Triviality of Quantum Electrodynamics Revisited
Djukanovic D.1, Gegelia J.2, 3, Meißner Ulf-G.4, 2
Helmholtz Institute Mainz, University of Mainz, D-55099 Mainz, Germany
Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
Tbilisi State University, 0186 Tbilisi, Georgia
Helmholtz Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

 

† Corresponding author. E-mail:

Supported in part by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” National Natural Science Foundation of under Grant No. 11621131001, DFG under Grant No. TRR110, the Georgian Shota Rustaveli National Science Foundation (Grant FR/417/6-100/14) and the Chinese Academy of Sciences President’s International Fellowship Initiative (PIFI) under Grant No. 2017VMA0025

Abstract
Abstract

Quantum electrodynamics is often considered to be a trivial theory. This is based on a number of evidences, both numerical and analytical. One of the strong indications for triviality of QED is the existence of the Landau pole for the running coupling. We show that by treating QED as the leading order approximation of an effective field theory and including the next-to-leading order corrections, the Landau pole is removed. We also analyze the cutoff dependence of the bare coupling at two-loop order and conclude that the conjecture, that for reasons of self-consistency, QED needs to be trivial is a mere artefact of the leading order approximation to the corresponding effective field theory.

Reference
[1] Landau L. D. Abrikosov A. A. Khalatnikov J. M. Dokl. Akad. Nauk SSSR 95 1954 773
[2] Landau L. D. Niels Bohr and the Development of Physics Pauli W. Pergamon, London 1955 and works cited in there
[3] Callaway J. E. D. Phys. Rept. 167 1988 241
[4] Gockeler M. Horsley R. Linke V. et al. Phys. Rev. Lett. 80 1998 4119
[5] Weinberg S. Quantum Theory of Fields 1,2 Cambridge University Press Cambridge 1995
[6] Gell-Mann M. Low F. E. Phys. Rev. 95 1954 1300
[7] Wilson K. G. Kogut J. B. Phys. Rept. 12 1974 75
[8] Faddeev L. D. Slavnov A. A. Front. Phys. 50 1980 1
[9] Djukanovic D. Schindler M. R. Gegelia J. Scherer S. Phys. Rev. D 72 2005 045002
[10] Mertig R. Bohm M. Denner A. Comput. Phys. Commun. 64 1991 345
[11] Shtabovenko V. Mertig R. Orellana F. Comput. Phys. Commun. 207 2016 432
[12] Vermaseren J. A. M. arXiv:math-ph/0010025
[13] Gegelia J. Japaridze G. S. Turashvili K. S. Theor. Math. Phys. 101 1994 1113
[14] Huber T. Maitre D. Comput. Phys. Commun. 178 2008 755
[15] Gies H. Jaeckel J. Phys. Rev. Lett. 93 2004 110405