文章快速检索     高级检索
  中国水土保持科学   2019, Vol. 17 Issue (1): 31-38.  DOI: 10.16843/j.sswc.2019.01.005
0

引用本文 

张丽娜, 许丽, 秦儒, 史芮嘉, 杨宇平. 基于模糊物元模型的3种灌木林水源涵养能力评价——以内蒙古黑岱沟露天煤矿排土场为例[J]. 中国水土保持科学, 2019, 17(1): 31-38. DOI: 10.16843/j.sswc.2019.01.005.
ZHANG Lina, XU Li, QIN Ru, SHI Ruijia, YANG Yuping. Evaluation of water conservation capacity of three shrub forests based on fuzzy matter-element model: A case study of Heidaigou open pit mine dump in Inner Mongolia[J]. Science of Soil and Water Conservation, 2019, 17(1): 31-38. DOI: 10.16843/j.sswc.2019.01.005.

项目名称

国家重点研发计划项目"西北干旱荒漠区煤炭基地生态安全保障技术"(2017YFC0504400),"采煤迹地植被重建与保育技术研究"(2017YFC0504402)

第一作者简介

张丽娜(1992-), 女, 硕士研究生。主要研究方向:水土保持与荒漠化防治。E-mail:1432100545@qq.com

通信作者简介

许丽(1965-), 女, 博士, 教授。主要研究方向:矿区生态修复。E-mail:xulinmg@163.com

文章历史

收稿日期:2017-12-04
修回日期:2018-07-30
基于模糊物元模型的3种灌木林水源涵养能力评价——以内蒙古黑岱沟露天煤矿排土场为例
张丽娜1, 许丽1, 秦儒2, 史芮嘉3, 杨宇平1     
1. 内蒙古农业大学沙漠治理学院, 010018, 呼和浩特;
2. 内蒙古巴彦淖尔市水土保持工作站, 015000, 内蒙古巴彦淖尔;
3. 内蒙古鄂尔多斯市水土保持工作站, 017000, 内蒙古鄂尔多斯
摘要:林地枯落物层和土壤层的持水能力是其水土保持功能中水源涵养能力大小的重要指征。关于黑岱沟矿区典型灌木林水源涵养功能的文献未见报道,近年来,基于模糊物元模型的水源涵养能力评价被认为是一种简单、直接、科学的方法。作者以黑岱沟煤矿排土场人工建植的15年生柠条锦鸡儿、沙地柏、山杏3种灌木林下的枯落物和土壤为研究对象,运用浸水法、烘干法和环刀法测定枯落物蓄积量、土壤物理性质及其持水特征,选取影响枯落物和土壤持水能力的15个指标建立其水源涵养能力评价指标体系,运用欧式贴近度模糊物元模型进行其水源涵养能力评价。结果表明:3种灌木林枯落物层水源涵养能力的大小顺序为沙地柏>柠条锦鸡儿>山杏;土壤层水源涵养能力强弱顺序为沙地柏>山杏>柠条锦鸡儿;欧式贴近度排序为R沙地柏 > R山杏 > R柠条锦鸡儿,即沙地柏林的水源涵养能力最强,山杏次之,柠条锦鸡儿较差。
关键词水源涵养能力    模糊物元模型    排土场    黑岱沟露天矿    
Evaluation of water conservation capacity of three shrub forests based on fuzzy matter-element model: A case study of Heidaigou open pit mine dump in Inner Mongolia
ZHANG Lina1, XU Li1, QIN Ru2, SHI Ruijia3, YANG Yuping1     
1. College of Desert Cotrol Science and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot City, China;
2. Soil and Water Conservation Station of Bayannaoer City, 015000, Bayannaoer, Inner Mongolia Autonomous Region, China;
3. Ordos Soil and Water Conservation Station, 017000, Ordos, Inner Mongolia Autonomous Region, China
Abstract: [Background] The water-holding capacity of litter layer and soil layer of forest land is an important indicator of soil and water conservation function of forest land, and they are two important indexes to evaluate the capacity of water conservation. There has been no reported literature on the water conservation function of typical shrubbery in Heidaigou mining area yet. In recent years, the evaluation of water conservation capacity based on fuzzy matter-element model is considered as a simple, direct and scientific method. Therefore, fuzzy matter-element model was used to evaluate the water-holding capacity of litter layer and soil layer of forest land in Heidaigou of Inner Mongolia. [Methods] This study took the litter and soil under shrub forest of Caragana korshinskii, Sabina vulgaris and Prunus armeniaca of artificial planting 15 years as the research object on the same platform of dump in Heidaigou open pit mine. The methods of soaking, drying and cutting-ring were used to study the accumulation of litter, water-holding characteristics of litter, physical properties of soil and water-holding characteristics of soil. Fifteen indexes affecting litter and soil water-holding capacity were selected to establish the evaluation index system of water conservation capacity of three kinds of shrub forest. The fuzzy matter-element model of Euclid approach degree was used to evaluate the water conservation capacity of three shrubs. [Results] The species composition and growth status of shrub vegetation were different, which resulted in great differences in the thickness of litter, the amount of storage and the characteristics of water-holding under the forest. And the variation ranges of litter thickness and the amount of storage of three shrub types were 0.83-1.08 cm and 2.42-3.82 t/hm2, respectively. The index values of water-holding characteristics of litter layer were the largest in S. vulgaris shrub, especially maximum water-holding capacity and effective interception rate. Soil development affected bulk density and porosity of soil, which led to differences in soil physical properties. The soil bulk density of three shrub types showed the rule of C. korshinskii (1.50 g/cm3) > S. vulgaris (1.44 g/cm3) > P. armeniaca (1.43 g/cm3).The variation law of soil porosity in three shrubs was consistent with that of corresponding water content. In addition to soil bulk density, non-capillary porosity and effective water-holding capacity, the index values of the soil layer were also the best in S. vulgaris shrub. The order of Euclid approach degree of three shrubs was RSabina vulgaris > RPrunus armeniaca > RCaragana korshinskii. [Conclusions] The order of water conservation capacity of litter layer in three kinds of shrub forest was S. vulgaris > C. korshinskii > P. armeniaca. The order of water conservation ability of soil layer in three kinds of shrub forest was S. vulgaris > P. armeniaca > C. korshinskii. The order of Euclid approach degree of three kinds of shrubs was S. vulgaris (0.869 3) > P. armeniaca (0.202 7) > C. korshinskii (0.151 8), the water conservation capacity of S. vulgaris in the study area was the strongest, followed by P. armeniaca shrub, and that of C. korshinskii was poor.
Keywords: water conservation capacity    fuzzy matter-element model    dump    Heidaigou open pit mine    

