植物营养与肥料学报   2018, Vol. 24  Issue (5): 1406-1414 
0
PDF 
伴生芹菜和紫背天葵对连作豇豆生长发育及根际土壤环境的影响
陈昱, 张福建, 杨有新, 王强, 王丰, 吴才君    
江西农业大学农学院,江西南昌 330045
摘要: 【目的】 豇豆连年种植易造成产量减少、品质下降,经济效益低。研究伴生芹菜和紫背天葵对连作豇豆生长发育及根际土壤环境的影响,旨在为缓解豇豆连作障碍提供理论依据。【方法】 采用豇豆连作土壤进行盆栽试验,设三个处理为豇豆单作 (对照)、芹菜伴生豇豆、紫背天葵伴生豇豆。分析了不同处理豇豆生长指标、土壤微生物数量、土壤理化性质、叶绿素含量、抗氧化酶活性及产量。【结果】 与单作相比,伴生芹菜处理显著提高了豇豆株高、茎粗、地上鲜重和地上干重 23.98%、9.07%、16.14%和16.00%;伴生紫背天葵处理其株高、茎粗与单作无显著差异,地上鲜重和地上干重则显著低于单作。伴生芹菜处理根际土壤放线菌数量最高,较单作处理显著增加了10.06%;真菌数量最低,较单作处理显著降低了41.51%;细菌数量和单作处理之间无显著差别;而伴生紫背天葵处理其放线菌、真菌和细菌数量与单作相比均无显著差异。伴生紫背天葵处理其土壤脲酶、蔗糖酶和酸性磷酸酶活性最高,与单作处理相比,土壤脲酶、蔗糖酶、多酚氧化酶和酸性磷酸酶活性分别显著增加了7.07%、381.00%、21.63%和42.79%。伴生芹菜处理蔗糖酶、多酚氧化酶和酸性磷酸酶活性较单作处理分别显著增加了162.48%、30.75%和35.27%,而脲酶活性与单作处理相比无显著差别。与单作相比,伴生芹菜和紫背天葵分别提高豇豆根际土壤pH 0.98%、1.23%;同时二者分别显著降低土壤电导率9.48%、8.34%。伴生芹菜处理豇豆叶片叶绿素a、叶绿素b、叶绿素a + b含量均显著高于其他处理;而伴生紫背天葵处理与单作相比不存在显著差异。伴生芹菜处理豇豆根际土壤过氧化物酶 (POD)、谷胱甘肽还原酶 (GR) 和脱氢抗坏血酸还原酶 (DHAR) 活性最高,与单作相比,分别显著增加了16.20%、73.49%和17.76%;而过氧化氢酶 (CAT) 活性和单作处理之间不存在显著差异。伴生紫背天葵处理豇豆根际土壤CAT、GR活性相对于单作处理分别增加了97.12%、58.79%;POD、DHAR活性则与单作处理无显著差别。伴生芹菜和紫背天葵处理均能显著提升豇豆产量,前期分别增加了19.87%、19.61%,中期分别增加了18.22%、15.33%,后期分别增加了8.44%、12.70%。【结论】 芹菜和紫背天葵伴生连作豇豆可以提高叶片抗氧化酶活性和根际土壤酶活性,改善根际土壤环境和微生物结构,且均能提高豇豆产量,有利于缓解连作障碍,其中以芹菜伴生处理效果较佳。
关键词: 伴生     芹菜     紫背天葵     连作豇豆     生长发育     根际土壤    
Effect of celery and gynura bicolor as companion crops on growth and development of cowpea as continuous crop and soil rhizosphere
CHEN Yu, ZHANG Fu-jian, YANG You-xin, WANG Qiang, WANG Feng, WU Cai-jun    
College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
Abstract: 【Objectives】 Continuous planting of cowpea would cause reduced yield, deteriorated quality and low economic benefit. Effects of growth and rhizosphere soil properties by celery and gynura bicolor as companioncrops of continuous cropping cowpea were studied to provide a theoretical basis for alleviating continuouscropping obstacles of cowpea. 【Methods】 A pot experiment was conducted using the cowpea continuous cropping soil. There were three treatments, cowpea monoculture (control), celery and cowpea intercropping, and gynura bicolor and cowpea intercropping. Growth index, soil microbial quantity, soil physical and chemical property, chlorophyll content, antioxidant enzyme activity and yields in different treatments were investigated. 【Results】 Compared with the monoculture control, the plant heights, stem diameters, fresh and dry weights of cowpea were significantly increased by 23.98%, 9.07%, 16.14% and 16.00% in the celery treatment, respectively; while the plant height and stem diameter were not increased significantly, and the shoot fresh and dry weights were significantly decreased in the bicolor treatment. The actinomyces population was significantly increased by 10.06%, but the fungi population was significantly decreased by 41.51% in the soils of celery treatment. There was no significant difference in the population of bacteria between celery treatment and control, nor in the population of actinomycetes, fungi and bacteria between the bicolor treatment and the control. The activities of soil urease, invertase, polyphenol oxidase and acid phosphatase were the highest, and were increased by 7.07%, 381.00%, 21.63% and 42.79% in bicolor treatment, and the activities of invertase, polyphenol oxidase and acid phosphatase and acid phosphatase were significantly increased by 162.48%, 30.75% and 35.27% in the celery treatment, respectively, while the urease activity had not been impacted significantly. The soil pH were significantly increased 0.98% and 1.23% of the accompanied celery and gynura bicolor treatments, while the soil conductivity were prominently decreased by 9.48%, 8.34% in the treatment of celery and biocolor, respectively. The contents of chlorophyll a, chlorophyll b and chlorophyll a+b of cowpea in celery treatment were significantly higher than in the other ones, and there were no significant differences between the later treatments. The activities of peroxidase (POD), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) of cowpea in the celery treatment were the highest, and were significantly increased by 16.20%, 73.49% and 17.76%, respectively, while the catalase (CAT) activity was slightly affected in the celery treatment. The activities of CAT and GR of cowpea in the bicolor treatment were significantly higher than those in control, which were increased by 97.12% and 58.79%, while the activities of POD and DHAR were not be affected significantly. The celery and bicolor treatment significantly improved the yield of cowpea, with increment of 19.87% and 19.61% at the early stage, 18.22% and 15.33% at the middle stage and 8.44% and 12.70% at the later stage. 【Conclusions】 The accompanied growth of celery and gynura bicolor with continuous cropping cowpea could improve leaf antioxidant enzyme activities and rhizosphere soil enzyme activities, improve the rhizosphere environment and microbial structure, as a result, alleviate the effect of continuous cropping obstacle. Celery performs better than gynura bicolor, so should be recommonded.
Key words: companion     celery     gynura bicolor     continuous cropping cowpea     growth and development     rhizosphere soil    

