文章快速检索     高级检索
  中国水土保持科学   2018, Vol. 16 Issue (2): 47-54.  DOI: 10.16843/j.sswc.2018.02.007
0

引用本文 

王晶晶, 毕华兴, 孙于卜, 段航旗, 彭瑞东. 不同树龄单株苹果树树冠遮阴范围分析[J]. 中国水土保持科学, 2018, 16(2): 47-54. DOI: 10.16843/j.sswc.2018.02.007.
WANG Jingjing, BI Huaxing, SUN Yubo, DUAN Hangqi, PENG Ruidong. Shade range analysis of apple tree crown in different ages[J]. Science of Soil and Water Conservation, 2018, 16(2): 47-54. DOI: 10.16843/j.sswc.2018.02.007.

项目名称

国家自然科学基金"果农间作系统林下太阳辐射时空分布及其对间作作物的影响"(31470638);科技创新服务能力建设-科研基地建设-林果业生态环境功能提升协同创新中心(2011协同创新中心)(市级)(PXM2017—014207—000024)

第一作者简介

王晶晶(1993-), 女, 硕士研究生。主要研究方向:林业生态工程。E-mail:524483758@qq.com

通信作者简介

毕华兴(1969-), 男, 教授, 博导。主要研究方向:水土保持与荒漠化防治。E-mail:bhx@bjfu.edu.cn

文章历史

收稿日期:2017-12-20
修回日期:2018-02-08
不同树龄单株苹果树树冠遮阴范围分析
王晶晶1, 毕华兴1,2,3,4, 孙于卜1, 段航旗1, 彭瑞东1     
1. 北京林业大学水土保持学院, 100083, 北京;
2. 北京林果业生态环境功能提升协同创新中心, 102206, 北京;
3. 山西吉县森林生态系统国家野外科学观测研究站, 100083, 北京;
4. 北京林业大学 水土保持国家林业局重点实验室, 100083, 北京
摘要:通过晋西黄土区苹果农林间作系统不同树龄果树的遮阴范围、重复遮阴区域和遮阴时长的研究,遵循平行光线下的相似性原理,将果树按其树体缩小50倍,根据实测苹果树体形状,制作不同林级的苹果树3D模型,利用树体模型在研究区现地进行果树遮阴范围的测定实验。结果表明:1)对于研究区果树种植配置而言,4~7年生果树株间存在遮阴重叠,而行间不存在遮阴重;2)根据对树冠遮阴区域的分析,提出4~7年生果树的合理间作距离;3)随着苹果树树龄的增长,果树与作物的争光明显增强;间作作物距果树越近,果树与作物争光越明显。在果农复合系统中,间作作物的种植应该依据果树遮阴区域而定,并且不同林龄果树的果农复合系统,其间作作物种植区域是不同的。该研究为果农复合系统中,间作作物合理种植间距的确定提供支撑。
关键词单株苹果树    不同树龄    遮阴范围    遮阴时长    重复遮阴    
Shade range analysis of apple tree crown in different ages
WANG Jingjing1, BI Huaxing1,2,3,4, SUN Yubo1, DUAN Hangqi1, PENG Ruidong1     
1. College of Soil and Water Conservation, Beijing Forestry University, 100083, Beijing, China;
2. Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, 102206, Beijing, China;
3. Ji County Station, Chinese National Ecosystem Research Network(CNERN), 100083, Beijing, China;
4. Key Laboratory of State Forestry Administration on Soil and Water Conservation(Beijing Forestry University), 100083, Beijing, China
Abstract: [Background] Agroforestry complex system has obvious ecological benefits of soil and water conservation in the Loess Plateau region. Recently, the research about agroforestry complex focused on the competition of water and nutrient, and neglected effects of solar radiation. Solar radiation is energy sources of intercropping, and crown shading should be focused in agroforestry complex system. Jinxi is a typical Loess Plateau region, where agroforestry complex is widely used. Thus, this study, measuring crown shadings of different age's (4 years, 5 years, 6 years, and 7 years) apple trees in Jinxi Loess Plateau area, aims to explore shading range that is shade area at corresponding moment within a day, repeated shading area that is an area continuously covered by apple tree crown within a day, and lasting shading time in a repeated shading area on different ages apple tree. [Methods] Based on similarity principle in parallel solar rays, the research established 3D apple tree model by reducing the 50 times of an actual apple. Apple tree shading range in a day was measured using the 3D tree. The shade was described based on the shadow of the 3D apple tree model in solar rays. The drawing describing shade range was imported to computer, and combining the software of CAD and MATLAB, the crown shade of apple tree within a day was analyzed. [Results] 1) As for the tree planting configuration with the plant spacing was 4 m×5 m, 5 m×5 m in the study area, the 4-7 years apple trees had mutual shading overlap between apple trees, but no mutual shading overlap occurred between rows. The research about multiple apple trees configuration should focus on apple trees in economic tree and crop intercropping system. 2) The crown shading area of the apple tree in north side was always greater than that in the south side. Consequently, planting intercrops at the same distances in north and south side of apple trees was not reasonable in economic tree and crop intercropping system. When designing the row distance of intercrop, we must consider the effect of apple tree crown shading area. In the study, the reasonable intercrop planting distance was determined through analyzing apple-tree crown shading area, repeated shading area, and lasting shading time. 3) Because repeated shading area continuously increased with the increase of an apple tree age, which resulted in the competition of solar rays between tree and crop rose with the aging of the tree. While the crown shading area of an apple tree is getting closer to the apple tree, the shading time of the shading area increased. Therefore, the competitiveness for solar rays between tree and crop became growingly significant with the crown shading area was toward to the tree. And the major shading time should be in 9:00-15:00 within a day, and this moment was the important in a day. [Conclusions] Intercrop planting should be determined based on shading area in economic tree and crop intercropping system. And planting area of intercropping is different in economic tree and crop intercropping system with different ages' apple trees. The research provides support about reasonable planting distance of intercrop in economic tree and crop intercropping system.
Key words: individual apple tree    different tree age    shading area    shading time    repeated shading    

