 7 酸雨湿润下SW处理团聚体粒径分布 Fig. 7 Aggregate size distribution after SW treatment after acid rain wetted

整体来看,酸雨湿润会促进 < 0.10mm的团聚体凝聚,并且>0.10~0.25mm的团聚体在FW和SW处理下稳定性较高。这与Tisdall等[41]得出的>0.02~0.25mm的团聚体在快速湿润中具有较高的稳定性的结论一致。此外,TpH3和TpH5处理下初始粒级>5~7mm、>3~5mm、>2~3mm团聚体中>2.00mm的水稳性团聚体平均变化率分别为0.87、0.98、0.23,初始粒级>2~3mm团聚体中>2.00mm的水稳性团聚体大幅减少。这一现象可能是由于实验土样中>3mm的团聚体与≤3mm团聚体本身所含胶结物质不同。

3 结论

本实验以重庆坡耕地黄壤为研究对象,对不同粒级团聚体进行模拟酸雨湿润试验后得出以下结论:消散作用是黄壤团聚体破碎的主要机制。酸雨湿润对不同破碎机制下团聚体稳定性的影响不同,此外被同一酸性溶液湿润后,不同粒级团聚体MWD以及粒径分布的变化有所差异。总体来看,被pH值为3、5的酸雨湿润后,黄壤团聚体抵抗消散作用与机械破碎作用的能力提升,而抵抗黏粒非均匀膨胀作用的能力下降,且pH值为3、5的酸雨对团聚体稳定性的影响差异不大。被pH值为1的酸雨湿润后,MWD的变化幅度远高于pH值为3、5的酸雨。酸雨湿润会促进 < 0.10mm的团聚体凝聚,新形成的>0.10~0.25mm的团聚体在快速湿润和慢速湿润处理下稳定性较好。但是酸雨对团聚体MWDFW、MWDWS的提升可能是以土壤酸化为代价的,长期的酸雨湿润会使黄壤中的铝活化和释放,从而危害生态环境。

4 参考文献
[1]
王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005, 36(3): 415.
WANG Qingkui, WANG Silong. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3): 415.
[2]
SIX J, PAUSTIAN K, ELLIOTT E T, et al. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681. DOI:10.2136/sssaj2000.642681x
[3]
BRONICK C J, LAL R. Soil structure and management: A review[J]. Geoderma, 2005, 124(1/2): 3.
[4]
MARTÌNEZ-MENA M, DEEKS L K, WLLIAMS A G. An evaluation of a fragmentation fractal dimension technique to determine soil erodibility[J]. Geoderma, 1999, 90(1/2): 87.
[5]
VALMIS S, DIMOYIANNIS D, DANALATOS N G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece[J]. Soil & Tillage Research, 2005, 80(1/2): 139.
[6]
DIMOYIANNIS D, VALMIS S, DANALATOS N G. Interrill erosion on cultivated Greek soils: Modelling sediment delivery[J]. Earth Surface Processes and Landforms, 2006, 31(8): 940. DOI:10.1002/esp.1302
[7]
SAYGIN S D, CORNELIS W M, ERPUL G, et al. Comparison of different aggregate stability approaches for loamy sand soils[J]. Applied Soil Ecology, 2012(54): 1.
[8]
BARTHÉS B G, KOUAKOUA E, LARRÉ-LARROUY M C, et al. Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils[J]. Geoderma, 2008, 143(1/2): 14.
[9]
PENG Xinhua, YAN Xiaoyuan, ZHOU Hu, et al. Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization[J]. Soil and Tillage Research, 2015(146): 89.
[10]
ZHAO Jinsong, CHEN Shan, HU Ronggui, et al. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides[J]. Soil & Tillage Research, 2017(167): 73.
[11]
刘广深, 许中坚, 徐冬梅. 酸沉降对土壤团聚体及土壤可蚀性的影响[J]. 水土保持通报, 2001, 21(4): 70.
LIU Guangshen, XU Zhongjian, XU Dongmei. Effects of acid deposition on soil aggregate and soil erodibility[J]. Bulletin of Soil and Water Conservation, 2001, 21(4): 70.