豇豆 (Vigna unguiculataL. Walp.) 营养价值高,富含维生素和植物蛋白质,且适应性强,是我国重要的蔬菜之一,种植面积约为226万亩 (据中国农业统计资料统计)。为了追求经济效益,以及土地种植面积有限,连年单一种植豇豆不可避免,连作障碍问题日益严重。目前连作障碍是制约我国设施农业健康可持续发展的瓶颈之一[1],豇豆连年种植易导致土壤养分结构失衡,病原菌增多,土传病害加重;豇豆根系分泌的自毒物质会直接抑制其根系的生长,最终豇豆生长发育受阻、产量减少、品质下降、经济效益低[2]。大量研究表明利用不同植物间的化学他感作用原理,合理安排间作、轮作、套作和伴生等栽培模式是解决连作障碍的比较环保、有效的途径,通过多种植物的相互作用,改善根际微生态环境,抑制在单作中易感染的有害病菌,从而达到减轻病虫害,提高蔬菜的产量和品质的效果[36]。研究表明,三种豆科植物分别伴生甜玉米与单作相比,均能提高叶片面积、相对叶绿素含量、甜玉米生物量以及产量[7]。吴凤芝等[89]研究表明,伴生分蘖洋葱能够显著提高番茄对灰霉病及黄萎病的抗性,达到缓解番茄连作障碍的目的。小麦伴生西瓜能提高土壤脲酶、蔗糖酶和多酚氧化酶活性,同时提高西瓜根际细菌、放线菌数量及细菌和放线菌的比例,并降低真菌的比例[10]

