﻿ 双层预制破片爆轰驱动早期行为研究
 火炸药学报    2018, Vol. 41 Issue (3): 308-313   DOI: 10.14077/j.issn.1007-7812.2018.03.017 0

引用本文

SONG Yu-jiang, ZHOU Tao, SHEN Fei, WANG Hui. Research on the Behavior of Initial Stage about Explosively-driven Double-layered Premade Fragments[J]. Chinese Journal of Explosives & Propellants, 2018, 41(3): 308-313. DOI: 10.14077/j.issn.1007-7812.2018.03.017

文章历史

1 双层破片爆轰驱动分析模型 1.1 双层破片典型排布模式

 图 1 双层破片典型排布方式 Figure 1 The typical arrangement of double-layered fragments
1.2 双层破片初速计算模型

 图 2 圆筒试验中圆筒壁膨胀速度—时间历程曲线 Figure 2 The expansion velocity—time history curves of cylinder wall in cylinder wall test

 图 3 气体产物驱动破片示意图 Figure 3 Schematic diagrams of the fragments driven by gas product

 $\bar u = \sqrt {2{E_{\rm{g}}}} \cdot\sqrt {\frac{{2\eta }}{{\eta + 2}}} \cdot\beta$ (1)

 $\begin{array}{*{20}{c}} {\left( {{N_1} + {N_2}} \right)\bar u{^2} = {N_1}u_1^2 + {N_2}u_2^2 = {N_1}{{({u_{{\rm{s1}}}} + {u_{\rm{g}}})}^2} + }\\ {{N_2}{{({u_{{\rm{s2}}}} + {u_{\rm{g}}})}^2}} \end{array}$ (2)

 图 4 装药横截面破片的排布示意图 Figure 4 Permutation layout of the fragments in cross section of charge

 $\left\{ \begin{array}{l} {N_1} = 2{\rm{ \mathsf{ π} }}\left( {R + \delta /2} \right)/a\\ {N_2} = 2{\rm{ \mathsf{ π} }}\left( {R + 3\delta /2} \right)/a \end{array} \right.$ (3)

 $\left\{ \begin{array}{l} {N_1} = {\rm{ \mathsf{ π} }}\left( {R + r} \right)/r\\ {N_2} = {\rm{ \mathsf{ π} }}\left[ {R + \left( {1 + \sqrt 3 } \right)r} \right]/r \end{array} \right.$ (4)

 $\eta = \frac{{{\rm{ \mathsf{ π} }}{R^2}{\rho _{{\rm{HE}}}}a}}{{\left( {{N_1} + {N_2}} \right)m}}{\rm{ }}$ (5)

 $\eta = \frac{{{\rm{ \mathsf{ π} }}{R^2}{\rho _{{\rm{HE}}}} \cdot 2r}}{{\left( {{N_1} + {N_2}} \right)m}}{\rm{ }}$ (6)
1.3 爆轰试验模型

 图 5 爆轰驱动破片示意图 Figure 5 The sketch map of detonation driving fragments

 图 6 破片飞散轨迹示意图 Figure 6 Schematic diagram of the flying trajectory of fragments

 ${v_i} = {\rm{ }}\frac{{\zeta \left( {{S_i} - {S_{i - 1}}} \right)}}{{\zeta \cdot L/D}} = \frac{{{S_i} - {S_{i - 1}}}}{{L/D}}$ (7)

 $v = \frac{{\sum\limits_{i = 2}^n {({S_i} - {S_{i - 1}})} }}{{\left( {n - 1} \right)\cdot L/D}} = D\cdot{\rm{ }}\frac{{{S_n} - {S_1}}}{{\left( {n - 1} \right)\cdot L}} = D\cdot k$ (8)

2 典型材料双层破片初速梯度分析 2.1 试验样品

2.2 试验结果及分析

 图 7 试验所获底片 Figure 7 Experimental films of the test

 图 8 底片判读结果 Figure 8 The results from experimental film

3 结论

(1) 基于方/球形双层预制破片在典型排布方式下的受力状态及炸药爆轰驱动能量的释放规律，建立了双层破片初速分析模型，能够较为准确地获得各层破片的初速。

(2) 对于钢、钨两种材料的方形和球形破片，外层破片速度均大于内层破片，且外内层钢破片之间的速度比值明显大于钨破片。

(3) 对于同种材料的破片，外内层球形破片的速度比值小于方形破片，但球形破片的完整性较好，而外层方形破片发生了层裂或破碎，在战斗部设计过程中需要考虑其缓冲设计，以提升其完整性。

