文章快速检索     高级检索
  中国水土保持科学   2018, Vol. 16 Issue (2): 17-23.  DOI: 10.16843/j.sswc.2018.02.003
0

引用本文 

李依珊, 尹斌, 谢云, 殷水清, 刘雨鑫, 章文波, 殷兵, 杨扬, 段兴武. 岩溶区土壤侵蚀强度评价方法[J]. 中国水土保持科学, 2018, 16(2): 17-23. DOI: 10.16843/j.sswc.2018.02.003.
LI Yishan, YIN Bin, XIE Yun, YIN Shuiqing, LIU Yuxin, ZHANG Wenbo, YIN Bing, YANG Yang, DUAN Xingwu. Methods for assessing soil erosion intensity in karst regions[J]. Science of Soil and Water Conservation, 2018, 16(2): 17-23. DOI: 10.16843/j.sswc.2018.02.003.

项目名称

全国水土流失动态监测与公告项目"不同侵蚀类型区典型小流域水土流失动态监测"(1261421610273)

第一作者简介

李依珊(1992-), 女, 硕士研究生。主要研究方向:土壤侵蚀。E-mail:2273064709@qq.com

通信作者简介

谢云(1964-), 女, 教授。主要研究方向:土壤侵蚀。E-mail:xieyun@bnu.edu.cn

文章历史

收稿日期:2017-05-08
修回日期:2018-03-14
岩溶区土壤侵蚀强度评价方法
李依珊1, 尹斌2, 谢云1, 殷水清1, 刘雨鑫1, 章文波1, 殷兵3, 杨扬1, 段兴武4     
1. 北京师范大学, 地理学与遥感科学学院, 100875, 北京;
2. 珠江流域水土保持监测中心站, 510611, 广州;
3. 江西省煤田地质局测绘大队, 330001, 南昌;
4. 云南大学自然科学研究院, 650091, 昆明
摘要:研究岩溶区土壤侵蚀评价方法,既可以对岩溶区水土流失状况有深入了解,也可以为水土流失治理和评价提供依据。在贵州关岭、云南罗平、云南峨山3个县岩溶区,抽样选取44个小流域进行野外考察,收集土壤侵蚀因子的相关信息,分别通过因子分级判断侵蚀强度方法(因子法)和土壤侵蚀模型CSLE计算土壤侵蚀模数,再判断侵蚀强度的方法(模型法),对研究区水土流失面积和土壤侵蚀强度进行对比分析。同时对比这2种方法在土壤侵蚀分类分级标准SL190-2007和SL461-2009下的差异,并通过分析不同土地利用类型下水土流失面积占比的差异,分析各种评价方法的优劣。结果表明:在SL190-2007分级标准下,模型法和因子法得到的单元平均水蚀比例差异较大,分别为35.98%和72.40%;在SL461-2009分级标准下,模型法和因子法得到的水蚀比例有较好的匹配,分别为70.11%和69.31%。在SL190-2007标准下,模型法侵蚀量标准偏高,不适用于岩溶区;由于考虑了基岩裸露率的影响,在SL461-2009标准下,因子法对林、草地水蚀比例的评价相对更合理;在SL461-2009标准下,模型法由于综合考虑了降雨、土壤、地形、植被覆盖与生物措施、工程措施和耕作措施的影响,且能定量模拟土壤侵蚀模数,是最合理的方法。但由于目前模型法中土壤可蚀性因子对基岩裸露这一岩溶区典型现象反映不够,导致评价结果中林草地水蚀比例偏高,下一步应开展基岩裸露率的调查、在模型法中加入基岩裸露率的影响,提高模型法的精度。
关键词岩溶区    土壤侵蚀    评价    CSLE    因子打分    
Methods for assessing soil erosion intensity in karst regions
LI Yishan1, YIN Bin2, XIE Yun1, YIN Shuiqing1, LIU Yuxin1, ZHANG Wenbo1, YIN Bing3, YANG Yang1, DUAN Xingwu4     
1. School of Geography, Beijing Normal University, 100875, Beijing, China;
2. Central Station of Soil and Water Conservation Monitoring of Pearl River Basin, 510611, Guangzhou, China;
3. Jiangxi Provincial Bureau of Coal Geology Surveying and Mapping Team, 330001, Nanchang, China;
4. Institute of Natural Science at Yunnan University, 650091, Kunming, China
Abstract: [Background] Stony desertification in karst areas demonstrates the consequence of serious soil erosion, however, the research on the comprehensive evaluation of soil erosion in rocky desertification area is deficient. [Methods] Information on soil erosion factors for 44 primary sample units (small watersheds) in three counties from karst regions, Guanling (Guizhou province), Luoping and E'shan (Yunnan province) was collected by field investigation and remote sensing interpretation. Soil erosion area and intensity were assessed by the factor scoring method and model-based method. In factor scoring method, erosion factors (e.g. rainfall erosivity, soil erodibility and slope) were classified into discrete classes and scores were given to classes based on expert experiences. In model-based method, Chinese Soil Loss Equation (CLSE) was first used to calculate the soil erosion modulus, and the erosion intensity was classified based on the amount of modulus. Factor scoring and model-based methods under two different classification standards (SL190-2007 and SL461-2009) were compared. [Results] Average soil erosion area ratios by the model-based method and factor scoring method in SL190-2007 showed an obvious difference (35.98% and 72.40%, respectively) and those by two methods in SL461-2009 were similar (70.11% and 69.31%, respectively). When it turned to the erosion intensity, the model-based method in SL190-2007 and the factor scoring method in SL461-2009 mainly generated the slight erosion intensity, followed by the moderate, high, severe and extreme erosion intensity; whereas the factor scoring method in SL190-2007 were dominated by the moderate erosion intensity. The slight and moderate erosion intensity in model-based method from SL461-2009 dominated and occupied the similar proportion. Farmland was the largest source of erosion area in both methods and both standards. The erosion area ratio in the forest, and grassland was relatively lower by the model-based method in SL190-2007 and the factor scoring method in SL461-2009, whereas that was relatively higher by the factor scoring method from SL190-2007 and the model-based method from SL461-2009. [Conclusions] The model-based method in SL190-2007 is not suitable for the karst regions. The factor scoring method in SL461-2009 is more reasonable comparing with the model-based method in SL190-2007 by taking the influence of bare rocky ratio into consideration. Theoretically, the model-based method in SL461-2009 is the most reasonable by considering the effect of seven natural and human related soil erosion factors, including rainfall, soil, slope degree, slope length, vegetation and biological measures, engineering measures and tillage measures. However, the soil erodibility factor in the model-based method does not reflect the typical phenomenon of exposed bedrock in karst regions at present, resulting in the unreasonable high erosion ratio in the forest and grassland. Investigation of exposed bedrock should be carried out in the next step, and taken into consideration in the model-based method for further improving the efficiency of model-based method in karst regions.
Key words: karst regions    soil erosion    assessment    CSLE    factor scoring    

