火炸药学报    2017, Vol. 40 Issue (6): 7-16   DOI: 10.14077/j.issn.1007-7812.2017.06.002
0

引用本文  

陈京, 王晗, 刘萌, 吴雄岗, 樊学忠. 复合改性双基推进剂降感技术及感度机理研究进展[J]. 火炸药学报, 2017, 40(6): 7-16. DOI: 10.14077/j.issn.1007-7812.2017.06.002
CHEN Jing, WANG Han, LIU Meng, WU Xiong-gang, FAN Xue-zhong. Progress of Study on Desensitization Techniques and Sensitivity Mechanisms of Composite Modified Double-base Propellants[J]. Chinese Journal of Explosives & Propellants, 2017, 40(6): 7-16. DOI: 10.14077/j.issn.1007-7812.2017.06.002

基金项目

国家安全重大基础研究项目

作者简介

陈京(1988-), 男, 博士, 助理研究员, 从事固体推进剂研究。E-mail:chenjing_mcri@163.com

通信作者

樊学忠(1962-), 男, 研究员, 博士生导师, 从事固体推进剂配方及工艺技术研究。E-mail:xuezhongfan@126.com

文章历史

收稿日期:2017-09-03
修回日期:2017-10-29
复合改性双基推进剂降感技术及感度机理研究进展
陈京1, 王晗1, 刘萌1, 吴雄岗1, 樊学忠1,2     
1. 西安近代化学研究所, 陕西 西安 710065;
2. 西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西 西安 710065
摘要: 从高价值武器平台战术导弹面临的安全性问题出发,综述了复合改性双基(CMDB)推进剂含能组分降感技术及感度机理的研究进展。从含能填料改性降感及取代降感技术、含能增塑剂降感技术及综合降感技术等方面,总结了CMDB推进剂能量与感度的匹配技术途径。介绍了近年来含能组分与多组分感度机理研究工作,概述了CMDB推进剂感度机理及预测方法。研究趋势表明,新型钝感材料和新降感技术有待进一步应用于CMDB推进剂,应结合理论计算研究形成感度预测方法,以提高CMDB推进剂的研制效率及综合性能。附参考文献101篇。
关键词: 改性双基推进剂     CMDB推进剂     钝感高能填料     钝感增塑剂     感度机理     感度预测    
引言

改性双基推进剂(CMDB推进剂)具有能量高、特征信号低、制造工艺成熟等特点,是应用于战术导弹的重要固体推进剂[1]。近年来,随着我国武装直升机、武装舰艇等高价值武器平台的飞速发展,大量应用CMDB推进剂的战术导弹被装备于高价值武器平台。CMDB推进剂配方中含有大量高敏感的硝胺炸药、硝化棉(NC)、硝化甘油(NG)等含能材料,导致其感度较高[2]。据统计[3],装备CMDB推进剂的战术导弹在勤务、贮存及使用过程中发生意外燃爆,已成为导致高制造成本武器平台巨大损失的主要原因之一。战术导弹用高能固体推进剂装药钝感化,已成为当下提升高价值武器平台生存能力的关键技术途径之一[4]

近年来,国内外利用新型钝感材料及降感技术对高能CMDB推进剂进行了大量研究,并针对CMDB推进剂降感机理进行了理论探索。本文对CMDB推进剂感度与能量特性的匹配技术、含能组分感度机理及预测等方面的研究成果进行综述。

1 CMDB推进剂感度与能量特性的匹配

能量性能优化一直是CMDB推进剂研究的主要方向。目前已应用的CMDB推进剂的比冲可达2 160 N·s·kg-1以上[5-6],而含铝粉及CL-20的新型高能CMDB推进剂能量已达到2 641.3 N·s·kg-1[7]。固体推进剂能量的释放来自其含能组分的分解,而固体推进剂的燃爆引发同样来自外界刺激下的组分分解[8-9],因此具有更高能量的CMDB推进剂往往也具有更高的感度。如螺压硝胺CMDB推进剂的摩擦感度高达50%,特性落高仅为24.1 cm[10];含CL-20的CMDB推进剂各配方的特性落高均小于20 cm,摩擦感度均大于30%[11]。为了开发同时具备高能量和低感度的CMDB推进剂,国内外均探索了CMDB推进剂中主要含能组分的感度特性。CMDB推进剂配方中含量最多、感度最高的硝胺炸药和硝酸酯增塑剂的降感技术得到了重点研究。

1.1 含能填料改性降感及取代降感技术研究

目前针对含能填料的降感研究,一方面围绕RDX/HMX的改性降感技术,包括晶体优化和包覆改性等方法,维持CMDB推进剂能量特性且降低其感度;另一方面围绕新型高能钝感填料的开发,用以替代RDX/HMX,进一步提高CMDB推进剂的能量及安全性。

1.1.1 RDX/HMX改性降感技术

RDX/HMX的感度特性主要归纳于炸药的热点起爆机理,该理论认为炸药不同的细观结构可结合外界刺激产生局部“热点”,引起气泡绝热压缩、材料快速形变、撞击面或颗粒间摩擦、破碎薄片绝热压缩等现象,产生热量导致炸药燃烧或爆炸[12]。基于热点理论,目前研究从两方面入手降低RDX/HMX的感度:一方面控制炸药晶体的粒度、球形度、表面光滑度和内部空隙率等形貌参数,减少局部热点的生成概率[13-14];另一方面采用不敏感包覆材料形成炸药颗粒的良好界面作用,吸收机械和热刺激来避免热点形成和传播。

(1) RDX/HMX晶体优化降感技术

通过球形化处理、结晶缺陷减少及粒度控制等技术对RDX/HMX的晶体进行形貌优化[15],可以改善硝胺炸药的安全性且不降低能量指标,使其适用于高能钝感CMDB推进剂体系。这些技术原理成熟、产能充足、成本可控,且不影响原料RDX/HMX的化学稳定性。

RDX/HMX的球形化处理可以优化晶体内部及表面结构,减少晶体内和晶体间产生热点的概率,有效降低RDX/HMX晶体的感度。采用的方法主要为重结晶[16-18]或喷雾干燥[19]等,技术手段较为成熟,目前已经开展工艺研究。同时,国内外研究者采用物理研磨[20]、气体反溶剂[21]、重结晶[22]、喷雾细化[23]等方法制备了超细化炸药,并研究了RDX/HMX晶体粒度和粒度分布情况[24-25]对其感度的影响。吕春玲等[26-27]对HMX晶体不同粒度与撞击感度的关系进行了研究,发现晶体内部的活性中心是炸药受撞击时的起爆点,而大晶粒炸药中更易形成优先点火的活性中心,因而撞击感度越大;当粒度在一定范围内减小时,炸药颗粒的堆积密度与比表面积提高,可接受能量变大,减少了热点生成的可能性[28]。随着纳米技术的发展,新型纳米级硝胺炸药得到了开发[29],国外Qiu等[30]研究发现纳米级RDX具有低于微米级产品的冲击波感度和机械感度。刘杰等[31-33]通过共沸分散体系或机械粉碎法实现了纳米RDX与纳米HMX的批量制备,具有良好应用前景。

