Thermodynamic Nonequilibrium Features in Binary Diffusion
Lin Chuan-Dong1, 2, †, Luo Kai Hong1, 3, ‡, Gan Yan-Biao2, 4, Lai Hui-Lin2
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Fuzhou 350007, China
Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
North China Institute of Aerospace Engineering, Langfang 065000, China

 

† Corresponding author. E-mail: chuandonglin@163.com K.Luo@ucl.ac.uk

Abstract
Abstract

Diffusion is a ubiquitous physical phenomenon where thermodynamic nonequilibrium effects (TNEs) are outstanding issues. In this work, we employ the discrete Boltzmann method to investigate the TNEs in the dynamic process of binary diffusion. The main features of the distribution function in velocity space are recovered and discussed. It is found that, with the decreasing gradients of macroscopic quantities (such as density, concentration, velocity, etc.), both the local and global TNEs decrease with the time but increase with the relaxation time in a power law, respectively.

Reference
[1] De Groot S. R. Mazur P. Non-Equilibrium Thermodynamics Dover Publications New York 2013
[2] Chapman S. Cowling T. G. The Mathematical Theory of Non-Uniform Gases: an Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases Cambridge University Press Cambridge 1970
[3] Shan X. Doolen G. Phys. Rev. E 54 1996 3614
[4] Briant A. J. Yeomans J. M. Phys. Rev. E 69 2004 031603
[5] Chai Z. Huang C. Shi B. Guo Z. Int. J. Heat Mass Transf. 98 2016 687
[6] Joshi A. S. Peracchio A. A. Grew K. N. Chiu W. K. J. Phys. D: Appl. Phys. 40 2007 7593
[7] Liu F. M. Wang A. L. Qiu R. F. Jiang T. Int. J. Mod. Phys. C 27 2016 1650130
[8] Zudrop J. Masilamani K. Roller S. Asinari P. Computers & Fluids 153 2017 20
[9] Zhou J. G. Haygarth P. M. Withers P. J. A. et al. Phys. Rev. E 93 2016 043310
[10] Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond Oxford University Press New York 2001
[11] Qin R. Zhang Y. Comput. Fluids 35 2006 929
[12] Zhuo C. Zhong C. Int. J. Heat Fluid Flow 42 2013 10
[13] Gan Y. Xu A. Zhang G. Li Y. Commun. Theor. Phys. 57 2012 681
[14] Gan Y. Xu A. Zhang G. Succi S. Soft Matter 11 2015 5336
[15] Lin C. Xu A. Zhang G. et al. Phys. Rev. E 89 2014 013307
[16] Lin C. Xu A. Zhang G. Li Y. Combust. and Flame 164 2016 137
[17] Lin C. Luo K. H. Fei L. Succi S. Sci. Rep. 7 2017 14580
[18] Watari M. Tsutahara M. Phys. Rev. E 67 2003 036306
[19] Zhang H. Zhuang F. Adv. Appl. Mech. 29 1991 193