石漠化是岩溶区水土流失、生态恶化的极端表现形式。我国西南地区降雨丰沛,是喀斯特地貌广为分布的地区。近年来,由于人类不合理的社会活动,造成植被破坏、土壤侵蚀、岩石逐渐裸露、土地生产力衰退甚至丧失等严重的石漠化问题[1-2]。目前,国内外学者从不同角度对水土流失和石漠化进行研究,包括石漠化地区的水土流失监测[3]、石漠化分布特征[4]、石漠化成因机制[5-7]以及石漠化地区水土保持措施[8]等,然而关于石漠化地区土壤侵蚀综合评价方面的研究较为欠缺。为此,本文在典型岩溶地区,抽样选取典型小流域进行野外考察,收集土壤侵蚀因子的相关信息,对比分析不同土壤侵蚀评价方法的差异,为岩溶区水土流失治理和评价提供依据。

1 研究区概况

西南岩溶地区是珠江的源头、长江的重要补给区,水土保持的地理位置至关重要。本研究区为位于珠江南北盘江重点治理区范围内的贵州省关岭县和云南省罗平县,以及位于红河上中游治理区范围内的云南省峨山县(图 1)。3县所在岩溶区属热带、亚热带季风气候,雨量充沛,水热同期。明显的干湿交替、高频率的暴雨等气候特征,及岩溶环境的特殊性不仅使土壤侵蚀具有易发性,也导致岩溶干旱和内涝频繁发生[9]。以富钙、偏碱性的石灰土为主,土壤质地偏黏重,土壤有效水分含量偏低[6]。植被生产力低,林地恢复速率缓慢[9]

图 1 贵州省关岭县、云南省罗平县和峨山县位置图 Figure 1 Location map of Guanling county in Guizhou province, Luoping county and E′shan county in Yunnan province
2 材料与方法 2.1 资料收集