(2) RDX/HMX包覆降感技术

研究显示,用钝感材料[34-36]对炸药晶体进行包覆,能够改善晶体界面的缺陷[37]并缓冲机械刺激,可有效降低炸药燃速和燃烧转爆轰过程(DDT)发展,是硝胺炸药颗粒的重要降感措施之一。然而钝感材料的使用会导致推进剂能量性能的损失,目前采用两种途径来减小这一影响:一是采用真空气相沉积和原子层沉积[38-39]等技术将包覆层厚度控制在纳米尺度,如李茂果等[40]通过真空气相沉积技术,在HMX炸药颗粒表面100%包覆了较薄的石蜡和paralene膜,发现经包覆的HMX机械感度下降;二是使用含能弹性体[41]和钝感炸药[42]等包覆材料,如高元元等[43]采用溶液重结晶法用较钝感的3-硝基-1, 2, 4-三唑-5-酮(NTO)包覆HMX,并测试了其机械感度,包覆HMX的H50值提高了14.8 cm,撞击感度降低了66%,且摩擦感度从100%降至50%。这两种方法均能在降低颗粒感度的同时,极大程度地减小能量损失。因此,未来研发的RDX/HMX包覆降感技术,采用的材料除了具备改善颗粒界面功能之外需含有较高能量,而采用的工艺应进一步降低包覆层厚度。

可以看出,目前RDX/HMX的改性降感技术研究思路丰富、手段较为成熟,其中部分方法工艺简单、降感效果显著,可大批量制备低感度硝胺炸药。RDX/HMX的改性降感技术对于低感度CMDB推进剂的研制具有重要意义,有必要进一步开展新工艺和现有工艺放大研究,拓展其应用范围。

1.1.2 新型高能钝感填料的应用

仅对RDX/HMX进行降感改性,无法有效提高CMDB推进剂的能量性能。因此研究人员设计研发出了能量密度更高且更加安全的高能钝感填料。使用这些新型填料取代RDX/HMX,以实现CMDB推进剂的高能钝感性能,具有巨大潜力。

1, 1-二氨基-2, 2-二硝基乙烯(FOX-7)是近几年研究较为活跃的一种高能钝感炸药[44-46],其耐热性好,能量密度与RDX相当,但感度接近TNT[47],与CMDB推进剂的主要组分均可以良好相容[48],是CMDB推进剂降感技术的主要备选含能填料之一。樊学忠等[49]研究表明,FOX-7不但可以明显降低CMDB推进剂的感度,大幅提高CMDB推进剂低压下的燃速,且保持了CMDB推进剂的高能量、低特征信号和较好的力学性能等优点。此外,N-脒基脲二硝酰胺盐(FOX-12)、2, 6-二氨基-3, 5-二硝基吡嗪-1-氧化物(LLM-105)等新型含能填料均在CMDB推进剂中得到了应用[50-52],然而这些推进剂能量性能均弱于RDX/HMX-CMDB推进剂。值得注意的是,3,4-二硝基呋咱基氧化呋咱(DNTF)、1, 3, 3-三硝基氮杂环丁烷(TNAZ)等新材料,能量性能和安全性能均优于RDX/HMX[53-56],有望作为新一代CMDB推进剂含能填料的备选材料。

1.2 含能增塑剂降感技术

增塑剂是CMDB推进剂的重要组分之一,目前CMDB推进剂广泛使用的增塑剂是NG。NG具有优秀的能量性能与塑化能力,然而其机械感度和热感度极高,因此替代降感研究得到了重点关注。目前采用新型低感度增塑剂,对NG进行全部或部分替代,是CMDB推进剂降感的重要途径。

三羟甲基乙烷三硝酸酯(TMETN)是一种具有代表性的低感度增塑剂,已经在20世纪90年代被成功用于替代双基推进剂配方中的NG[57]。此外1, 2, 4-丁三醇三硝酸酯(BTTN)[58]、丁基-硝氧乙基硝胺(Bu-NENA)[59-60]、3-硝基呋咱-4-甲醚(NFME)[61]等新型增塑剂,均在钝感配方体系中得到应用研究。然而,这些低感度增塑剂的使用带来了能量损失的问题。为了在CMDB推进剂感度性能与能量性能之间进行平衡,近年来研究者开始关注混合增塑剂对于推进剂感度的影响[62-63],如BDNPF/A[64-65]、NG/BTTN[66]、NG/DEGDN[67]等混合增塑剂,在CMDB推进剂中应用后,均表现出了优于单组分增塑剂的良好力学与安全性能[68]。伴随着新型含能增塑剂的开发与应用,混合增塑剂体系可依据应用需求进行组合设计,因此混合增塑技术在低感度CMDB推进剂领域具有较大应用前景。

1.3 CMDB推进剂综合降感技术

虽然含能填料与增塑剂在CMDB推进剂配方中所占质量分数可达60%以上,但是针对推进剂整体的降感技术不限于这两者的改性和取代。CMDB推进剂是具有多种组分的复合含能体系,各个组分之间的比例、相互作用等均会对推进剂整体感度特性产生影响[69]。此外针对不同组分,结合多种降感技术,可更加有效地降低CMDB推进剂的感度。例如滕学峰等[70]采用某低感增塑剂部分代替NG,结合某高导热碳基材料进行协同降感,明显降低了AP/CMDB推进剂的摩擦感度和撞击感度。因此,在掌握CMDB推进剂含能填料与增塑剂的降感技术之外,探索其他组分的物理或化学降感手段,并将这些技术进行匹配结合,可实现对CMDB推进剂安全性能的良好控制。

2 CMDB推进剂感度机理及感度预测进展

上述采用的CMDB推进剂降感技术,其本质以试验验证为主,存在较大的盲目性[71],缺少理论指导。要研究含能材料的感度机理,除热点起爆机理等宏观水平解释外[72-73],还需要结构化学和反应动力学的理论支撑。为了更好地解释感度现象,指导高能钝感CMDB推进剂的设计,近年来国内外均开展了含能材料感度机理研究,目前已经在材料感度和结构参数之间建立了关系,形成了相应的感度判据[8, 74]。将理论判据与经验数据相结合,可用于单组分及多组分含能体系感度特性的解释及预测。

2.1 含能组分感度机理及预测

燃爆引发现象的产生与含能材料的化学结构密切相关,因此研究CMDB推进剂中含能填料及增塑剂感度机理,需要深入其分子内部,研究结构特征与热力学数据的变化规律[75-76],并用实验数据进行验证。目前CMDB推进剂含能组分感度机理的研究方法,主要有量子化学(QC)[77-78]、定量结构-性质相关性(QSPR)法[79-80]及分子动力学(MD)方法[81-84]等。