黄土高原区农林复合系统具有明显的水土保持生态效益,其接纳降雨调集使用,既流又阻,保持水土,已经在黄土区大面积推广和应用。农林复合在提高土地利用率和土地生产力、防治水土流失、改善土壤水肥条件方面存在重要意义[1-6]。近年来,在农林复合种间关系的研究领域,研究主要集中在水分和养分的竞争方面[7-19],忽略了光照对农林复合系统种间关系的影响。太阳辐射作为间作作物的能量来源,直接影响间作作物、林内小气候。因此,农林复合系统光环境下的树冠遮光应该予以重视。

农林复合系统中,太阳辐射的强度和遮阴范围是光环境研究的重点。目前农林复合系统光环境的研究,主要集中在利用太阳辐射强度仪对林下不同位置太阳辐射强度的测定[20-25]。在遮阴范围实测方面的研究,由于果树实体下地面平整度较低、果树间相互影响等原因,使得遮阴范围难以明确界定,农林复合系统中果树的遮阴范围实测研究较少。因此,笔者避开地面和果树间对单株果树遮阴实测的影响,以太阳光线是平行光[26]为前提,采用相似性原理,利用苹果树3D模型实测遮阴范围。结合CAD、MATLAB等软件,对不同年限实测范围进行对比分析,使得太阳辐射强度与遮阴范围结合,指导农林复合系统中,间作作物的种植和苹果树种植的配置方式,从而达到农林复合系统水土保持效益优化。

1 研究区概况

研究区位于山西省吉县黄河西南部(E36°20′20″,N110°45′47″),属于黄土高原残源沟壑地貌和梁崩丘陵沟壑地貌。目前,吉县的苹果种植已形成一定的规模化,并成为主导农业产业,截至2014年,全县共栽植苹果1.8万hm2,产值3亿元。80%以上的农民从事苹果种植业,农民的收入85%以上来自于苹果产业。吉县的果树种植选择地理东西方向为树行方向,4m×5m或5m×5m的株行距配置方式,间作年限1~7年。