野外调查单元是指在野外进行土壤侵蚀影响因子调查的空间范围,平原区为1km×1km网格,丘陵区和山区为0.2~3km2的小流域[10]。首先按全国1:1万地形图分带规定将3个县划分若干个5km×5km网格,并确定每个网格的中心点经纬度;然后根据该经纬度计算其所在1:1万地形图图幅号。如果是平原区,直接采用1:1万地形图中心的1km×1km网格;如果是山丘区,选择与中心网格相连的0.2~3km2的小流域。根据野外调查单元的布设方法,在3县共布设58个调查单元,获得的数据包括:1)降雨侵蚀力因子,从全国的R[11-12]因子图上裁剪;2)土壤可蚀性因子,从全国的K[13-14]因子图上裁剪;3)基于1:1万地形图提取的坡度和坡度因子;4)单元地块分布图表,结合高分遥感影像资料以及野外调查获得;5)单元基岩裸露率,根据植被覆盖度互补的方法得到,在岩溶区范围内,林地、草地和裸岩的基岩裸露率为1减去盖度,其他均为0;在非岩溶区范围内,基岩裸露率记为0。

统计得到3县的总面积为6416.49km2,其中岩溶区面积为4032.70km2,占63.49%。44个单元位于岩溶区,占75.86%。旱地、有林地、灌木林地和草地分别占28.70%、28.24%、17.43%和14.04%(表 1)。选择这44个单元为本研究分析对象。

表 1 岩溶区面积及其比例 Table 1 Area and percentage of karst regions
2.2 土壤侵蚀强度评价

分别采用因子综合判别和土壤侵蚀模型2种方法,以及SL190—2007《土壤侵蚀分类分级标准》和SL461—2009《岩溶地区水土流失综合治理技术标准》这2种标准[15-16]进行评价。4种组合如下。1)全国模型法:用中国土壤流失方程CSLE(Chinese Soil Loss Equation)计算野外调查单元土壤侵蚀模数[17],采用SL190—2007《土壤侵蚀分类分级标准》判断土壤侵蚀强度(表 2);2)全国三因子法:基于土地利用、林草覆盖度和坡度的级别,采用SL190—2007《土壤侵蚀分类分级标准》中的面蚀分级指标表判断土壤侵蚀强度(表 3);3)岩溶区模型法:采用CSLE计算野外调查单元土壤侵蚀模数,采用SL461—2009《岩溶地区水土流失综合治理技术标准》判断土壤侵蚀强度(表 2);4)岩溶区四因子法:在土地利用、植被覆盖度和坡度的基础上,针对岩溶区的特殊情况,增加基岩裸露率,采用SL461—2009《岩溶地区水土流失综合治理技术标准》判断土壤侵蚀强度(表 4)。

表 2 土壤侵蚀强度分级标准表 Table 2 Ranking standard of soil erosion intensity
表 3 SL190—2007《土壤侵蚀分类分级标准》中的面蚀分级指标表 Table 3 Sheet erosion gradation index in the SL190-2007 Classification and Gradation Standard of Soil Erosion
表 4 SL461—2009《岩溶地区水土流失综合治理技术标准》判别指标 Table 4 Discriminant index in the SL461-2009 Techniques Standard for Comprehensive Control of Soil Erosion and Water Loss in Karst Regions
3 结果与分析 3.1 水土流失面积对比

表 5可知,全国三因子法得到的所有单元水蚀比例均值(72.40%)明显大于全国模型法得到的比例(35.98%)。岩溶区模型法得到的水蚀比例(70.11%)与岩溶区四因子法得到的水蚀比例(69.31%)比较接近。对4种方法得到的水蚀比例均值进行t检验,置信度水平取95%,结果表明,全国模型法和全国三因子法的均值有显著差异,但是岩溶区模型法和岩溶区四因子法无显著差异,全国三因子法和岩溶区四因子法的均值也无显著差异。

表 5 4种方法得到的不同侵蚀强度下的水土流失面积情况 Table 5 Area of soil and water loss by two methods and two classification standards in different soil erosion intensity
3.2 土壤侵蚀强度对比

表 5图 2可知:各种方法得到的土壤侵蚀强度分级存在一定差别;全国模型法和岩溶区四因子法均以轻度侵蚀为主,然后依次为中度,强烈,极强烈和剧烈侵蚀;全国三因子法以中度侵蚀为主;岩溶区模型法以轻度和中度侵蚀为主,二者占比相差不大。

图 2 4种方法得到的土壤侵蚀强度对比图 Figure 2 Comparison diagram of soil erosion intensity by four methods
3.3 不同土地利用类型侵蚀强度对比