QC方法中用于感度机理分析的主要参数有含能组分的硝基电荷[85]、前沿轨道能级差[86]、静电势[87]等。肖鹤鸣课题组[88-90]对CaHbNcOd炸药的撞击感度机理提出了“最小键级”、“最易跃迁原理”等热力学判据和“热解引发反应活化能”的动力学判据。目前QC方法给出的机理解释涉及分子结构的多种参数,但适用的前提不尽相同,往往仅在同系材料中存在规律,因此难以用于解释庞大含能材料家族的感度机理[8]

QSPR方法使用遗传算法和神经网络方法,在反映出含能材料拓扑结构及电子状态的基础上,通过构建模型来预测含能材料的撞击感度[91]。钱博文等[92]采用基于遗传算法的人工神经网络,在较大的样本集中筛选相关的分子结构参数,结合实验数据建立构效关系,提供了精度较高、适用范围较大的模型。QSPR方法需要基于经验数据,然而目前感度试验缺乏统一的试验标准,测试数据存在较大的偏差,因此该方法需要进一步解决精度问题。

MD方法通过计算硝胺炸药和硝酸酯增塑剂的引发键最大键长(Lmax)、引发键连双原子作用能和内聚能密度(CED)等,可在不同的环境条件下进行材料感度的预测[93]。此外,使用MD方法还可以模拟RDX等含能组分分解过程,利用反应动力学数据解释材料感度特性[94]。MD方法优点在于能为研究对象提供不同的环境条件,然而目前动力学数据与材料感度之间还无法建立量化的规律性关系。

2.2 多组分的感度机理及预测

CMDB推进剂各组分间在各层面的相互作用也会对体系性能产生影响,因此仅研究其含能组分自身的感度特性,无法全面地预测配方的感度特性[74]。然而CMDB推进剂组分复杂,研究其感度机理需要进行大量试验,且难以保证数据重复性和操作安全性[95-96],因此有必要结合理论计算的方法进行模拟分析。目前CMDB推进剂等复合含能体系感度机理研究,主要包括宏观的有限元分析及微观的MD模拟。

有限元方法可以分析推进剂各组分界面接受到的外界机械刺激作用,模拟感度测试过程应力传递情况,寻找燃爆的起点,从而揭示材料感度机理[97]。将有限元方法应用于CMDB推进剂的感度机理分析时,需结合不同配方的组分与界面差异,针对性地进行研究。

MD方法可以构建多种组分的共混模型,并对模型中的分子原子状态进行统计分析。研究人员重点关注混合体系中的易爆燃组分,同时考察其他组分与易爆燃组分之间相互作用引起的结构、性质变化,从而预测体系感度的变化规律[74]。齐晓飞等[98-99]利用MD方法对CMDB推进剂的组分相互作用进行了模拟和分析,验证了增塑剂-黏合剂模型的可靠性,为CMDB推进剂的感度机理模拟奠定了基础。在此基础上,使用MD方法研究不同配比复合含能体系的感度判据,如引发键最大键长[100]、体系结合能[101]等参数,可以比较不同配比CMDB推进剂的安全性。

结合模拟计算的方法,探索复合含能体系的感度机理,并将其用于指导CMDB推进剂配方设计,可以极大地减少配方试验量,提高研制效率,增加试制安全性,对于推进剂领域具有深远意义。

3 结论及展望

综上,目前CMDB推进剂降感技术及感度机理的研究现状及发展趋势如下:

(1) RDX/HMX改性降感技术发展较为成熟,降感效果显著,已在CMDB推进剂中得到了应用。同时,新型高能钝感填料及增塑剂已经开始取代RDX/HMX和NG,初步应用于CMDB推进剂配方中,显示出了良好的综合性能。

(2) 固体推进剂含能组分的感度机理研究主要采用模拟计算的方法,目前已形成多个层面的机理解释。对于CMDB推进剂等复合含能体系的感度机理研究起步较晚,目前只提出了初步机理与判据。

(3) 未来军事需求进一步提升,CMDB推进剂需要结合新型高能钝感材料,进一步探索配方能量与安全特性的平衡点,扩大其应用范围。因此开发新型高能钝感材料的同时,将其应用于CMDB推进剂,是本领域内重要研究方向之一。

(4) 未来感度机理需进一步形成系统化理论,以实现新型含能材料感度的可靠预测。此外囿于复合含能体系的复杂性和有限的模拟计算手段,仍无法对其进行量化的感度预测。因此,针对复合含能体系开发新的理论模型并将其应用于感度预测,是重要的研究趋势之一。