水源涵养能力是评价林地生态系统优良状况的重要指标[1],枯落物层和土壤层的持水能力又是评价林地水源涵养功能的重要环节[2]。枯落物层具有截持降水、拦蓄地表径流、减少表层土壤水分蒸发等水土保持功能,并通过改善土壤结构提高土壤渗透性。降水通过土壤层下渗,除供植物吸收和地表蒸发,其余蓄存于土壤层或形成地下径流汇入溪流等,表现出林地涵养水源功能[3-4]。在矿区排土场复垦中,通过造林种草等植被重建方式恢复和改善其生境,林地水源涵养功能是复垦效益的重要体现。目前,有关枯落物层和土壤层水源涵养能力及其评价的研究多集中于不同立地类型[5-6]和林分类型[7-8]的森林生态系统中,对于环境特殊的矿区较少[9]。对于本研究矿区典型灌木林水源涵养功能的文献未见报道,仅有对该矿区枯落物生态化学计量特征[10]和土壤水分垂直特征[11]的研究。许多学者运用层次分析法[12]、综合分析法[7]、水分平衡法[13]以及TOPSIS法[14]等对林地的水源涵养能力进行评价,近期曾建军等[2, 15]又将模糊物元模型应用到森林水源涵养能力评价中,且基于模糊物元模型的水源涵养能力评价被认为是一种简单、直接、科学的方法[2, 15-16]。笔者在对黑岱沟煤矿排土场人工建植的3种典型灌木林水源涵养能力评价指标定性研究的基础上,建立其评价指标体系,并基于各评价指标的实测数据,运用欧式贴近度模糊物元模型进行其水源涵养能力评价,为排土场复垦效益评价及树种选择提供依据。