[12]
许中坚, 刘广深, 喻佳栋, 等. 模拟酸雨对红壤结构体及其胶结物影响的实验研究[J]. 水土保持学报, 2002, 16(3): 9.
XU Zhongjian, LIU Guangshen, YU Jiadong, et al. Effects of acid rain on aggregate and its cemedins of red soil by simulated experiments[J]. Journal of Soil and Water Conservation, 2002, 16(3): 9.
[13]
徐亚莉. 模拟酸雨对土壤微形态的影响[J]. 西南大学学报(自然科学版), 1989, 11(1): 22.
XU Yali. Soil micromorphological characteristics influenced by simulant acid rains[J]. Journal of Southwest Agricultural University (Nat. Sci. Ed), 1989, 11(1): 22.
[14]
RAMPAZZO N, BLUM W E H. Changes in chemistry and mineralogy of forest soils by acid rain[J]. Water Air and Soil Pollution, 1992, 61(3): 209.
[15]
刘莉, 李晓红, 周志明, 等. 模拟酸雨对三峡库区4种典型土壤酸化及盐基离子淋溶释放的影响[J]. 重庆大学学报(自然科学版), 2007, 30(8): 63.
LIU Li, LI Xiaohong, ZHOU Zhiming, et al. Effects of simulated acid rain on soil acidification and base cations release of four types of typical soils from the Three Gorges Reservoir region[J]. Journal of Chongqing University (Nat. Sci. Ed), 2007, 30(8): 63.
[16]
刘莉, 周志明, 林勇, 等. 模拟酸雨对三峡库区土壤中铝溶出及不同土壤缓冲性能的影响[J]. 重庆大学学报, 2010, 33(3): 92.
LIU Li, ZHOU Zhiming, LIN Yong, et al. Effects of simulated acid rain on the release of Al3+ in typical soils from Three Gorges Reservoir region[J]. Journal of Chongqing University, 2010, 33(3): 92.
[17]
胡波, 张会兰, 王彬, 等. 重庆缙云山地区森林土壤酸化特征[J]. 长江流域资源与环境, 2015, 24(2): 300.
HU Bo, ZHANG Huilan, WANG Bing, et al. Analysis on the forest soil acidification and mechanisms in Chongqing Jinyun Mountain[J]. Resources and Environment in the Yangtze Basin, 2015, 24(2): 300.
[18]
LE BISSONNAIS Y. Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology[J]. European Journal of Soil Science, 1996, 47(4): 426.
[19]
鲁群岷, 赵亮, 李莉, 等. 三峡库区降水化学组成及时空变化特征[J]. 环境科学学报, 2013, 33(6): 1682.
LU Qunmin, ZHAO Liang, LI Li, et al. Chemical composition of precipitation and its spatiotemporal variations in the Three Gorges Reservoir Region[J]. Acta Scientiae Circumstantiae, 2013, 33(6): 1682.
[20]
HU Bo, WANG Yunqi, WANG Bing, et al. Impact of drying-wetting cycles on the soil aggregate stability of Alfisols in southwestern China[J]. Journal of Soil and Water Conservation, 2018, 73(4): 469. DOI:10.2489/jswc.73.4.469
[21]
PIRES L F, BACCHI O O S, REICHARDT K. Gamma ray computed tomography to evaluate wetting/drying soil structure changes[J]. Nuclear Instruments & Methods in Physics Research, 2005, 229(3/4): 443.
[22]
MA Renming, CAI chongfa, LI Zhaoxia, et al. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography[J]. Soil and Tillage Research, 2015(149): 1.
[23]
COSENTINO D, CHENU C, LE BISSONNAIS Y. Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil[J]. Soil Biology & Biochemistry, 2006, 38(8): 2053.
[24]
ZHANG Bin, HORN R. Mechanisms of aggregate stabilization in Ultisols from subtropical China[J]. Geoderma, 2001, 99(1/2): 123.