参考文献
[1]
刘所恩, 陈锦芳, 潘葆, 等. 新型螺压高能改性双基推进剂研究[J]. 兵工学报, 2015, 36(6): 1123–1127.
LIU Suo-en, CHEN Jin-fang, PAN Bao, et al. Study of novel screw extruded high energy composite double-base propellant[J]. Acta Armamentarii, 2015, 36(6): 1123–1127.
[2]
Asthana N, Athawale B K, Singh H. Impact, friction, shock sensitivities and ddt behaviour of advanced cmdb propellants[J]. Defence Science Journal, 2013, 39(1).
[3]
刘所恩, 周伟良, 赵效民, 等. 螺压硝胺改性双基推进剂对冲击波激励的安全性评价[J]. 含能材料, 2015, 23(7): 644–647.
LIU Suo-en, ZHOU Wei-liang, ZHAO Xiao-min, et al. Safety analysis of screw extrusion nitramine modified double base propellant on shock wave[J]. Chinese Journal of Energetic Materials, 2015, 23(7): 644–647. DOI:10.11943/j.issn.1006-9941.2015.07.007
[4]
Jaiprakashagrawal, 阿格拉沃尔, 欧 育湘. 高能材料:火药、炸药和烟火药[M]. 北京: 国防工业出版社, 2013.
[5]
付小龙, 樊学忠, 毕福强, 等. 硝基呋咱/CMDB推进剂能量特性[J]. 含能材料, 2014, 22(6): 852–856.
FU Xiao-long, FAN Xue-zhong, BI Fu-qiang, et al. Energy characteristics of CMDB propellants with nitrofurazan compounds[J]. Chinese Journal of Energetic Materials, 2014, 22(6): 852–856. DOI:10.11943/j.issn.1006-9941.2014.06.027
[6]
田军, 王宝成, 桑军锋, 等. DNTF-CMDB推进剂性能的实验研究[J]. 火炸药学报, 2015, 38(4): 76–79.
TIAN Jun, WANG Bao-cheng, SANG Jun-feng, et al. Experimental research on the properties of CMDB propellant containing DNTF[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(4): 76–79.
[7]
金溪, 王江宁, 宋秀铎, 等. 含CL-20改性双基推进剂的能量计算与分析[J]. 含能材料, 2012, 20(1): 67–70.
JIN Xi, WANG Jiang-ning, SONG Xiu-duo, et al. Calculation and analysis on energy characteristics of composite modified double-based propellant containing CL-20[J]. Chinese Journal of Energetic Materials, 2012, 20(1): 67–70.
[8]
Zeman, Jungová M. Sensitivity and performance of energetic materials[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 426–451. DOI:10.1002/prep.201500351
[9]
Charlery R, Renouf M, Saulot A, et al. Experimental and numerical modelling of the ignition of solid propellant[J]. Tribology International, 2015, 82: 330–342. DOI:10.1016/j.triboint.2014.07.012
[10]
刘所恩, 赵效民, 赵美玲, 等. 螺压硝胺改性双基推进剂对机械刺激的安全性分析[J]. 含能材料, 2013, 21(6): 818–820.
LIU Suo-en, ZHAO Xiao-min, ZHAO Mei-ling, et al. Safety performance of modified nitramine double base propellant by screw extrusion subject to mechanical stimulus[J]. Chinese Journal of Energetic Materials, 2013, 21(6): 818–820.
[11]
徐司雨, 赵凤起, 李上文, 等. 含CL-20的改性双基推进剂的机械感度[J]. 推进技术, 2006, 27(2): 182–186.
XU Si-yu, ZHAO Feng-qi, LI Shang-wen, et al. Impact and friction sensitivity of composite modified double base propellant containing hexanitrohexaazaisowurtzitane (CL-20)[J]. Journal of Propulsion Technology, 2006, 27(2): 182–186.
[12]
Bernecker R. The deflagration-to-detonation transition process for high-energy propellants——a review[J]. Aiaa Journal, 2015, 24(1): 82–91.
[13]
李洪珍, 康彬, 李金山, 等. RDX晶体特性对冲击感度的影响规律[J]. 含能材料, 2010, 18(5): 487–491.
LI Hong-zhen, KANG Bin, LI Jin-shan, et al. Effects of RDX crystal characteristics on shock sensitivities[J]. Chinese Journal of Energetic Materials, 2010, 18(5): 487–491.
[14]
徐容, 李洪珍, 康彬, 等. HMX晶体内部孔隙率、缺陷类型及颗粒度对冲击波感度的影响[J]. 含能材料, 2011, 19(6): 632–636.
XU Rong, LI Hong-zhen, KANG Bin, et al. Effects of HMX crystal characteristics on shock sensitivities:crystalline inter voids, particle size, morphology[J]. Chinese Journal of Energetic Materials, 2011, 19(6): 632–636.
[15]
杨志剑, 曾贵玉, 李金山, 等. 敏感炸药的高效降感技术研究进展[C]//全国危险物质与安全应急技术研讨会论文集(上). 重庆: 中国工程物理研究院, 2011.
YANG Zhi-jian, ZENG Gui-yu, LI Jin-shan, et al. Research progress of highly sensitive drop technology for sensitive explosives[C]//Proceedings of National Symposium on Emergency Technology for Hazardous Materials and Safety. Chongqing:China Academy of Engineering Physics, 2011.
[16]
赵雪, 芮久后, 冯顺山. 重结晶法制备球形化RDX[J]. 北京理工大学学报, 2011, 31(1): 5–7.
ZHAO Xue, RUI Jiu-hou, FENG Shun-shan. Recrystallization method for preparation of spherical RDX[J]. Transactions of Beijing Institute of Technology, 2011, 31(1): 5–7.
[17]
荆肖凡, 徐文峥, 王晶禹. 超声和喷雾辅助制备微米球形化RDX[J]. 火工品, 2013(4): 46–48.
JING Xiao-fan, XU Wen-zheng, WANG Jing-yu. Study on ultrasound-and spray-assisted precipitation of micrometer and spherical RDX[J]. Initiators & Pyrotechnics, 2013(4): 46–48.
[18]
Song X, Wang Y, An C, et al. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine[J]. Journal of Hazardous Materials, 2008, 159(2-3): 222–229. DOI:10.1016/j.jhazmat.2008.02.009
[19]
王江, 刘英, 李小东, 等. 喷雾干燥法制备球形RDX的工艺优化[J]. 火炸药学报, 2015, 38(1): 16–21.
WANG Jiang, LIU Ying, LI Xiao-dong, et al. Optimization of process for preparing spherical RDX by the spray drying method[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(1): 16–21.
[20]
付廷明, 杨毅, 李凤生. 球形超细HMX的制备[J]. 火炸药学报, 2002, 25(2): 12–13.
FU Ting-ming, YANG Yi, LI Feng-sheng. Preparation of HMX microsphere[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2002, 25(2): 12–13.
[21]
王保民, 张景林. 气体反溶剂(GAS)过程细化技术及对炸药安全性能的影响研究[J]. 中国安全科学学报, 2001, 11(4): 32–34.
WANG Bao-min, ZHANG Jing-lin. Study on fining technology of gas anti-solvent (GAS) process and its effect on safety of the explosive[J]. China Safety Science Journal, 2001, 11(4): 32–34.
[22]
耿孝恒, 王晶禹, 张景林. 不同粒度RDX的重结晶制备和机械感度研究[J]. 工业安全与环保, 2009, 35(7): 29–30.