4种方法不同土地利用类型(旱地、有林地、灌木林地和草地)在不同的侵蚀强度所占面积比例如图 3所示,结果表明:4种方法中,均以旱地所占水蚀比例最大,旱地水蚀面积占调查单元总侵蚀面积的比例分别为39.77%,34.39%,30.55%和41.34%。差别在于全国模型法和岩溶区四因子法水蚀面积中,林草地水蚀比例相对较低,且以轻度和中度为主;全国三因子法和岩溶区模型法水蚀面积中,林草地水蚀比例相对较高,且中度及中度以上水蚀比例占比较高,不太合理。全国模型法所用侵蚀量标准较高,导致水蚀面积较其余3种方法偏低,同时以轻度侵蚀为主,且林草地侵蚀比例较低;岩溶区四因子法由于考虑了基岩裸露率的影响,导致林草地侵蚀比例下降,侵蚀强度减轻。

图 3 不同土地利用下的侵蚀强度占调查单元面积比例分布图 Figure 3 Graphs of the area proportion of different soil erosion intensity in different land use
4 结论与讨论

基于岩溶区44个野外调查单元土壤侵蚀影响因子的相关信息,分析模型法和因子法在土壤侵蚀分类分级标准——SL190—2007和SL461—2009标准下的差异,得出的结论有:1)4种方法得到的水蚀比例均值,全国模型法较低(38.98%),全国三因子法(72.4%)、岩溶区模型法(70.11%)和岩溶区四因子法(69.31%)的水蚀比例均值相差不大。2)轻度及以上级别侵蚀强度对比得出,全国模型法和岩溶区四因子法均以轻度侵蚀为主,然后依次为中度,强烈,极强烈和剧烈侵蚀;全国三因子法以中度侵蚀为主,岩溶区模型法中轻度和中度侵蚀比例相差不大。3)4种方法均以旱地所占水蚀比例最大,差别在于全国模型法和岩溶区四因子法中林草地水蚀比例相对较低,且以轻度和中度为主。全国三因子法和岩溶区模型法中林草地水蚀比例相对较高,且中度及中度以上水蚀比例相对较高。

由上述结论,提出以下几点思考:首先,岩溶区由于石漠化问题的存在,导致岩溶区容许土壤侵蚀模数偏低,在岩溶区使用岩溶区标准是有必要的。其次,对于模型法和因子法,由于模型法考虑了影响土壤侵蚀的7个自然和人为影响因素,而因子法只考虑了3个或4个自然因素(土地利用、植被覆盖度、坡度、基岩裸露率)的影响,必然导致2种方法评价结果的差异,且用模型法可以得到定量的土壤侵蚀模数,所以模型法比因子法更客观、合理,是区域土壤侵蚀评价发展的方向。最后,岩溶区石漠化问题严重,基岩裸露是1个典型现象,在土壤侵蚀评价中,加入基岩裸露率因子,能改善模型评价的能力,四因子法和三因子法的对比结果有力证明了这一点。但目前的模型法对基岩裸露率反映不够,导致有林地、灌木林地和草地的水蚀比例偏高,未来进一步的研究应该在模型中加入基岩裸露率的影响,提高模型对岩溶区林草地土壤侵蚀的模拟能力。同时如何量化基岩裸露率本身也是1个值得研究的问题。本研究中采用了简单的植被盖度互补的方法确定基岩裸露率,建议未来在野外调查中加入对基岩裸露率的调查,提高基岩裸露率信息的精度。