1 研究区概况

黑岱沟露天煤矿排土场位于准格尔旗薛家湾镇,地理坐标E111°13′~111°21′,N39°25′~39°49′。属中温带半干旱大陆性气候,海拔1 256 m,年均降水量为408 mm[17];地形地貌为黄土丘陵沟壑区;矿区排土场呈多阶平台状,土壤类型为黄绵土,养分含量低;植被属暖温型草原带,天然植被低矮稀疏[18],以本氏针茅(Stipa bungeana)、百里香(Thymus mongolicus)等为主;排土场人工建植植被有柠条锦鸡儿(Caragana korshinskii)、沙地柏(Sabina vulgaris)、山杏(Prunus armeniaca)和紫花苜蓿(Medicago sativa)等。

2 研究方法 2.1 样地选择与取样

调查取样于2016年8月进行,在排土场同一平台,选择复垦年限均为15年、生境条件相近、长势良好、株行距为3 m×3 m的柠条锦鸡儿、沙地柏、山杏3种典型灌木林,各设置3个20 m×10 m样地,测定样地内灌木树高、地径和冠幅,记录植被总盖度;在每个样地以对角线形式设定9个1 m×1 m小样方,记录草本盖度及种类,测量草本高度和枯落物厚度,用全部收获法取枯落物样;在每个样地内设3个土壤剖面,分0~10 cm和10~20 cm 2层取样,每层3个重复。样地概况见表 1

表 1 样地基本概况 Tab. 1 Basic situation of plots
2.2 测定方法

枯落物蓄积量及其持水特征采用浸水法、烘干法[4, 19-20]测定;土壤物理性质及其持水特征采用环刀法[4-6, 10]测定。

2.3 评价体系与方法 2.3.1 评价指标体系

根据对林地水源涵养作用影响因子的定性分析以及相关研究[2, 12, 15],建立本研究灌木林水源涵养能力评价指标体系:枯落物层包括枯落物厚度、蓄积量、最大持水量、自然含水率、有效拦蓄量和有效拦蓄率;土壤层包括土壤容重、总孔隙度、毛管孔隙度、非毛管孔隙度、饱和含水量、毛管持水量、有效拦蓄量和自然含水率。

2.3.2 评价方法

1) 模糊物元概念。在物元分析理论中[16, 21-23],以有序三元组(事物M、特征C、模糊量值u)作为描述事物的基本元,简称物元R,其表达式为R=(MCu)。因评价分析时C是定性的,u的准确值无法确定,故称u具有模糊性,且R为模糊物元。

$R = \left[ {\begin{array}{*{20}{c}} {}&{{M_1}}&{{M_2}}& \cdots &{{M_m}}\\ {{C_1}}&{{u_{11}}}&{{u_{21}}}& \cdots &{{u_{m1}}}\\ {{C_2}}&{{u_{12}}}&{{u_{22}}}& \cdots &{{u_{m2}}}\\ \vdots & \vdots & \vdots & \vdots & \vdots \\ {{C_\mathit{n}}}&{{u_{1n}}}&{{u_{2n}}}& \cdots &{{u_{mn}}} \end{array}} \right] $

式中:R为研究区3种灌木类型15维复合模糊物元;Mi为第i种灌木类型,i=1,2,…,mm=3;Cj为第j个评价指标,j=1,2,…,nn=15;uij为第i种灌木类型第j个指标对应的模糊量值。

2) 从优隶属度原则。各单项评估指标相对应的模糊量值的隶属程度,称为从优隶属度[16, 21-23]。除土壤密度越小越优型外,其余14个指标均为越大越优型,求得目标优属度模糊物元R1

越大越优型

${u_{ij}} = \left( {{x_{\mathit{ij}}} - {x_{\min \mathit{ij}}}} \right)/\left( {{x_{\max ij}} - {x_{\min ij}}} \right); $ (1)

越小越优型

${u_{ij}} = \left( {{x_{{\rm{max}}\mathit{ij}}} - {x_{\mathit{ij}}}} \right)/\left( {{x_{\max ij}} - {x_{\min ij}}} \right); $ (2)