芹菜 (Apium graveolens L.) 属伞形科,含有丰富的维生素、蛋白质和膳食纤维,此外还有多种矿质元素等成分。研究发现,芹菜含有柠檬烯、α-蒎烯、β-月桂烯等挥发物质对烟粉虱起驱避作用,其伴生或间套作黄瓜、辣椒、番茄等蔬菜,可以有效地控制烟粉虱虫害[1112]。芹菜伴生黄瓜还能显著降低霜霉病发病率和病情指数,且发病率降低42.8%[13];同时还能显著提高黄瓜根际土壤过氧化物酶、脲酶和转化酶活性,以及改变土壤细菌群落结构,修复连作土壤环境[14]。紫背天葵 (Gynura bicolor D.C) 属菊科三七草属多年生草本蔬菜,其含丰富的蛋白质、粗纤维、多种维生素和矿物质等营养功能成分,并具有抗氧化、抗肿瘤、消炎、降血糖和血脂、提高造血功能、调节免疫力、抗衰老等多种保健功能[15]。此外,紫背天葵水提取物对细菌有明显抑制作用[16]。因此,选择有益的伴生材料,进行合理的间套混作可能是一种有效缓解连作障碍的措施。因为伴生作物其根系分泌物能促进主茬作物生长及改善土壤微生态环境,保持微生物群落结构多样性,诱导主茬作物提高抗性[7, 10]。但是目前利用芹菜和紫背天葵作为豇豆伴生植物缓解豇豆连作障碍的研究仍未见报道。

本试验以豇豆为材料,芹菜和紫背天葵为伴生作物,通过盆栽试验研究了伴生芹菜和紫背天葵对连作豇豆生理指标及根际土壤环境的影响,旨在寻找安全有效的缓解豇豆连作障碍的途径,为缓解豇豆连作障碍提供理论依据。

1 材料与方法 1.1 供试材料

供试豇豆品种‘华赣彩蝶·绿帅’,芹菜品种为本地芹,购于江西农业大学菜市场;紫背天葵购于山东寿光。供试土壤为旱地连作5年红壤土,豇豆种子和连作土壤均由江西华农种业有限公司提供,土壤基本理化性质为pH 4.50、碱解氮80.7 mg/kg、有效磷5.7 mg/kg、速效钾322 mg/kg、有机质28.5 g/kg。

1.2 仪器与设备

UV-2600岛津紫外可见分光光度计,岛津企业管理有限公司;HI-2315型电导率仪,HANNA instruments;Five Easy Plus pH仪,梅特勒托利多仪器有限公司。

1.3 试验设计及样品采集

试验于2017年4月始在江西农业大学生态园蔬菜试验基地进行,将连作土壤与有机肥按50∶1混匀并分别均匀装入盆中 (30 cm × 25 cm)。每盆土壤重量约为9 kg,有机肥养分含量为总养分 (N + P2O5 + K2O) ≥ 5%、有机质 ≥ 45%。试验采用盆栽方式,共设三个处理:豇豆单作 (对照)、紫背天葵伴生豇豆、芹菜伴生豇豆,分别标记为CK、T1和T2。每个处理10盆,每盆2株,3次重复。豇豆直播生长20 d后,开始伴生处理,每盆伴生一株10 cm左右高的芹菜小苗或一株10 cm左右高的紫背天葵小苗,进行常规管理。长到30 cm左右时割去上部 (留10 cm茬),割2~3次后任其生长。伴生20 d后测量豇豆生长指标,并采用剥落分离法采集豇豆根际土,4℃保存鲜土用于细菌、放线菌、真菌分离计数,风干土用于土壤理化性质测定。伴生40 d采集豇豆植株中上部叶片用于测定抗氧化酶指标及叶绿素含量,最后统计豇豆产量。