[25]
WU Xinliang, CAI Chongfa, WANG Junguang, et al. Spatial variations of aggregate stability in relation to sesquioxides for zonal soils, south-central China[J]. Soil and Tillage Research, 2016(157): 11.
[26]
郭杏妹, 吴宏海, 罗媚, 等. 红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义[J]. 岩石矿物学杂志, 2007, 26(6): 515.
GUO Xingmei, WU Honghai, LUO Mei, et al. The morphological change of Fe/Al-oxide minerals in red soils in the process of acidification and its environmental significance[J]. Acta Petrologica Et Mineralogica, 2007, 26(6): 515.
[27]
WU Xinliang, WEI Yujie, WANG Junguang, et al. Effects of soil physicochemical properties on aggregate stability along a weathering gradient[J]. Catena, 2017(156): 205.
[28]
REGELINK I C, STOOF C R, ROUSSEVA S, et al. Linkages between aggregate formation, porosity and soil chemical properties[J]. Geoderma, 2015(247/248): 24.
[29]
WENG Liping, RIEMSDIJK W H V, HIEMSTRA T. Humic nanoparticles at the oxide-water interface: Interactions with phosphate ion adsorption[J]. Environmental Science & Technology, 2008, 42(23): 8747.
[30]
MAYES M A, HEAL K R, BRANDT C C, et al. Relation between soil order and sorption of dissolved organic carbon in temperate subsoils[J]. Soil Science Society of America Journal, 2012, 76(3): 1027. DOI:10.2136/sssaj2011.0340
[31]
NGUETNKAM J P, DULTZ S. Soil degradation in central north Cameroon: Water-dispersible clay in relation to surface charge in Oxisol A and B horizons[J]. Soil & Tillage Research, 2011, 113(1): 38.
[32]
TOMBÀCZ E, SZEKERES M. Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes[J]. Applied Clay Science, 2004, 27(1/2): 75.
[33]
HU Feinan, XU Chenyang, LI Hang, et al. Particles interaction forces and their effects on soil aggregates breakdown[J]. Soil & Tillage Research, 2015(147): 1.
[34]
HU Feinan, LIU Jingfang, XU Chenyang, et al. Soil internal forces contribute more than raindrop impact force to rainfall splash erosion[J]. Geoderma, 2018(330): 91.
[35]
仇荣亮, 董汉英, 吕越娜, 等. 南方土壤酸沉降敏感性研究Ⅶ.盐基淋溶与缓冲机理[J]. 环境科学, 1997(5): 23.
QIU Rongliang, Dong Hanying, LV Yuena, et al. Soil sensitivity to acid deposition in south China Ⅶ. Cation leaching and buffering mechanism[J]. Environmental Science, 1997(5): 23.
[36]
仇荣亮, 杨平. 南方土壤酸沉降敏感性研究Ⅴ.模拟酸雨条件下土壤矿物风化特征[J]. 中山大学学报(自然科学版), 1998, 37(4): 90.
QIU Rongliang, YANG Ping. Study of sensitivity of soil to acid deposition in South China Ⅴ. Weathering characteristics of soil minerals under simulated acid rain[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1998, 37(4): 90.
[37]
CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777. DOI:10.2136/sssaj1992.03615995005600030017x
[38]
CAMBARDELLA C A, ELLIOTT E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils[J]. Soil Science Society of America Journal, 1994, 58(1): 123. DOI:10.2136/sssaj1994.03615995005800010017x
[39]
林琳, 章家恩, 徐华勤, 等. 模拟酸雨淋溶对赤红壤团聚体稳定性的影响[J]. 土壤通报, 2013, 44(4): 799.
LIN Lin, ZHANG Jia'en, XU Huaqin, et al. The impact of simulated acid rain leaching on aggregate stability of the latosolic red soil[J]. Chinese Journal of Soil Science, 2013, 44(4): 799.
[40]
林大仪, 谢英荷. 土壤学[M]. 北京: 中国林业出版社, 2004: 181.
LIN Dayi, XIE Yinghe. Soil science[M]. Beijing: China Forestry Publishing House, 2004: 181.
[41]
TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. European Journal of Soil Science, 1982, 33(2): 141.