参考文献
[1]
潘红丽, 张利, 文智猷, 等. 石漠化治理研究进展[J]. 四川林业科技, 2012, 33(3): 44.
PAN Hongli, ZHANG Li, WEN Zhiyou, et al. Advances in researches on control of stony desertification[J]. Journal of Sichuan Sciences and Technology, 2012, 33(3): 44.
[2]
蓝安军. 喀斯特石漠化过程、演化特征与人地矛盾分析[J]. 贵州师范大学学报(自然科学版), 2002, 20(1): 40.
LAN Anjun. The process of karst rock-desertification, the feature of evolvement and its analysis of human-land conflict[J]. Journal of Guizhou Normal University (Natural Sciences), 2002, 20(1): 40.
[3]
邵莹莹, 陈起伟, 杨丹, 等. 贵州省石漠化与水土流失的相关性研究:以安顺市为例[J]. 贵州师范学院学报, 2014, 30(9): 80.
SHAO Yingying, CHEN Qiwei, YANG Dan, et al. Research on the correlation between desertification and erosion in Guizhou province:A case study of Anshun city[J]. Journal of Guizhou Normal College, 2014, 30(9): 80.
[4]
李瑞玲, 王世杰, 周德全, 等. 贵州岩溶地区岩性与土地石漠化的相关分析[J]. 地理学报, 2003, 58(2): 314.
LI Ruiling, WANG Shijie, ZHOU Dequan, et al. The correlation between rock desertification and lithology in Karst area of Guizhou[J]. Acta Geographica Sinica, 2003, 58(2): 314. DOI: 10.11821/xb200302019.
[5]
吕明辉, 王红亚, 蔡云龙. 西南喀斯特地区土壤侵蚀研究综述[J]. 地理科学进展, 2007, 26(2): 87.
LV Minghui, WANG Hongya, CAI Yunlong. General review of soil erosion in the Karst area of Southwest China[J]. Progress in Geography, 2007, 26(2): 87. DOI: 10.11820/dlkxjz.2007.02.010.
[6]
曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003, 18(1): 37.
CAO Jianhua, YUAN Daoxian, PAN Genxing. Some soil features in Karst ecosystem[J]. Advance inEarth Sciences, 2003, 18(1): 37.
[7]
曹建华, 蒋忠诚, 杨德生, 等. 贵州省岩溶区水土流失、石漠化受岩溶环境制约[J]. 中国水土保持, 2009, 1: 20.
CAO Jianhua, JIANG Zhongcheng, YANG Desheng, et al. Soil and water loss and rock desertification of Karst area are restricted by Karst environment in Guizhou province[J]. Soil and Water Conservation in China, 2009, 1: 20.
[8]
曹建华, 蒋忠诚, 杨德生, 等. 我国西南岩溶区土壤侵蚀强度分级标准研究[J]. 中国水土保持科学, 2008, 6(6): 2.
CAO Jianhua, JIANG Zhongcheng, YANG Desheng, et al. Grading of soil erosion intensity in Southwest karst area of China[J]. Science of Soil and Water Conservation, 2008, 6(6): 2.
[9]
中国水土流失防治与生态安全. 西南岩溶区卷[M]. 北京: 科学出版社, 2010: 10.
Prevention and control of soil erosion and ecological security in China. Southwest Karst area volume[M]. Beijing: Science Press, 2010: 10.
[10]
国务院第一次全国水利普查领导小组办公室. 第一次全国水利普查培训教材之六:水土保持情况普查[M]. 北京: 中国水利水电出版社, 2010: 10.
The First National Water Resources Census Leading Group Office of the State Council. Six of the first national water census training materials:First census of soil and water conservation[M]. Beijing: China Water and Power Press, 2010: 10.
[11]
XIE Yun, YIN Shuiqing, LIU Baoyuan, et al. Models for estimating daily rainfall erosivity in China[J]. Journal of Hydrology, 2016: 547.
[12]
章文波, 谢云, 刘宝元. 降雨侵蚀力研究进展[J]. 水土保持学报, 2002, 16(5): 45.
ZHANG Wenbo, XIE Yun, LIU Baoyuan. Research evolution of rainfall erosivity[J]. Journal of Soil andWater Conservation, 2002, 16(5): 45.
[13]
刘宝元, 张科利, 焦菊英. 土壤可蚀性及其在侵蚀预报中的应用[J]. 自然资源学报, 1999, 14(4): 1.
LIU Baoyuan, ZHANG Keli, JIAO Juying. Soil erodibility and its use in soil erosion prediction model[J]. Journal of Natural Resources, 1999, 14(4): 1.
[14]
刘宝元, 郭索彦, 李智广, 等. 中国水利侵蚀抽样调查[J]. 中国水土保持, 2013(10): 26.
LIU Baoyuan, GUO Suoyan, LI Zhiguang, et al. Sampling program of water erosion inventory in the first national water resource survey[J]. Soil and Water Conservation in China, 2013(10): 26. DOI: 10.3969/j.issn.1000-0941.2013.10.010.
[15]
土壤侵蚀分类分级标准: SL190-2007[S]. 2008: 10.
Classification and gradation standards of soil erosion: SL190-2007[S]. 2008: 10.
[16]
岩溶地区水土流失总和治理技术标准: SL461-2009[S]. 2009: 10.
Techniques standard for comprehensive control of soil erosion and water loss in karst region: SL461-2009[S]. 2009: 10.
[17]
LIU Baoyuan, ZHANG Keli, XIE Yun. An empirical soil loss equation[M]. Beijing: Tsinghua University Press, 2002: 22.