1.4 测定指标 1.4.1 生长指标

用卷尺测定株高 (以茎根底部到生长点);用游标卡尺测定茎粗 (子叶下方1 cm处),用天平测定植株鲜重、干重和产量。

1.4.2 土壤中微生物计数

微生物计数采用稀释平板法[17],细菌采用牛肉膏蛋白胨培养基;放线菌采用高氏1号培养基;真菌采用马丁氏培养基。

1.4.3 土壤理化性质测定方法

土壤pH值按土水比1∶5用酸度计法测定;土壤电导率值按土水比1∶5用电导率仪测定。土壤酶测定采用关松荫[18]方法:采用靛酚比色法测定脲酶,结果以反应24 h后1 g土壤中NH4+-N的毫克数表示;采用邻苯三酚比色法测定多酚氧化酶,结果以2 h后1 g土壤中生成的紫色没食子素的毫克数表示;采用3,5-二硝基水杨酸比色法测定蔗糖酶,结果以24 h后1 g土壤葡萄糖毫克数表示;采用磷酸苯二钠比色法测定酸性磷酸酶,结果以24 h后1 g土壤中释放出的酚的毫克数表示。

1.4.4 生理指标测定方法

叶绿素含量测定参照李合生[19]方法;CAT和POD活性的测定均采用Cakmak和Marschner等[20]的方法;GR活性测定参照Foyer和Halliwell [21]的方法;DHAR活性测定参照Nakano和Asada [22]的方法。

1.5 数据分析

试验数据用Microsoft Office Excel 2013整理,利用统计软件SPSS 20.0进行相关性分析,并运用Duncan新复极差法对差异 (P < 0.05) 进行多重比较,用Origin 8.5软件作图。

2 结果与分析 2.1 伴生芹菜和紫背天葵对连作豇豆生长指标的影响

表1所示,伴生芹菜处理各生长指标都最高,与单作相比,其豇豆株高、茎粗、地上鲜重和地上干重分别显著增加了23.98%、9.07%、16.14%和16.00%。伴生紫背天葵处理其株高、茎粗与单作无显著差异,但地上鲜重和地上干重显著低于单作,分别降低了15.35%、16.27%。

2.2 伴生芹菜和紫背天葵对连作豇豆根际土壤微生物数量的影响

表2所示,伴生芹菜处理放线菌数量最高,较单作处理显著升高了10.06%;真菌数量最低,较单作处理显著降低了41.51%;细菌数量与单作处理之间无显著差别。与单作相比,伴生紫背天葵处理其放线菌、真菌和细菌数量均无显著差异。

表1 伴生芹菜和紫背天葵豇豆生长和地上部鲜重、干重指标 Table 1 Growth and shoot fresh and dry weight of cowpea companied grown with celery and gynura bicolor
表2 伴生芹菜、紫背天葵豇豆土壤微生物数量 Table 2 Soil microbial population of cowpea companied grown with celery and gynura bicolor
2.3 伴生芹菜和紫背天葵对豇豆根际土壤酶活性的影响

图1所示,伴生紫背天葵处理其土壤脲酶、蔗糖酶和酸性磷酸酶活性最高,与单作处理相比,土壤脲酶、蔗糖酶、多酚氧化酶和酸性磷酸酶活性分别显著增加了7.07%、381.00%、21.63%和42.79%。伴生芹菜处理其蔗糖酶、多酚氧化酶和酸性磷酸酶活性较单作处理分别显著增加了162.48%、30.75%和35.27%;而脲酶活性与单作处理相比无显著差别。

2.4 伴生芹菜和紫背天葵对豇豆根际土壤pH和电导率的影响

图2所示,与单作相比,伴生芹菜和紫背天葵均能提高豇豆根际土壤pH,分别提升了0.98%、1.23%;同时能显著降低土壤电导率,分别降低了9.48%、8.34%。

图1 伴生芹菜和紫背天葵豇豆根际土壤酶活性 Fig. 1 Rhizosphere soil enzymes activities of cowpea companied grown with celery and gynura bicolor [注 (Note):柱上不同小写字母表示处理间差异显著 (P < 0.05) Different small letters above the bars mean significant differences among treatments at the 0.05 level.]
图2 伴生芹菜和紫背天葵豇豆根际土壤pH和电导率 Fig. 2 Soil pH and conductivity of cowpea rhizosphere soil companied grown with celery and gynura bicolor [注(Note):柱上不同小写字母表示处理间差异显著 (P < 0.05) Different small letters above the bars mean significant differences among treatments at the 0.05 level.]
2.5 伴生芹菜和紫背天葵对连作豇豆叶片叶绿素含量的影响