2 材料与方法 2.1 试验方法 2.1.1 试验材料

以实验样地的苹果树作为研究对象,选择实验样地4、5、6和7年生的苹果树各100棵,进行拍照和基本特征的测量(表 1),将所取照片导入PS,对其进行处理分析,通过对大量测量数据和照片中树冠轮廓的提取分析,利用三维制图构建苹果树体模型,最终采用3D打印制作缩小50倍的苹果树三维树体模型。

表 1 试验地果树树体的基本特征 Table 1 Basic characteristic of fruit tree in test area
2.1.2 试验设计

为测定苹果树树体模型的遮阴范围、重复遮阴区域和遮阴时长,将树体模型插放在厚度为3mm的A3硬纸板,硬纸板上固定有网格纸(树体模型枝下高已加高3mm)。树体模型选择插放在网格纸的中心位置,且以地理北为Y轴的正半轴,地理东为X轴正半轴。一天内08:00—17:00是太阳辐射的重要时段;因此,实验在晴天08:00—17:00,每隔1h进行标定一次,在固定的网格纸上,使用铅笔(铅笔与地面垂直)描绘出树体模型在此时间的遮阴边界。实验选择在2017年7月进行3次,每次相同树龄树体模型为3次重复。遮阴范围为对应时间的遮阴边界内的遮阴区域,遮阴范围随着时间的变化而变化。

2.2 数据处理

将绘制有遮阴范围的网格纸导入电脑,利用MATLAB获取各个遮阴边界的位置坐标,并将各边界坐标点均扩大50倍,然后将获取的位置坐标导入CAD中,对各点进行连接,最终获取苹果树树冠在一天内随着时间变化的遮阴范围图。利用CAD的制图软件,对遮阴范围图进行遮阴面积的求算,以及重复遮阴区域范围的确定。

3 结果与分析 3.1 不同树龄单株苹果树树冠遮阴范围和遮阴时间的分析

在一天太阳辐射的重要时段中,4、5、6和7年生单株苹果树树冠的遮阴范围随时间的变化见图 1。以苹果树干作为原点,依据4、5、6和7年生单株苹果树遮阴范围(图 2),对于研究区苹果树种植选择的配置而言,4、5、6和7年生的苹果树树冠遮阴区域在株间出现遮阴重叠;而在行间果树树冠遮阴区域无遮阴重叠,进行间作种植可行。

图 1 不同树龄单株苹果树树冠遮阴范围随时间变化图 Figure 1 Shade area change of an individual apple tree in different age over time
图 2 不同树龄苹果树树冠持续遮阴区域边界对比图 Figure 2 Boundary contrast of lasting shade area of an apple tree crown in different age

图 1可知,在08:00—17:00中,苹果树树冠遮阴时长≤3h的遮阴区域占据树冠遮阴区域的大部分遮阴,主要集中在09:00—15:00时间段。树冠遮阴区域的遮阴时长是随着从树干到周边遮阴区域逐渐变短。随着果树年限的不断增长,遮阴范围、遮阴区域的不断扩大,遮阴时长也在增长。4年生果树树冠遮阴区域未出现超过7h的遮阴,而在5、6和7年生果树树冠遮阴区域出现持续7h的遮阴,且随着果树年限的增长,持续7h遮阴区域不断扩大。因此,遮阴范围、遮阴区域和遮阴时长随着树龄的增加而增长,导致果农间作系统中,光资源竞争关系随着树龄的增长而增强。

3.2 不同树龄苹果树树冠重复遮阴边界分析

图 2可知, 果树重复遮阴区域边界值随着树龄的增长,呈现扩大的变化趋势。在持续遮阴4~6h的遮阴区域中,东向遮阴始终大于西向。当持续遮阴7h的遮阴区域出现在5年生的果树树冠遮阴时,遮阴区域最初出现在西向,且随着树龄的增长,重复遮阴区域边界逐渐向东向靠近。这是由于太阳方位角由东向西,使得遮阴最初出现在西向,并由西向逐渐向东向过度,导致开始出现最大时长的遮阴的区域位于西侧。