GENG Xiao-heng, WANG Jing-yu, ZHANG Jing-lin. Recrystallization preparation of different particle RDX and study on the mechanical sensitivity[J]. Industrial Safety & Environmental Protection, 2009, 35(7): 29–30.
[23]
韵胜, 刘玉存, 于雁武, 等. 超细微球形低感度HMX的制备[J]. 含能材料, 2011, 19(3): 305–309.
YUN Sheng, LIU Yu-cun, YU Yan-wu, et al. Preparation of microspherical and desensitized HMX[J]. Chinese Journal of Energetic Materials, 2011, 19(3): 305–309.
[24]
宋小兰, 李凤生, 张景林, 等. 粒度和形貌及粒度分布对RDX安全和热分解性能的影响[J]. 固体火箭技术, 2008, 31(2): 168–172.
SONG Xiao-lan, LI Feng-sheng, ZHANG Jing-lin, et al. Influence of particle size, morphology and size distribution on the safety and thermal decomposition properties of RDX[J]. Journal of Solid Rocket Technology, 2008, 31(2): 168–172.
[25]
汪波, 刘玉存, 李敏. HMX粒度对其撞击感度的影响研究[J]. 中北大学学报自然科学版, 2005, 26(1): 35–37.
WANG Bo, LIU Yu-cun, LI Min. Study on the influence of particle size on the impact sensitivity of HMX[J]. Journal of North China Institute of Technology, 2005, 26(1): 35–37.
[26]
吕春玲, 张景林. 粒度对HMX撞击感度的影响[J]. 爆炸与冲击, 2003, 23(5): 472–474.
Lü Chun-ling, ZHANG Jing-lin. Influence of particle size on the impact sensitivity of HMX[J]. Explosion & Shock Waves, 2003, 23(5): 472–474.
[27]
田龙, 吴晓青, 郑主宜, 等. 粒度对炸药感度影响的研究进展[J]. 四川化工, 2013, 16(1): 28–30.
TIAN Long, WU Xiao-qing, ZHENG Zhu-yi, et al. Progress of grain size of explosives sensitivity[J]. Sichuan Chemical Industry, 2013, 16(1): 28–30.
[28]
陈天石, 张玉若, 张英浩. HMX粒度对其机械感度的影响研究[J]. 四川兵工学报, 2006, 27(5): 27–28.
CHEN Tian-shi, ZHANG Yu-ruo, ZHANG Ying-hao. Study on the influence of particle size on the impact sensitivity of HMX[J]. Journal of North China Institute of Technology, 2006, 27(5): 27–28.
[29]
Gao H, Hou X, Ke X, et al. Effects of nano-HMX on the properties of RDX-CMDB propellant:higher energy and lower sensitivity[J]. Defence Technology, 2017, 13(5): 323–326. DOI:10.1016/j.dt.2017.03.006
[30]
Qiu H, Stepanov V, Stasio A R D, et al. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity[J]. Journal of Hazardous Materials, 2011, 185(1): 489–93. DOI:10.1016/j.jhazmat.2010.09.058
[31]
刘杰, 王龙祥, 李青, 等. 钝感纳米RDX的制备与表征[J]. 火炸药学报, 2012, 35(6): 46–50.
LIU Jie, WANG Long-xiang, LI Qing, et al. Preparation and characterization of insensitive nano RDX[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2012, 35(6): 46–50.
[32]
刘杰, 李青, 曾江保, 等. 机械粉碎法制备不敏感纳米RDX[J]. 爆破器材, 2013(4): 1–5.
LIU Jie, LI Qing, ZENG Jiang-bao, et al. Mechanical pulverization for the production of sensitivity reduced nano-RDX[J]. Explosive Materials, 2013(4): 1–5.
[33]
曾江保, 刘杰, 王龙祥, 等. 纳米HMX的制备及热性能分析和感度研究[J]. 爆破器材, 2014(1): 8–12.
ZENG Jiang-bao, LIU Jie, WANG Long-xiang, et al. Preparation, thermal performance analysis and sensitivities study of nano HMX[J]. Explosive Materials, 2014(1): 8–12.
[34]
王娟, 孙笑, 周新利. 高级脂肪酸酯类化合物包覆RDX的研究[J]. 含能材料, 2015, 23(6): 527–531.
WANG Juan, SUN Xiao, ZHOU Xin-li. Properties of RDX coated by higher aliphatic ester compounds[J]. Chinese Journal of Energetic Materials, 2015, 23(6): 527–531. DOI:10.11943/j.issn.1006-9941.2015.06.004
[35]
杨雪芹, 常双君, 赵芦奎, 等. 包覆改性RDX及其在CMDB推进剂中的应用[J]. 爆破器材, 2014(6): 22–25.
YANG Xue-qin, CHANG Shuang-jun, ZHAO Lu-kui, et al. Coating of RDX and its application in CMDB propellant[J]. Explosive Materials, 2014(6): 22–25.
[36]
王彩玲, 王江, 刁小强, 等. 喷雾干燥法制备微米级球形RDX复合颗粒及性能表征[J]. 中国胶粘剂, 2015(10): 8–11.
WANG Cai-ling, WANG Jiang, DIAO Xiao-qiang, et al. Micron grade-spherical RDX compound particles prepared by spray drying and its properties characterization[J]. China Adhesives, 2015(10): 8–11.
[37]
Czerski H, Proud W G, Field J E. The relationship between shock sensitivity and morphology in granular RDX[J]. Qc Physics, 2006(3): 3–13.
[38]
秦利军, 龚婷, 郝海霞, 等. 原子层沉积氧化物包覆层对奥克托金感度的影响[J]. 高等学校化学学报, 2015, 36(3): 420–427.
QIN Li-jun, GONG Ting, HAO Hai-xia, et al. Study of the HMX particles coated by vapor deposition[J]. Chemical Journal of Chinese Universities, 2015, 36(3): 420–427.
[39]
Li R, Wang J, Shen J P, et al. Preparation and characterization of insensitive HMX/graphene oxide composites[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(6): 798–804. DOI:10.1002/prep.v38.6
[40]
李茂果, 杜自卫, 廖宏. HMX颗粒的气相沉积包覆研究[J]. 真空, 2013, 50(6): 23–26.
LI Mao-guo, DU Zi-wei, LIAO Hong. Study of the HMX particles coated by vapor deposition[J]. Vacuum, 2013, 50(6): 23–26.
[41]
李宁, 肖乐勤, 菅晓霞, 等. GAP基含能聚氨酯弹性体包覆RDX的研究[J]. 固体火箭技术, 2012, 35(2): 212–215.
LI Ning, XIAO Le-qin, JIAN Xiao-xia, et al. Coating of RDX with GAP-based energetic polyurethane elastomer[J]. Journal of Solid Rocket Technology, 2012, 35(2): 212–215.
[42]
陆明, 周新利. RDX的TNT包覆钝感研究[J]. 火炸药学报, 2006, 29(6): 16–18.
LU Ming, ZHOU Xin-li. Research on insensitivity of RDX coated with TNT[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2006, 29(6): 16–18.
[43]
高元元, 朱顺官, 陈鹏源. NTO包覆HMX的钝感研究[J]. 火炸药学报, 2014, 37(1): 61–65.
GAO Yuan-yuan, ZHU Shun-guan, CHEN Peng-yuan. Research on insensitivity of HMX coated with NTO[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 37(1): 61–65.
[44]
Klapötke M, Witkowski G. Covalent and ionic insensitive high-explosives[J]. Propellants Explosives Pyrotechnics, 2016, 41(3): 470–483. DOI:10.1002/prep.201600006
[45]
Anniyappan M, Talawar M B, Gore G M, et al. Synthesis, characterization and thermolysis of 1, 1-diamino-2, 2-dinitroethylene (FOX-7 and its salts[J]. Journal of Hazardous Materials, 2006, 137(2): 812–819. DOI:10.1016/j.jhazmat.2006.03.034