式中:xij为第i个灌木类型第j个指标对应的量值;xmaxijxminij为某灌木类型第j个指标所对应的所有量值中的最大值和最小值。

3) 差平方模糊物元。差平方模糊物元R3由标准模糊物元R2 (u0j=1.0)与R1各项差的平方求得,其中,Δij=(u0j-uij)2

${R_{\rm{2}}} = \left[ {\begin{array}{*{20}{c}} {}&{{M_0}}\\ {{C_1}}&{{u_{01}}}\\ {{C_2}}&{{u_{02}}}\\ \vdots & \vdots \\ {{C_n}}&{{u_{0n}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {}&{{M_0}}\\ {{C_1}}&{1.0}\\ {{C_2}}&{1.0}\\ \vdots & \vdots \\ {{C_n}}&{1.0} \end{array}} \right] $
${R_3} = \left[ {\begin{array}{*{20}{c}} {}&{{M_1}}&{{M_2}}& \cdots &{{M_m}}\\ {{C_1}}&{{\mathit{\Delta }_{{\rm{11}}}}}&{{\mathit{\Delta }_{21}}}& \cdots &{{\mathit{\Delta }_{m1}}}\\ {{C_2}}&{{\mathit{\Delta }_{12}}}&{{\mathit{\Delta }_{22}}}& \cdots &{{\mathit{\Delta }_{m2}}}\\ \vdots & \vdots & \vdots & \vdots & \vdots \\ {{C_n}}&{{\mathit{\Delta }_{1n}}}&{{\mathit{\Delta }_{2n}}}& \cdots &{{\mathit{\Delta }_{mn}}} \end{array}} \right] $

4) 评价指标权重及欧式贴近度采用变异系数法确定各评价指标权重[16, 21-23];欧式贴近度表示各评价方案与最优评价方案之间的贴近程度,欧式贴近度越大,灌木林的水源涵养能力越强。由公式依次得到评价指标权重模糊物元R4及欧式贴近度模糊物元R5

${D_\mathit{j}} = \frac{1}{{{{\overline x }_j}}}\sqrt {\frac{1}{m}\sum\limits_{i = 1}^m {{{\left( {{{\mathit{\overline x} }_j} - {x_{\mathit{ij}}}} \right)}^2}} } ; $ (3)
${W_j} = {D_\mathit{j}}/\sum\limits_{i = 1}^m {{D_\mathit{j}};} $ (4)
${P_\mathit{i}} = 1 - \sqrt {\sum\limits_{j = 1}^n {{W_j}{\mathit{\Delta }_{ij}}} } 。$ (5)

式中:Dj为第j个评价指标的变异系数;xj为第j个指标对应量值的平均值;Wj为第j个评价指标的权重;Pi为第i种灌木林的欧式贴近度。

3 评价结果与分析 3.1 枯落物蓄积量及持水特性

灌木林植被的物种组成与生长状况不同,致使其林下枯落物的厚度、蓄积量以及持水特性存在较大差异。由表 2可知,3种灌木类型林下枯落物的厚度和蓄积量的变化范围分别为0.83~1.08 cm和2.42~3.82 t/hm2。枯落物最大持水量、最大持水率、有效拦蓄量和有效拦蓄率均表现出沙地柏>柠条锦鸡儿>山杏的规律,而枯落物自然含水率却呈现沙地柏(21.31%)>山杏(12.75%)>柠条锦鸡儿(11.75%)的变化规律。枯落物层各持水特征指标值均表现为沙地柏林最大。

表 2 3种灌木林水源涵养能力评价指标值 Tab. 2 Data of water conservation capacity of three shrub forests
3.2 土壤物理性质及持水特性

土壤发育状况影响着土壤的容重和孔隙度,从而导致土壤物理性质存在差异性。由表 2可知,3种灌木类型林下土壤密度表现出柠条锦鸡儿(1.50 g/cm3)>沙地柏(1.44 g/cm3)>山杏(1.43 g/cm3)的规律,且土壤总孔隙度和毛管孔隙度均呈现沙地柏>山杏>柠条锦鸡儿的顺序,即沙地柏和山杏对土壤的改良效果较好。土壤孔隙度的变化规律与其对应含水量的变化规律一致,3种灌木林土壤饱和持水量、毛管持水量、有效持水量和自然含水率的变化范围分别为:792.53~882.13 t/hm2,748.27~825.70 t/hm2,44.27~58.47 t/hm2,9.67%~9.96%。土壤层除密度、非毛管孔隙度和有效持水量外,各项指标值也均表现为沙地柏林最优。