表3表明,伴生芹菜处理豇豆叶片的叶绿素a、叶绿素b、叶绿素a + b含量均显著高于其他处理,与单作处理相比分别显著增加了12.55%、10.87%、12.15%;伴生紫背天葵处理与单作处理相比,叶绿素a、叶绿素b、叶绿素a + b含量均不存在显著差异。

2.6 伴生芹菜和紫背天葵对连作豇豆叶片抗氧化酶活性的影响

图3显示,伴生芹菜处理POD、GR和DHAR活性最高,与单作相比,分别显著增加了16.20%、73.49%和17.76%;而CAT活性和单作处理之间不存在显著差异。伴生紫背天葵处理CAT、GR活性显著高于单作处理,分别增加了97.12%、58.79%;POD、DHAR活性与单作之间无显著差别。

2.7 伴生芹菜和紫背天葵对连作豇豆产量的影响

表4表明,伴生芹菜和紫背天葵处理均能显著提升豇豆产量,与单作处理相比,前期分别增加了19.87%、19.61%,中期分别增加了18.22%、15.33%,后期分别增加了8.44%、12.70%。

表3 伴生芹菜和紫背天葵豇豆叶片叶绿素含量 Table 3 Chlorophyll contents in leaves of cowpea companied grown with celery and gynura bicolor
图3 伴生芹菜和紫背天葵豇豆叶片抗氧化酶活性 Fig. 3 Antioxidant activity of cowpea leaves companied grown with celery and gynura bicolor [注 (Note):柱上不同小写字母表示处理间差异显著 (P < 0.05) Different small letters above the bars mean significant differences among treatments at the 0.05 level.]
表4 伴生芹菜和紫背天葵豇豆连作产量 Table 4 Yield of cowpea companied grown with celery and gynura bicolor
3 讨论

蔬菜的连作障碍是制约农业可持续发展的一个重大问题,易造成微生物区系和土壤酶活性紊乱,土壤微生态环境改变;作物的生长发育、光合作用、保护酶活性等生理过程都受其影响,解决连作障碍已成为蔬菜可持续发展的棘手问题[23]。通过伴生可以合理地利用作物间化感作用,调控植物生长发育和改善土壤理化性质,达到生态平衡。生长指标可以反映植株生长状况,是评价种苗质量的有效指标。吴瑕等[9]研究分蘖洋葱伴生对番茄生长的影响,发现与单作相比,伴生处理显著增加了番茄株高、地上部及地下部干重。本试验研究也得到类似结果,伴生芹菜处理能显著提高豇豆株高、茎粗、地上鲜重和地上干重等生长指标;而紫背天葵处理其豇豆生长趋势反而较弱,说明伴生芹菜处理有利于豇豆的生长发育。

土壤微生物与土壤养分循环和生态系统功能密切相关[24],其与某些酶活性之间存在显著相关性[10]。随着豇豆连作年限增长,土壤中微生物群落结构会由高肥的“细菌型”向低肥的“真菌型”转化,会破坏根际土壤微生物种群平衡,有害菌大量繁殖,有益菌明显减少,最终表现出连作障碍[25]。本研究结果表明,伴生芹菜处理能显著提高放线菌数量,降低真菌数量,细菌数量则与单作无显著差异;而伴生紫背天葵处理其细菌、真菌和放线菌数量与单作均无显著差异,说明伴生芹菜处理更有利于改善土壤微生物群落结构。类似结果在其他作物的研究中也得到了证实,如杨瑞娟等[26]研究表明大麦、小麦伴生番茄处理能显著增加土壤中放线菌数量,而显著降低真菌数量;徐伟慧等[10]通过小麦伴生西瓜处理,土壤中放线菌数量显著增加,而真菌数量显著降低。芹菜伴生使豇豆根际土壤放线菌数量增加的原因可能与芹菜根系分泌物的种类和数量有关;根系分泌物可为根际微生物生长、繁殖提供碳和能源,分泌物的种类和数量影响着根际微生物的种类和数量,以及微生物群落结构[27]。伴生紫背天葵处理对豇豆根际土壤微生物的影响与单作之间无显著差异,这可能与紫背天葵根系生长环境不同有关。