[46]
Dan C, Boatz J A, Thompson D. Classical and quantum-mechanical studies of crystalline FOX-7(1, 1-diamino-2, 2-dinitroethylene)[J]. Journal of Physical Chemistry A, 2001, 105(20): 5010–5021. DOI:10.1021/jp010289m
[47]
蔡华强, 舒远杰, 郁卫飞, 等. FOX-7的合成和反应机理研究[J]. 化学学报, 2004, 62(3): 295–301.
CAI Hua-qiang, SHU Yuan-jie, YU Wei-fei, et al. Study on synthesis of FOX-7 and its reaction mechanism[J]. Acta Chimica Sinica, 2004, 62(3): 295–301.
[48]
赵凤起, 高红旭, 徐司雨, 等. 含1, 1-二氨基-2, 2-二硝基乙烯(FOX-7)的钝感微烟推进剂能量参数和燃烧特性[J]. 火炸药学报, 2010, 33(4): 1–4.
ZHAO Feng-qi, GAO Hong-xu, XU Si-yu, et al. Energy parameters and combustion characteristics of the insensitive and minimum smoke propellants containing FOX-7[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2010, 33(4): 1–4.
[49]
樊学忠, 付小龙, 邵重斌, 等. FOX-7对CMDB固体推进剂性能的影响[J]. 固体火箭技术, 2016, 39(2): 201–206.
FAN Xue-zhong, FU Xiao-long, SHAO Chong-bin, et al. Effect of 1, 1-diamino-2, 2-dintroethene(FOX-7) on properties of CMDB propellants[J]. Journal of Solid Rocket Technology, 2016, 39(2): 201–206.
[50]
王伯周, 刘愆, 张志忠, 等. 新型含能材料FOX-12性能研究[J]. 含能材料, 2004, 12(1): 38–39.
WANG Bo-zhou, LIU Qian, ZHANG Zhi-zhong, et al. Study on properties of FOX-12[J]. Energetic Materials, 2004, 12(1): 38–39.
[51]
庞军, 王江宁, 张蕊娥, 等. CL-20、DNTF和FOX-12在CMDB推进剂中的应用[J]. 火炸药学报, 2005, 28(1): 19–21.
PANG Jun, WANG Jiang-ning, ZHANG Rui-e, et al. Application of CL-20, FOX-12 and DNTF in CMDB propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2005, 28(1): 19–21.
[52]
张超, 张晓宏, 杨立波, 等. 含LLM-105的改性双基推进剂的机械感度[J]. 火工品, 2014(2): 33–36.
ZHANG Chao, ZHANG Xiao-hong, YANG Li-bo, et al. Mechanical sensitivity of composite modified double base propellant containing 2, 6-diamino-3, 5-dinitro pyrazine-1-oxide[J]. Initiators & Pyrotechnics, 2014(2): 33–36.
[53]
Fengqi Z, Pei C, Rongzu H, et al. Thermochemical properties and non-isothermal decomposition reaction kinetics of 3, 4-dinitrofurazanfuroxan (DNTF)[J]. Journal of Hazardous Materials, 2004, 113(1-3): 67. DOI:10.1016/j.jhazmat.2004.07.009
[54]
Sikder N, Sikder A K, Bulakh N R, et al. 1, 3, 3-Trinitroazetidine (TNAZ), a melt-cast explosive:synthesis, characterization and thermal behaviour[J]. Journal of Hazardous Materials, 2004, 113(1-3): 35. DOI:10.1016/j.jhazmat.2004.06.002
[55]
Talawar M B, Singh A, Naik N H, et al. Effect of organic additives on the mitigation of volatility of 1-nitro-3, 3'-dinitroazetidine (TNAZ):next generation powerful melt cast able high energy material[J]. Journal of Hazardous Materials, 2006, 134(1/3): 8–18.
[56]
Li X, Wang B, Lin Q H, et al. Compatibility study of DNTF with some insensitive energetic materials and inert materials[J]. Journal of Energetic Materials, 2016, 34(4): 409–415. DOI:10.1080/07370652.2015.1112447
[57]
赵凤起, 李上文, 宋洪昌, 等. 国外新型钝感双基推进剂的研究[J]. 飞航导弹, 1999(9): 29–32.
ZHAO Feng-qi, LI Shang-wen, SONG Hong-chang, et al. Research on new insensitive double base propellant abroad[J]. Aerodynamic Missile Journal, 1999(9): 29–32.
[58]
顾健, 周雷, 吴京汉. 钝感GAP微烟推进剂的能量性能计算[J]. 固体火箭技术, 2012, 35(1): 88–92.
GU Jian, ZHOU Lei, WU Jing-han. Energy characteristics calculation of insensitive and minimum smoke GAP solid propellant[J]. Journal of Solid Rocket Technology, 2012, 35(1): 88–92.
[59]
Rao K P C, Sikder A K, Kulkarni M A, et al. Studies on n-butyl nitroxyethylnitramine (n-BuNENA):synthesis, characterization and propellant evaluations[J]. Propellants Explosives Pyrotechnics, 2010, 29(2): 93–98.
[60]
何利明, 郑剑, 罗运军. 含BuNENA钝感交联改性双基推进剂能量分析[J]. 固体火箭技术, 2015(1): 90–94.
HE Li-ming, ZHENG Jian, LUO Yun-jun. Energy properties of the insensitive and cross-linked BuNENA propellant[J]. Journal of Solid Rocket Technology, 2015(1): 90–94.
[61]
沈华平, 卢艳华, 曹一林, 等. 新型钝感含能增塑剂3-硝基呋咱-4-甲醚的合成与性能研究[J]. 含能材料, 2011, 19(6): 735–738.
SHEN Hua-ping, LU Yan-hua, CAO Yi-lin, et al. Synthesis and characterization of novel insensitive energetic plasticizer 3-nitrofurazan-4-monomethyl ether[J]. Chinese Journal of Energetic Materials, 2011, 19(6): 735–738.
[62]
张伟, 刘运飞, 谢五喜, 等. 热分析法研究AlH3与固体推进剂组分的相容性[J]. 火炸药学报, 2015, 38(1): 41–46.
ZHANG Wei, LIU Yun-fei, XIE Wu-xi, et al. Study on compatibility of AlH3 with compositions of solid propellant by thermal analysis method[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(1): 41–46.
[63]
李磊, 刘明珠, 王敏, 等. AlH3/PEG/NG/BTTN体系的热行为研究[J]. 固体火箭技术, 2015, 38(4): 533–536.
LI Lei, LIU Ming-zhu, WANG Min, et al. An investigation on thermal properties of AlH3/PEG/NG/BTTN[J]. Journal of Solid Rocket Technology, 2015, 38(4): 533–536.
[64]
Gore G M, Tipare K R, Divekar C N, et al. Studies on effect of incorporation of BDNPF/A on burning rates of RDX/AP/AI filled CMDB propellants[J]. Journal of Energetic Materials, 2002, 20(3): 255–278. DOI:10.1080/07370650208244824
[65]
刘长波, 朱天兵, 马英华, 等. BDNPF/A增塑剂的性能及其应用[J]. 化学推进剂与高分子材料, 2010, 8(1): 23–27.
LIU Chang-bo, ZHU Tian-bing, MA Ying-hua, et al. Properties and its application of BDNPF/A plasticizer[J]. Chemical Propellants & Polymeric Materials, 2010, 8(1): 23–27.
[66]
张昊越, 付小龙, 蔚红建, 等. 叠氮推进剂的感度和能量特性研究[J]. 化学推进剂与高分子材料, 2014, 12(1): 45–48.
ZHANG Hao-yue, FU Xiao-long, YU Hong-jian, et al. Study on sensitivity and energy performance of azide propellants[J]. Chemical Propellants & Polymeric Materials, 2014, 12(1): 45–48.