3.3 水源涵养能力综合评价

表 2中数据带入表达式R,得到3种灌木林水源涵养能力复合模糊物元R,根据上述评价方法依次求得R1-R5

${R_1}=\left[ {\begin{array}{*{20}{c}} {}&{{M_1}}&{{M_2}}&{{M_3}}\\ {{C_1}}&0&1&{0.320\;0}\\ {{C_2}}&1&{0.621\;1}&0\\ {{C_3}}&{0.788\;8}&1&0\\ {{C_4}}&0&1&{0.104\;6}\\ {{C_5}}&{0.019\;9}&1&0\\ {{C_6}}&{0.812\;5}&1&0\\ {{C_7}}&{0.010\;7}&1&0\\ {{C_8}}&0&{0.857\;1}&1\\ {{C_9}}&0&1&{0.189\;7}\\ {{C_{10}}}&0&1&{0.036\;1}\\ {{C_{11}}}&0&{0.859\;2}&1\\ {{C_{12}}}&0&1&{0.189\;7}\\ {{C_{13}}}&0&1&{0.036\;2}\\ {{C_{14}}}&0&{0.856\;3}&1\\ {{C_{15}}}&{0.247\;9}&1&0 \end{array}} \right] $
${R_3} = \left[ {\begin{array}{*{20}{c}} {}&{{M_1}}&{{M_2}}&{{M_3}}\\ {{C_1}}&1&0&{0.462\;4}\\ {{C_2}}&0&{0.143\;6}&1\\ {{C_3}}&{0.044\;6}&0&1\\ {{C_4}}&1&0&{0.801\;7}\\ {{C_5}}&{0.960\;6}&0&1\\ {{C_6}}&{0.035\;2}&0&1\\ {{C_7}}&{0.978\;7}&0&1\\ {{C_8}}&1&{0.020\;4}&0\\ {{C_9}}&1&0&{0.656\;6}\\ {{C_{10}}}&1&0&{0.929\;1}\\ {{C_{11}}}&1&{0.019\;8}&0\\ {{C_{12}}}&1&0&{0.656\;6}\\ {{C_{13}}}&1&0&{0.928\;9}\\ {{C_{14}}}&1&{0.020\;6}&0\\ {{C_{15}}}&{0.565\;7}&0&1 \end{array}} \right] $
${R_5} = \left[ {\begin{array}{*{20}{c}} {}&{{M_1}}&{{M_{\rm{2}}}}&{{M_3}}\\ {{P_\mathit{i}}}&{0.151\;8}&{0.869\;3}&{0.202\;7} \end{array}} \right] $
$R = \left[ {\begin{array}{*{20}{c}} {}&{{M_1}}&{{M_2}}&{{M_3}}\\ {{C_1}}&{0.83}&{1.08}&{0.91}\\ {{C_2}}&{3.37}&{3.01}&{2.42}\\ {{C_3}}&{7.83}&{8.47}&{5.44}\\ {{C_4}}&{11.75}&{21.31}&{12.75}\\ {{C_5}}&{224.21}&{277.00}&{223.14}\\ {{C_6}}&{6.16}&{6.58}&{4.34}\\ {{C_7}}&{178.83}&{214.14}&{176.92}\\ {{C_8}}&{1.50}&{1.44}&{1.43}\\ {{C_9}}&{39.63}&{44.11}&{40.48}\\ {{C_{10}}}&{37.41}&{41.29}&{37.55}\\ {{C_{11}}}&{2.21}&{2.82}&{2.92}\\ {{C_{12}}}&{792.53}&{882.13}&{809.53}\\ {{C_{13}}}&{748.27}&{825.70}&{751.07}\\ {{C_{14}}}&{44.27}&{56.43}&{58.47}\\ {{C_{15}}}&{9.96}&{10.84}&{9.67} \end{array}} \right] $

R5可知,3种灌木林评价方案的欧式贴近度大小顺序为:沙地柏(0.869 3)>山杏(0.202 7)>柠条锦鸡儿(0.151 8)。欧式贴近度越大,表明其评价方案越接近最优方案,即该灌木林水源涵养能力越强。通过3种灌木林欧式贴近度大小顺序看出,该研究区沙地柏灌木林的水源涵养能力最强,山杏次之,柠条锦鸡儿较差;因此,在该研究区排土场植被重建中,从林地水源涵养能力的角度考虑,可优先选择沙地柏和山杏。