苹果树重复遮阴区域内,树下遮阴的重复遮阴边界北侧始终大于南侧。因此,对于研究区果农间作系统的种植模式而言,依据传统方式下,果树两侧的间作作物等行距的种植方式是不合理,重复遮光区域是对间作作物光合作用产生极大影响的区域。如表 2所示,4、5、6和7年生苹果树的遮光影响范围距目标果树分别为以东2.38m、以西1.78m、以南1.20m、以北1.78m;以东2.50m、以西1.92m、以南1.36m、以北1.94m;以东2.69m、以西2.04m、以南1.40m、以北2.04m和以东2.78m、以西2.17m、以南1.54m、以北2.15m。间作作物的种植距离,可依据表 2中不同年限重复遮阴边界位置进行设计,从而提高间作作物的产量,减少果树和作物在长时间遮阴下的相互竞争关系,达到果农复合系统效益较优。

表 2 不同树龄苹果树树冠重复遮阴区域边界范围 Table 2 Boundary of repeated shade area of an apple tree crown in different age

图 3可知,各持续遮阴时长的遮阴区域面积随着苹果树树龄的增长而扩大,遮阴面积随果树树龄增长的变化规律依次为4年生 < 5年生 < 6年生 < 7年生。这主要是由于随着果树树龄的增长,苹果树的冠幅、高度和枝下高等均增长。图 3中持续遮阴4~5h的遮阴面积,随着苹果树树龄的增长,呈现均匀增长的趋势;然而,持续遮阴6~7h的遮阴面积,随着苹果树树龄的增长,呈现不规律变化。就持续遮阴6~7h的遮阴面积而言,树龄为6~7年生树冠遮阴面积相较4~6年生树冠遮阴面积的变化快速。

图 3 不同苹果树树龄重复遮阴面积对比图 Figure 3 Contrast of repeated shade areas in different apple tree ages
4 结论与讨论

对于研究区苹果树种植配置而言,4~7年生苹果树树冠在株间存在遮阴重叠,而在行间不重叠;苹果树树冠遮阴区域,北侧始终大于南侧。因此,就研究区果农复合系统配置中,在苹果树南北两侧等距离种植间作作物是不合理的,在种植间作作物的行距设计时,必须考虑苹果树树冠的遮阴区域;随着苹果树树冠遮阴区域向果树靠近,其遮阴区域的遮阴时长也随着增加。长时间遮阴,导致果树与作物光资源竞争关系的增强[27-31]。因此,果农间作系统中,果树与作物间的光竞争关系也表现为随着距离果树越近,光竞争越明显;随着苹果树树龄的增长,遮阴面积和遮阴时长增加,导致果农间作中,光竞争随树龄增长而竞争增强。

研究表明,从树干向外的不同距离处,遮阴强度不同。距果树越近,遮阴强度的等值线密集、遮阴强度大,且树干北侧的遮阴强度大于树干南侧。与笔者遮阴区域的分析一致,表明遮阴强度主要是由于树冠遮阴范围的变化而变化[32]。许华森[33]对遮阴范围的研究表明,不同林龄苹果树下空间分布具有相似特征,苹果树的遮阴区域北侧大于南侧。苹果树对农作物遮阴影响大,在苹果的复合经营中,间作作物与果树的距离要大些,且随着果树树龄的增长,间作作物适宜种植区域变小。而卢国珍等[34]在遮阴规律的研究中提出,林木行向正南正北的前提下,林木遮阴范围以中午为中点,上午、下午的遮阴区域呈对称。这与笔者的研究有差异,卢国珍等仅考虑太阳高度角和太阳方位角的因素,而忽略冠层半阴影效应的因素。果树对行间遮阴最严重的时间段是09:00和13:00,随着树龄的增大,使重复遮阴区域、遮阴时长变长[35]。苹果复合系统模式的光竞争主要发生在14:00前[36]。有关多株果树配置造成相互遮阴方面,有待进一步试验研究。