[67]
官焕祥, 刘云飞, 姚维尚, 等. 降低硝酸酯增塑聚醚推进剂燃速研究[J]. 推进技术, 2007, 28(2): 216–219.
GUAN Huan-xiang, LIU Yun-fei, YAO Wei-shang, et al. Study on decreasing the burning rate of nitrate ester plasticized polyether propellant[J]. Journal of Propulsion Technology, 2007, 28(2): 216–219.
[68]
翟进贤, 杨荣杰, 李建民. 增塑剂及燃烧催化剂对BAMO-THF复合推进剂性能的影响[J]. 推进技术, 2008, 29(2): 253–256.
ZHAI Jin-xian, YANG Rong-jie, LI Jian-min. Influences of plasticizers and combustion catalyst on performance of composite BAMO-THF propellants[J]. Journal of Propulsion Technology, 2008, 29(2): 253–256.
[69]
Choudhari M K, Dh ar, Shrotri P G, et al. Effect of high energy materials on sensitivity of composite modified double base CMDB propellant system[J]. Defence Science Journal, 2013, 42(4): 253–257.
[70]
滕学峰, 邓重清, 胡铨, 等. 高氯酸铵(AP)基复合改性双基(AP/CMDB)推进剂燃速控制与降感研究[J]. 科学技术与工程, 2017, 17(6): 178–182.
TENG Xue-feng, DENG Chong-qing, HU Quan, et al. Research of burning rate controlling and sensitivity reducing of AP/CMDB propellant[J]. Science Technology and Engineering, 2017, 17(6): 178–182.
[71]
李焕, 樊学忠, 庞维强. 低易损性固体推进剂钝感特性及评估试验方法研究进展[J]. 化学推进剂与高分子材料, 2017, 15(2): 56–59.
LI Huan, FAN Xue-zhong, PANG Wei-qiang. Research progress in insensitivity characteristic and evaluation test method of low vulnerability solid propellant[J]. Chemical Propellants & Polymeric Materials, 2017, 15(2): 56–59.
[72]
Asthana N, Divekar C N, Singh H. Studies on thermal stability, autoignition and stabilizer depletion for shelf life of CMDB propellants[J]. Journal of Hazardous Materials, 1989, 21(1): 35–46. DOI:10.1016/0304-3894(89)85075-7
[73]
尚海林, 赵锋, 王文强, 等. 冲击作用下炸药热点形成的3维离散元模拟[J]. 爆炸与冲击, 2010, 30(2): 131–137.
SHANG Hai-lin, ZHAO Feng, WANG Wen-qiang, et al. Three-dimensional discrete element simulation of hot spots in explosives under shock loading[J]. Explosion & Shock Waves, 2010, 30(2): 131–137. DOI:10.11883/1001-1455(2010)02-0131-07
[74]
肖鹤鸣, 朱卫华, 肖继军, 等. 含能材料感度判别理论研究——从分子、晶体到复合材料[J]. 含能材料, 2012, 20(5): 514–527.
XIAO He-ming, ZHU Wei-hua, XIAO Ji-jun, et al. Theoretical studies on sensitivity criterion of energetic materials——from molecules, crystals, to composite materials[J]. Chinese Journal of Energetic Materials, 2012, 20(5): 514–527.
[75]
Yan Q, Zeman. Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods:a brief review[J]. International Journal of Quantum Chemistry, 2013, 113(8): 1049–1061. DOI:10.1002/qua.v113.8
[76]
Chen Z X, Xiao H M. Quantum chemistry derived criteria for impact sensitivity[J]. Propellants Explosives Pyrotechnics, 2014, 39(4): 487–495. DOI:10.1002/prep.201300123
[77]
廉鹏宰, 来蔚鹏, 王伯周, 等. 新型高能量密度化合物3, 6-双(3, 5-二硝基-1, 2, 4-三唑-1)-1, 2, 4, 5-四嗪-1, 4-二氧化物的性能预估及合成路线设计[J]. 化学学报, 2009, 67(20): 2343–2348.
LIAN Peng-zai, LAI Wei-peng, WANG Bo-zhou, et al. Design of synthetic route and prediction of properties for a novel high energetic density compound 3, 6-Bis(3, 5-dinitro-1, 2, 4-triazol-1-yl)-1, 2, 4, 5-tetrazine-1, 4-dioxide[J]. Acta Chimica Sinica, 2009, 67(20): 2343–2348.
[78]
杜军良, 舒远杰, 周阳, 等. 用分子拓扑参数预估多硝基芳香族化合物的撞击感度[J]. 火炸药学报, 2010, 33(6): 5–10.
DU Jun-liang, SHU Yuan-jie, ZHOU Yang, et al. Predication on impact sensitivity of polynitroaromatic compounds using principal component regression[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2010, 33(6): 5–10.
[79]
Liu H, Jiang, Guo-Qiang Y U, et al. Application research of genetic-neural network method in the prediction of explosives' impact sensitivity[J]. Initiators & Pyrotechnics, 2010, 42(2): 221–32.
[80]
Keshavarz M H, Jaafari M. Investigation of the various structure parameters for predicting impact sensitivity of energetic molecules via artificial neural network[J]. Propellants Explosives Pyrotechnics, 2010, 31(3): 216–225.
[81]
Zhang, Zybin V, Duin A C V, et al. Shock induced decomposition and sensitivity of energetic materials by ReaxFF molecular dynamics[C]//14th APS Topical Conference on Shock Compression of Condensed Matter. Baltimore:Bulletin of the American Physical Society, 2006:585-588.
[82]
Xiao J, Wang W, Chen J, et al. Study on the relations of sensitivity with energy properties for HMX and HMX-based PBXs by molecular dynamics simulation[J]. Physica B Condensed Matter, 2012, 407(17): 3504–3509. DOI:10.1016/j.physb.2012.05.010
[83]
Xiao J J, Li Y, Chen J, et al. Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs[J]. Journal of Molecular Modeling, 2013, 19(2): 803–809. DOI:10.1007/s00894-012-1607-9
[84]
Guo D, An Q, Iii Wa G, et al. Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity[J]. Journal of Physical Chemistry C, 2014, 118(51): 30202–30208. DOI:10.1021/jp5093527
[85]
Zhang C. Review of the establishment of nitro group charge method and its applications[J]. Journal of Hazardous Materials, 2009, 161(1): 21. DOI:10.1016/j.jhazmat.2008.04.001
[86]
Edwards J, Eybl C, Johnson B. Correlation between sensitivity and approximated heats of detonation of several nitroamines using quantum mechanical methods[J]. International Journal of Quantum Chemistry, 2004, 100(5): 713–719. DOI:10.1002/(ISSN)1097-461X
[87]
And B M R, Hare J J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J]. Journal of Physical Chemistry A, 2002, 106(9): 1770–1783. DOI:10.1021/jp012602q
[88]