4 讨论 4.1 枯落物蓄积量及持水特性

本研究3种人工复垦灌木林下枯落物厚度、蓄积量的变化范围分别为0.83~1.08 cm、2.42~3.82 t/hm2,这与吕刚等[24]在阜新露天煤矿排土场研究结果相近。3种灌木类型枯落物最大持水量在5.44~8.47 t/hm2之间变化,这与吕刚等[24]所得紫穗槐的最大持水量106.32 t/hm2相差较大,其原因可能与枯落物蓄积量相差较大有关,赵芳等[4]和施爽等[25]的研究也证明蓄积量与持水能力呈正相关。3种灌木林枯落物有效拦蓄率在176.92%~214.14%范围内变化,大于吕刚等[24]对紫穗槐的研究结果119.74%,这可能与取样时间(4月和8月)相差较大有关。

4.2 土壤物理性质及持水特性

本研究3种灌木林地土壤密度的变化范围为1.43~1.50 g/cm3,这与吕春娟[9]对平朔矿区排土场柠条林地的研究结论相近。与严重压实的新造平台密度[26]1.6~1.9 g/cm3相比,3种灌木林对排土场土壤密度已有较大改善。3种灌木类型林下土壤孔隙度及其持水量的大小顺序均为沙地柏>山杏>柠条锦鸡儿,与相关研究结果[1]一致。

5 结论

1) 3种灌木林枯落物层水源涵养能力的大小顺序为沙地柏>柠条锦鸡儿>山杏。

2) 3种灌木林土壤层水源涵养能力强弱顺序为沙地柏>山杏>柠条锦鸡儿。

3) 由3种灌木林欧式贴近度大小顺序沙地柏(0.869 3)>山杏(0.202 7)>柠条锦鸡儿(0.151 8)可知,该研究区沙地柏灌木林的水源涵养能力最强,山杏次之,柠条锦鸡儿较差。该排土场在生态修复评价及树种选择时,可优先选择沙地柏。