 [1] Charron Y J. Estimation of velocity distribution of fragmenting warheads using a modified gurney method[D]. Canadian: Air Force Institute of Technology, 1979. https://www.researchgate.net/publication/277842508_Estimation_of_Velocity_Distribution_of_Fragmenting_Warheads_Using_a_Modified_Gurney_Method [2] Hutchinson M D. With-fracture Gurney model to estimate both fragment and blast Impulses[J]. Central European Journal of Energetic Materials, 2010, 7(2): 175–186. [3] 印立魁, 蒋建伟, 门建兵, 等. 立方体预制破片战斗部破片初速计算模型[J]. 兵工学报, 2014, 35(12): 1967–1971. YIN Li-kui, JIANG Jian-wei, MEN Jian-bin, et al. An initial velocity model of explosively-driven cubical fragments[J]. Acta Armamentarii, 2014, 35(12): 1967–1971. DOI:10.3969/j.issn.1000-1093.2014.12.005 [4] 印立魁, 蒋建伟. 多层球形预制破片战斗部破片初速场的计算模型[J]. 含能材料, 2014, 22(3): 300–305. YIN Li-kui, JIANG Jian-wei. Calculation model of initial velocity field on multilayered spherical fragments warhead[J]. Chinese Journal of Energetic Materials, 2014, 22(3): 300–305. [5] 魏继锋, 焦清介, 吴成. 预制破片战斗部试验与数值模拟研究[J]. 弹箭与制导学报, 2004, 24(3): 39–41. WEI Ji-feng, JIAO Qing-jie, WU Cheng. Experiment and simulation on premade fragment warhead[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(3): 39–41. [6] Porter W R. Radially expanding fragmentation warhead study, AD0348620[R]. Florida: Directorate of Armament Development, 1963. [7] 张立建, 沈飞. 爆轰加载下双层预制破片初速梯度研究[J]. 科学技术与工程, 2015, 15(25): 135–138. ZHANG Li-jian, SHEN Fei. Research on the initial velocity gradient of explosively driving double-layered fragments[J]. Science Technology and Engineering, 2015, 15(25): 135–138. DOI:10.3969/j.issn.1671-1815.2015.25.025 [8] 沈飞, 王辉, 袁建飞, 等. 铝含量对RDX基含铝炸药驱动能力的影响[J]. 火炸药学报, 2013, 36(3): 50–53. SHEN Fei, WANG Hui, YUAN Jian-fei, et al. Influence of Al content on the driving ability of RDX-based aluminized explosives[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2013, 36(3): 50–53. [9] 黄正祥, 祖旭东. 终点效应[M]. 北京: 科学出版社, 2014.
Research on the Behavior of Initial Stage about Explosively-driven Double-layered Premade Fragments
SONG Yu-jiang, ZHOU Tao, SHEN Fei, WANG Hui
Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
Abstract: By analyzing the stress state of double-layered cubical/spherical prefabricated fragments under the typical arrangement and combining the release law of detonation driving energy, the acceleration process of double-layered fragments was divided into two stages, namely, shock acceleration stage and expansion acceleration stage of gas product. The acceleration process of fragment in the shock acceleration stage was measured by flash X-ray photography, the acceleration effect of gas product expansion was calculated by classical Gurney formula. The experimental and theoretical analysis of the double-layered cubical/spherical fragments of typical tungsten and steel materials were carried out. The results show that the initial velocity of the outer layer fragments is higher than that of the inner layer fragments, wherein, the ratio of the initial velocity of the inner and outer layered cubical steel fragments is the largest, which is about 1.48, and the outer layered cubical steel fragments is obviously damaged due to the strong tensile wave action. The ratio of the initial velocity of the inner and outer layered spherical tungsten fragments is the smallest, which is only 1.08. Moreover, the spherical fragments are mainly subjected to the symmetrical force from the inclined sides, so that it is difficult to form a stronger and more concentrated tensile wave, resulting in better integrity of the outer fragments.
Key words: explosion mechanics     blast-fragmentation warhead     double-layered fragments     explosively drive     flash X-ray photography method