参考文献
[1]
LUNDGREN B O. Agroforestry introduction[J]. Agroforestry Systems, 1982, 1(1): 3. DOI: 10.1007/BF00044324.
[2]
NAIR P K R. Classification of agroforestry system[J]. Agroforestry Systems, 1985, 3(2): 383.
[3]
孟平, 张劲松. 中国复合农林业发展机遇与研究展望[J]. 防护林科技, 2011, 1(1): 7.
MENG Ping, ZHANG Jinsong. Development opportunities & prospects of agroforestry in China[J]. Protection Forest Science and Thechnology, 2011, 1(1): 7.
[4]
GAO L B, XU H S, BI H X, et al. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China[J]. PLoS ONE, 2013, 8(7): e70739. DOI: 10.1371/journal.pone.0070739.
[5]
李文华, 赖文登. 中国农林复合经营[M]. 北京: 科学出版社, 1994: 49.
LI Wenhua, LAI Wendeng. China agroforestry management[M]. Beijing: Science Press, 1994: 49.
[6]
魏天兴, 朱金兆, 朱清科, 等. 黄土陡坡地农林复合经营设计与水土保持效益研究[J]. 土壤侵蚀与水土保持学报, 1998, 4(2): 82.
WEI Tianxing, ZHU Jinzhao, ZHU Qingke, et al. Design of integral agroforestry and its benefits of soil and water conservation in loess steep slope land[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998, 4(2): 82.
[7]
叶彦辉. 黄土高原农林复合系统景观边界土壤养分、微生物和酶活性的研究[D]. 西安: 西北农林科技大学, 2007: 89.
YE Yanhui. Soil nutrient and microorganism as well as soil enzyme activity at agroforestry landscape boundaries in gully region of the Loess Plateau[D]. Xi'an: Northwest A&F University, 2007: 89.
[8]
景元书, 张凡. 农林复合对土壤水分与养分状况的影响[J]. 农业气象与生态环境, 2003(2): 26.
JING Yuanshu, ZHANG Fan. Effects of agroforestry on soil moisture and nutrient status[J]. Agrometeorology and Ecological Environment, 2003(2): 26.
[9]
赵英, 张斌, 赵华春, 等. 农林复合系统中南酸枣蒸腾特征及影响因子[J]. 应用生态学报, 2006, 16(11): 2035.
ZHAO Ying, ZHANG Bin, ZHAO Huachun, et al. Transpiration of Choerospondias axillaris in agro-forestry system and its affecting factors[J]. Chinese Journal of Applied Ecology, 2006, 16(11): 2035.
[10]
刘兴宇, 曾德慧. 农林复合系统种间关系研究进展[J]. 生态学杂志, 2007, 26(9): 1464.
LIU Xingyu, ZENG Dehui. Research advances in interspecific interactions in agroforestry system[J]. Chinese Journal of Ecology, 2007, 26(9): 1464.
[11]
李瑞成. 曲周县杨农复合系统中土壤水分与养分的变化[D]. 北京: 中国农业大学, 2016: 37.
LI Ruicheng. Changes of soil water and nutrients in Yangon composite system in Quzhou County[D]. Beijing: China Agriculture University, 2016: 37.
[12]
庞家平, 陈明勇, 唐建维, 等. 橡胶-大叶千斤拔复合生态系统中的植物生长与土壤水分养分动态[J]. 山地学报, 2009, 27(4): 433.
PANG Jiaping, CHEN Mingyong, TANG Jianwei, et al. The dynamics of plant growth and soil moisture and nutrient in the rubber plantation and rubber-Flemingia macrophylla agroforestry system in Xishuangbanna, Southwest China[J]. Journal of Mountain Science, 2009, 27(4): 433.
[13]
戴晓琴. 幼龄杨树和小麦-玉米复合系统土壤水分和养分时空变化及作物表现[D]. 北京: 中国农业大学, 2006: 50.
DEI Xiaoqin. Temporal and spatial changes of soil water and nutrients in young poplar and wheat-maize composite systems[D]. Beijing: China Agriculture University, 2006: 50.
[14]
孙守佳, 孟平, 张劲松, 等. 华北石质山区核桃-绿豆复合系统氘同位素变化及其水分利用[J]. 生态学报, 2010, 20(14): 3717.