参考文献
[1]
吴迪, 辛学兵, 裴顺祥, 等. 北京九龙山8种林分的枯落物及土壤水源涵养功能[J]. 中国水土保持科学, 2014, 12(3): 78.
WU Di, XIN Xuebing, PEI Shunxiang, et al. Water conservation function of litters and soil of eight kinds of forest stands in Jiulong mountain in Beijing city[J]. Science of Soil and Water Conservation, 2014, 12(3): 78. DOI: 10.3969/j.issn.1672-3007.2014.03.012.
[2]
曾建军, 史正涛, 张华伟, 等. 滇中城市水源地不同林型水源涵养功能评价[J]. 水土保持研究, 2013, 20(6): 84.
ZENG Jianjun, SHI Zhengtao, ZHANG Huawei, et al. Evaluation on water conservation function of different forest types in urban water sources of the central Yunnan[J]. Research of Soil and Water Conservation, 2013, 20(6): 84.
[3]
胡晓聪, 黄乾亮, 金亮. 西双版纳热带山地雨林枯落物及其土壤水文功能[J]. 应用生态学报, 2017, 28(1): 55.
HU Xiaocong, HUANG Qianliang, JIN Liang. Hydrological functions of the litters and soil of tropical mountain rain forest in Xishuangban-na, Yunnan, China[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 55.
[4]
赵芳, 李雪云, 赖国桢, 等. 飞播马尾松林不同林下植被类型枯落物及土壤水文效应[J]. 中国水土保持科学, 2016, 14(4): 26.
ZHAO Fang, LI Xueyun, LAI Guozhen, et al. Hydrological effects of forest litters and soil in different types of understory vegetation in aerially-seeded Pinus massoniana plantation[J]. Science of Soil and Water Conservation, 2016, 14(4): 26.
[5]
赵丽, 王建国, 车明中, 等. 内蒙古扎兰屯市典型森林枯落物、土壤水源涵养功能研究[J]. 干旱区资源与环境, 2014, 28(5): 91.
ZHAO Li, WANG Jianguo, CHE Mingzhong, et al. Forest litter, soil characteristics and water conservation function of typical forest in Zhalantun, Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2014, 28(5): 91.
[6]
刘凯, 贺康宁, 田赟, 等. 青海高寒山区5种林分的土壤特性及其水源涵养功能[J]. 水土保持学报, 2017, 31(3): 141.
LIU Kai, HE Kangning, TIAN Yun, et al. Soil characteristics and water conservation function of five forest types in Qinghai Alpine Region[J]. Journal of Soil and Water Conservation, 2017, 31(3): 141.
[7]
莫菲, 李叙勇, 贺淑霞, 等. 东灵山林区不同森林植被水源涵养功能评价[J]. 生态学报, 2011, 31(17): 5009.
MO Fei, LI Xuyong, HE Shuxia, et al. Evaluation of soil and water conservation capacity of different forest types in Dongling mountain[J]. Acta Ecologica Sinica, 2011, 31(17): 5009.
[8]
王先棒, 贺康宁, 董喆, 等. 北川河流域典型林型水源涵养能力评价[J]. 中国水土保持科学, 2017, 15(5): 94.
WANG Xianbang, HE Kangning, DONG Zhe, et al. Evaluation on water conservation capacity of typical forest types in Beichuan River basin[J]. Science of Soil and Water Conservation, 2017, 15(5): 94.
[9]
吕春娟, 路琼. 矿区复垦植被土壤涵养水源功能的研究[J]. 水土保持学报, 2009, 23(3): 184.
LÜ Chunjuan, LU Qiong. Water-source conservation function of vegetation soil in reclamation mine[J]. Journal of Soil and Water Conservation, 2009, 23(3): 184. DOI: 10.3321/j.issn:1009-2242.2009.03.040.
[10]
马任甜, 方瑛, 安韶山, 等. 黑岱沟露天煤矿优势植物叶片及枯落物生态化学计量特征[J]. 土壤学报, 2016, 53(4): 1003.
MA Rentian, FANG Ying, AN Shaoshan, et al. Ecological stoichiometric characteristics of leaves and litter of plants dominant in Heidaigou opencast coal mining area[J]. Acta Pedologica Sinica, 2016, 53(4): 1003.
[11]
姚敏娟, 张树礼, 李青丰, 等. 黑岱沟露天矿排土场不同植被配置土壤水分研究:土壤水分垂直动态研究[J]. 北方环境, 2011, 23(1/2): 29.
YAO Minjuan, ZHANG Shuli, LI Qingfeng, et al. Effects of different vegetation types on soil moisture of dumping site in Heidaigou opencast mine:Vertical dynamic of soil water content[J]. Northern Environment, 2011, 23(1/2): 29.
[12]
陈严武, 史正涛, 曾建军, 等. 水源地不同林分水源涵养功能评价[J]. 干旱区资源与环境, 2015, 29(2): 67.
CHEN Yanwu, SHI Zhengtao, ZENG Jianjun, et al. the evaluation on the soil water conservation function of five types forests in urban water source region[J]. Journal of Arid Land Resources and Environment, 2015, 29(2): 67.
[13]
郭梦娇, 朱江, 程小琴, 等. 辽河源不同林龄油松林水源涵养能力研究[J]. 水土保持学报, 2016, 30(3): 279.
GUO Mengjiao, ZHU Jiang, CHENG Xiaoqin, et al. Water conservation capacity of Pinus tabulaeformis forests with different ages at Liaohe River[J]. Journal of Soil and Water Conservation, 2016, 30(3): 279.