Xiao H M, Fan J, Gu Z M, et al. Theoretical study on pyrolysis and sensitivity of energetic compounds:(3 Nitro derivatives of aminobenzenes[J]. Chemical Physics, 1998, 226(1-2): 15–24. DOI:10.1016/S0301-0104(97)00288-7
[89]
Gu Z M, Fan J, Xiao H M, et al. A theoretical study on pyrolysis and sensitivity of energetic compounds*(V-Nitro derivatives of methylbenzene[J]. Chemical Research in Chinese Universities, 1999, 16(1): 21–30.
[90]
Chen Z X, Xiao H, Yang. Theoretical investigation on the impact sensitivity of tetrazole derivatives and their metal salts[J]. Chemical Physics, 1999, 250(3): 243–248. DOI:10.1016/S0301-0104(99)00336-5
[91]
刘欢, 姜峰, 于国强, 等. 遗传-神经网络方法在炸药撞击感度预测中的应用研究[J]. 火工品, 2010, 42(2): 221–32.
LIU Huan, JIANG Feng, YU Guo-qiang, et al. Application research of genetic-neural network method in the prediction of explosives' impact sensitivity[J]. Initiators & Pyrotechnics, 2010, 42(2): 221–32.
[92]
钱博文, 陈利平, 陈网桦. 基于遗传算法的人工神经网络预测多硝基化合物撞击感度[J]. 含能材料, 2016, 24(7): 644–650.
QIAN Bo-wen, CHEN Li-ping, CHEN Wang-hua. Prediction of impact sensitivity of polynitro compounds by artificial neural network based on the genetic algorithm[J]. Chinese Journal of Energetic Materials, 2016, 24(7): 644–650. DOI:10.11943/j.issn.1006-9941.2016.07.004
[93]
刘冬梅, 赵丽, 肖继军, 等. 不同温度下HMX和RDX晶体的感度判别和力学性能预估——分子动力学比较研究[J]. 高等学校化学学报, 2013, 21(5): 563–569.
LIU Dong-mei, ZHAO Li, XIAO Ji-jun, et al. Sensitivity criterion and mechanical properties prediction of HMX and RDX crystals at different temperatures——comparative study with molecular dymamics simulation[J]. Chemical Journal of Chinese Universities, 2013, 21(5): 563–569.
[94]
刘轶. 含能材料和自燃推进剂的反应动力学模拟研究[C]//全国强动载效应及防护学术会议暨复杂介质/结构的动态力学行为创新研究群体学术研讨会. 北京: 中国力学学会, 2013.
LIU Yi. Simulation study on reaction kinetics of energetic materials and self-ignition propellants[C]//Symposium on Dynamic Load Effects and Protection in China, and Dynamic Mechanical Behavior of Complex Media/Structures. Beijing:Chinese Society of Theoretical and Applied Mechanics, 2013.
[95]
严启龙, 宋振伟, 安亭, 等. 含能材料物理化学性能理论预估研究进展[J]. 火炸药学报, 2016, 39(5): 1–12.
YAN Qi-long, SONG Zhen-wei, AN Ting, et al. Research progress in theoretical prediction of physicochemical properties for energetic materials[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2016, 39(5): 1–12.
[96]
Jaffe I, Price D. Safety information from propellant sensitivity studies[J]. Aiaa Journal, 2015, 1(2): 389–394.
[97]
So W, Francis E C. Dynamic finite element analysis of solid propellant impact test[J]. Journal of Spacecraft & Rockets, 1991, 28(6): 658–662.
[98]
齐晓飞, 张晓宏, 李吉祯, 等. NC/NG共混体系的分子动力学模拟研究[J]. 兵工学报, 2013, 34(1): 93–99.
QI Xiao-fei, ZHANG Xiao-hong, LI Ji-zhen, et al. Molecular dynamics simulation of NC/NG blends[J]. Acta Armamentarii, 2013, 34(1): 93–99.
[99]
齐晓飞, 张晓宏, 张伟, 等. NC/NG共混体系的塑化行为[J]. 推进技术, 2013, 34(6): 843–848.
QI Xiao-fei, ZHANG Xiao-hong, ZHANG Wei, et al. Study on plasticizing process of NC/NG blends[J]. Journal of Propulsion Technology, 2013, 34(6): 843–848.
[100]
朱伟, 刘冬梅, 肖继军, 等. 多组分高能复合体系的感度判据、热膨胀和力学性能的MD研究[J]. 含能材料, 2014, 22(5): 582–587.
ZHU Wei, LIU Dong-mei, XIAO Ji-jun, et al. Molecular dynamics study on sensitivity criterion, thermal expansion and mechanical properties of multi-component high energy systems[J]. Chinese Journal of Energetic Materials, 2014, 22(5): 582–587.
[101]
付一政, 康志鹏, 郭志婧, 等. 共晶和共混对CL-20/DNB感度和热解机理影响的MD模拟[J]. 含能材料, 2017, 25(2): 94–99.
FU Yi-zheng, KANG Zhi-peng, GUO Zhi-jing, et al. Effect of cocrystallizing and mixing on sensitivity and thermal decomposition mechanisms of CL-20/DNB via MD simulation[J]. Chinese Journal of Energetic Materials, 2017, 25(2): 94–99. DOI:10.11943/j.issn.1006-9941.2017.02.001
Progress of Study on Desensitization Techniques and Sensitivity Mechanisms of Composite Modified Double-base Propellants
CHEN Jing1, WANG Han1, LIU Meng1, WU Xiong-gang1, FAN Xue-zhong1,2     
1. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China;
2. Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
Abstract: Starting from the safety problems faced by high-value weapon platform tactical missiles, the research progress in the desensitizing techniques and sensitivity mechanisms of composite modified double-base (CMDB) propellant energetic components was summarized. From the aspects of modifying/replacing desensitization techniques of energetic filler, desensitization technique of energetic plasticizers and comprehensive desensitization technique etc., the matching technique approach between energy and sensitivity of CMDB propellant was summarized. The research work on the sensitivity mechanism of energetic component and multi components in recent years was introduced. The sensitivity mechanism and prediction method of CMDB propellant were summarized. The research trend show that the new insensitive materials and novel desensitization technique should be further applied to CMDB propellants and the sensitivity prediction method should be combined with the theoretical calculation to improve the development efficiency and comprehensive properties of CMDB propellants. With 101 conferences.
Key words: composite modified double-base propellants     CMDB propellant     insensitive high energy filler     insensitive plasticizers     sensitivity mechanism     prediction of sensitivity