SUN Shoujia, MENG Ping, ZHANG Jinsong, et al. Deuterium isotope variation and water use in an agroforestry system in the rocky mountainous area of North China[J]. Acta Ecologica Sinica, 2010, 20(14): 3717.
[15]
毛瑢, 曾德慧. 农林复合系统植物竞争研究进展[J]. 中国生态农业学报, 2009, 17(2): 379.
MAO Rong, ZENG Dehui. Research advances in plant competition in agroforestry systems[J]. Chinese Journal of ECO-Agriculture, 2009, 17(2): 379.
[16]
赵英, 张斌, 王明珠. 农林复合系统中物种间水肥光竞争机理分析与评价[J]. 生态学报, 2006, 26(6): 1792.
ZHAO Ying, ZHANG Bin, WANG Mingzhu. Assessment of competition for water, fertilizer and light between components in the alley cropping system[J]. Acta Ecologica Sinica, 2006, 26(6): 1792.
[17]
徐峰, 蔡强国, 吴叔安. 坡地农林复合系统土壤养分过程研究进展[J]. 水土保持学报, 2000, 14(1): 82.
XU Feng, CAI Qiangguo, WU Shuan. Progress in research on nutrient processes of sloping agroforestry systems[J]. Journal of Water and soil conservation, 2000, 14(1): 82.
[18]
李岩泉, 何春霞. 我国农林复合系统自然资源利用率研究进展[J]. 林业科学, 2015, 50(8): 141.
LI Yanquan, HE Chunxia. Research progress of natural resource utilization in agroforestry system in China[J]. Scientia Silvae Sinicae, 2015, 50(8): 141.
[19]
夏青, 何丙辉, 谢洲, 等. 紫色土农林复合经营土壤理化性状研究[J]. 水土保持学报, 2006, 20(2): 86.
XIA Qing, HE Binghui, XIE Zhou, et al. Study on soil physical and chemical properties of agroforestry of purple soil[J]. Journal of Water and Soil Conservation, 2006, 20(2): 86.
[20]
蔡智才, 毕华兴, 许华森, 等. 晋西黄土区苹果花生间作系统光合有效辐射及其对花生生长的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 4(10): 51.
CAI Zhicai, BI Huaxing, XU Huasen, et al. Distribution of photosynthetically available radiation and its effect on growth of Arachis hypogaea in Malus pumila and Arachis hypogaea intercropping system in loess area of western Shanxi[J]. Journal of Northwest A&F University, 2017, 4(10): 51.
[21]
He H M, YANG L, ZHAO L H, et al. The spatial and temporal distribution of light intensity between maize and interplant[J]. Journal of Resources and Ecology, 2012, 2(6): 169.
[22]
廖文超. 晋西黄土区不同树龄苹果与大豆间作系统水、肥、光空间分布特征[D]. 北京: 北京林业大学, 2015: 49
LIAO Wenchao. Spatial distribution characteristics of water, fertilizer and light in the intercropping system of different tree age apples and soybeans in the western Shanxi Loess Region[D]. Beijing: Beijing Forestry University, 2015: 49.
[23]
史晓丽, 郭小平, 毕华兴, 等. 晋西果农间作光竞争及产量研究[J]. 北京林业大学学报, 2009, S2(10): 115.
SHI Xiaoli, GUO Xiaoping, BI Huaxing, et al. Intercropping system in western Shanxi province[J]. Journal of Beijing Forestry University, 2009, S2(10): 115.
[24]
田阳, 云雷, 毕华兴, 等. 晋西黄土区果农间作光竞争研究[J]. 水土保持研究, 2013, 4(2): 288.
TIAN Yang, YUN Lei, BI Huaxing, et al. Research on light competition of fruit-crop intercropping system in the loess region of West Shanxi province[J]. Research of Soil and Water Conservation, 2013, 4(2): 288.
[25]
张雯, 谢辉, 张平, 等. 扁桃-冬小麦间作模式下树冠结构对间作区域光环境的影响[J]. 中国生态农业学报, 2016, 6(5): 753.