[14]
刘蔚漪, 范少辉, 漆良华, 等. 闽北不同类型毛竹林水源涵养功能研究[J]. 水土保持学报, 2011, 25(2): 92.
LIU Weiyi, FAN Shaohui, QI Lianghua, et al. Water conservation function of different tapes Phyllostachys edulis forests in northern Fujian province[J]. Journal of Soil and Water Conservation, 2011, 25(2): 92.
[15]
曾建军, 史正涛, 陈严武, 等. 滇西北水源地不同混交组合林水源涵养功能评价[J]. 人民长江, 2014, 45(14): 36.
ZENG Jianjun, SHI Zhengtao, CHEN Yanwu, et al. Evaluation on water conservation function of different mixed forests in water resources areas in northwest Yunnan province[J]. Yangtze River, 2014, 45(14): 36. DOI: 10.3969/j.issn.1001-4179.2014.14.013.
[16]
曾建军, 沈盈佳, 史正涛, 等. 模糊物元模型在流域水资源可再生能力评价中应用[J]. 环境科学与技术, 2013, 36(6L): 319.
ZENG Jianjun, SHEN Yingjia, SHI Zhengtao, et al. Fuzzy matter element model in the watershed water resources evaluation in the application of resources reproducible ability[J]. Environmental Science & Technology, 2013, 36(6L): 319.
[17]
高艺宁, 许丽, 林凤友, 等. 矿区复垦地土壤有机碳分布及与土壤化学特性的关系[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(1): 54.
GAO Yining, XU Li, LIN Fengyou, et al. Relationship between soil organic carbon distribution and soil chemical properties in mining area[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2016, 37(1): 54.
[18]
赵洋, 张鹏, 胡宜刚, 等. 露天煤矿排土场不同配置人工植被对草本植物物种多样性的影响[J]. 生态学杂志, 2015, 34(2): 387.
ZHAO Yang, ZHANG Peng, HU Yigang, et al. Effect of re-vegetation on herbage plant species diversity of dumping site in an coal mine[J]. Chinese Journal of Ecology, 2015, 34(2): 387.
[19]
张峰, 彭祚登, 安永兴, 等. 北京西山主要造林树种林下枯落物的持水特性[J]. 林业科学, 2010, 46(10): 6.
ZHANG Feng, PENG Zuodeng, AN Yongxing, et al. Water-holding characteristics of the litter under main tree species plantations in Beijing Xishan mountainous areas[J]. Scientia Silvae Sinicae, 2010, 46(10): 6. DOI: 10.11707/j.1001-7488.20101002.
[20]
王波, 张洪江, 徐丽君, 等. 四面山不同人工林枯落物储量及其持水特性研究[J]. 水土保持学报, 2008, 22(4): 90.
WANG Bo, ZHANG Hongjiang, XU Lijun, et al. Reserves and water capacity characteristics of different species of litter in Simian mountain[J]. Journal of Soil and Water Conservation, 2008, 22(4): 90. DOI: 10.3321/j.issn:1009-2242.2008.04.020.
[21]
李朦, 汪妮, 解建仓, 等. 基于模糊物元模型的再生水资源价值评价[J]. 西北农林科技大学学报(自然科学版), 2016, 44(1): 223.
LI Meng, WAND Ni, XIE Jiancang, et al. Evaluation of reclaimed water resources based on fuzzy matter element model[J]. Journal of Northwest A&F University(Nat. Sci. Ed.), 2016, 44(1): 223.
[22]
陈鸿起, 汪妮, 申毅荣, 等. 基于欧式贴近度的模糊物元模型在水安全评价中的应用[J]. 西安理工大学学报, 2007, 23(1): 37.
CHEN Hongqi, WANG Ni, SHEN Yirong, et al. Application of fuzzy matter element model in evaluation of water security based on Euclid approach degree[J]. Journal of Xi'an University of technology, 2007, 23(1): 37. DOI: 10.3969/j.issn.1006-4710.2007.01.009.
[23]
马冬梅, 陈大春. 基于欧式贴近度的模糊物元模型在水资源脆弱性评价中的应用[J]. 南水北调与水利科技, 2015, 13(5): 1003.
MA Dongmei, CHEN Dachun. Application of fuzzy matter element model based on Euclid approach degree on vulnerability assessment of water resources[J]. South-to-North Water transfers and Water Science & technology, 2015, 13(5): 1003.
[24]
吕刚, 傅昕阳, 李叶鑫, 等. 露天煤矿排土场复垦区不同植被类型枯落物持水特性研究[J]. 水土保持学报, 2017, 31(1): 146.
LV Gang, FU Xinyang, LI Yexin, et al. Study on water-holding characteristics of litter in different vegetation types in the reclaimed land of open-cut coal mine dump[J]. Journal of Soil and Water Conservation, 2017, 31(1): 146.
[25]
施爽, 郭继勋. 松嫩草原三种主要植物群落枯落物层生态水文功能[J]. 应用生态学报, 2007, 18(8): 1722.
SHI Shuang, GUO Jixun. Eco-hydrological functions of litter in three main plant communities on Songnen grassland[J]. Chinese Journal of Applied Ecology, 2007, 18(8): 1722.
[26]
李晋川, 白中科. 露天矿土地复垦与生态重建[M]. 北京: 科学出版社, 2000: 72.
LI Jinchuan, BAI Zhongke. Land reclamation and ecological reconstruction in open-pit mines[M]. Beijing: Science Press, 2000: 72.