ZHANG Wen, XIE Hui, ZHANG Ping, et al. Effect of tree canopy structure on light condition in almond-winter wheat intercropping systems[J]. Chinese Journal of Eco-Agriculture, 2016, 6(5): 753.
[26]
李树人, 赵勇. 树冠遮光数学模型的研究[J]. 河北农业大学学报, 1994, 28(4): 362.
LI Shuren, ZHAO Yong. Study on the shading mathematic model of tree crown[J]. Acta Agriculture Universitatis Henanensis, 1994, 28(4): 362.
[27]
毕华兴, 云雷, 朱清科. 晋西黄土区农林复合系统种间关系研究[M]. 北京: 科学出版社, 2011: 44.
BI Huaxing, YUN Lei, ZHU Qingke. Interspecific relationship of agroforestry system in the western Shanxi loess region[M]. Beijing: Science Press, 2011: 44.
[28]
廖文超, 毕华兴, 高路博, 等. 苹果-大豆间作系统光照分布及其对作物的影响[J]. 西北林学院学报, 2014, 29(1): 25.
LIAO Wenchao, BI Huaxing, GAO Lubao, et al. Light distribution in apple-soybean intercropping and its impact on the crops[J]. Journal of Northwest Forestry University, 2014, 29(1): 25.
[29]
田阳, 云雷, 毕华兴, 等. 晋西黄土区果农间作光竞争研究[J]. 水土保持研究, 2013, 20(4): 288.
TIAN Yang, YUN Lei, BI Huaxing, et al. Research on light competition of fruit-crop intercropping system in the loess region of West Shanxi Province[J]. Research of Soil and Water Conservation, 2013, 20(4): 288.
[30]
GAO L, XU H, BI HX, et al. Intercropping competition between apple trees and crops in agroforestry systems on the loess plateau of China[J]. PLoS ONE, 2013, 8(7): e70739. DOI: 10.1371/journal.pone.0070739.
[31]
廖文超. 晋西黄土区不同树龄苹果与大豆间作系统水、肥、光空间分布特征[D]. 北京: 北京林业大学, 2015: 40.
LIAO Wenchao. The spatial distribution of soil moisture, soil nutrients, light in different age's apple and soybean intercropping systems on the Loess Plareau of West Shanxi Province[D]. Beijing: Beijing Forestry University, 2015: 40
[32]
刘延杰. 果树对行间光能的影响[J]. 中国林副特产, 1996, 39(4): 2.
LIU Yanjie. The effect of fruit tree on inter-row light energy[J]. Forest by-Product and Speciality in China, 1996, 39(4): 2.
[33]
许华森. 晋西黄土医苹果-大豆间作系统太阳辐射时空分布规律[D]. 北京: 北京林业大学, 2015: 56.
XU Huashen. Spatial and temporal distributions of solar radiation in apple-soybean intercropping system in the western Shanxi Province[D]. Beijing: Beijing Forestry University, 2015: 56.
[34]
卢国珍, 步兆东, 田福军, 等. 辽西半干旱区梯田地杏农复合系统树木遮荫作用规律研究[J]. 防护林科技, 2005, 64(1): 17.
LU Guozhen, BU Zhaodong, TIAN Fujun, et al. Study on shading of apricot intercropping with agricultural crops on the terrace land in the semiarid area of the western part of Liaoning[J]. Protection Forest Science and Technology, 2005, 64(1): 17.
[35]
解艳华. 果树间做效应的研究[J]. 北方园艺, 2007, 1(3): 28.
XIE Yanhua. The effect research of fruits intercropping[J]. The North Garden, 2007, 1(3): 28.
[36]
代巍, 郭小平, 毕华兴, 等. 晋西地区果树-农作物复合模式的光合特点[J]. 吉林农业大学学报, 2009, 31(6): 688.
DAI Wei, GUO Xiaoping, BI Huaxing, et al. Photosynthetic characteristics of agroforestry in western Shanxi[J]. Journal of Jilin Agricultural University, 2009, 31(6): 688.