土壤酶是由植物根系、微生物以及土壤动物和动植物残体释放[18],它参与土壤生态系统代谢过程,并与土壤微生物和养分含量息息相关[2829]。根际土壤酶活性的增强对土壤有机质的分解转化具有重要作用[28]。本试验表明,伴生芹菜和紫背天葵处理均提高了土壤脲酶、蔗糖酶、多酚氧化酶和酸性磷酸酶活性,其中土壤酶活性以紫背天葵伴生效果最好。这与前人证实合理的伴生栽培模式能提高根区土壤酶活性的结论相一致[10, 14]。有研究表明,蔗糖酶、脲酶活性在连作2年时有所上升,之后随着种植年限的增加,土壤酶活性呈现逐年降低的趋势[30]。土壤酶活性与土壤中各营养元素的释放和贮存、土壤中腐殖质的形成与发育、以及土壤的结构和物理状况都是密切相关的;换言之,它们参与了土壤的发生和发育以及土壤肥力的形成和演化的全过程[18]。因此,伴生芹菜和紫背天葵处理均能提高土壤酶活性,改善土壤理化性质,增强土壤肥力,更利于植物生长发育,这可能是伴生芹菜和紫背天葵缓解豇豆连作障碍的原因之一。适宜的土壤pH和电导率更有利于蔬菜植物的生长发育。伴生芹菜和紫背天葵均能提高土壤pH和降低土壤电导率。这与韩哲等[31]研究的利用D123小麦残茬处理缓解西瓜连作障碍能提高连作西瓜土壤pH而降低土壤电导率的结论一致。原因可能是芹菜和紫背天葵根系分泌的有机物质被土壤微生物利用,进而活化了土壤中的养分所致。

逆境胁迫会打破植物细胞内的稳态环境平衡,促使植物细胞内活性氧大量积累从而引发植物细胞内的防御响应,其中包括酶类活性氧清除系统[32]。酶类活性氧系统清除体内的活性氧需依赖抗氧化酶,其中包括POD、CAT、GR和DHAR等,它能达到保护植物自身以减轻环境胁迫对植物的伤害的目的,抗氧化酶是植物抗逆性保护机制的一个重要组成部分[33]。试验结果表明,伴生芹菜处理能显著提高POD、GR和DHAR活性,但CAT活性和单作相比无显著差异;伴生紫背天葵处理其CAT、GR活性显著提高,而POD、DHAR活性与单作处理无显著差异。抗氧化酶活性提高可以有效清除豇豆体内的活性氧,以伴生芹菜处理效果最好,说明伴生芹菜处理更有助于提高豇豆抵抗逆境胁迫的能力。类似结果在高春琦研究伴生小麦延缓黄瓜叶片衰老机理中发现,与黄瓜单作相比,伴生小麦在一定程度上提高了叶绿素含量、减缓了蛋白降解速度、增加了超氧化物歧化酶和过氧化物酶活性,增强了黄瓜的抗逆性,从而减缓黄瓜叶片的衰老速度[34]。高等植物叶绿体中的叶绿素主要有叶绿素a和叶绿素b两种,它在光合作用的光吸收中起核心作用。研究发现,D125小麦伴生西瓜处理,叶片叶绿素a含量和叶绿素a/b值能显著提高,净光合速率也提高[35]。玉米花生间作能显著提高玉米叶绿素含量,从而使光反应中心吸收较多的光能进行光反应,提升净光合速率,最终与单作玉米相比,间作模式能显著增加玉米产量[36]。本试验与以上研究结果类似,伴生芹菜处理其豇豆叶片的叶绿素a、叶绿素b、叶绿素a + b含量均显著增加,最后豇豆单株产量也显著高于单作豇豆。而伴生紫背天葵处理叶绿素a、叶绿素b和叶绿素a + b含量与单作相比均无显著差异,但是最后豇豆单株产量显著提高,这可能和紫背天葵处理能显著提高豇豆土壤酶活性有关。

4 结论

芹菜伴生处理能显著提高连作豇豆株高、茎粗和生物量;芹菜和紫背天葵伴生连作豇豆均可以提高叶片抗氧化酶活性和根际土壤酶活性,以及提高土壤pH值和降低土壤电导率,改善根际土壤理化性质;芹菜伴生处理还能改善土壤微生物群落结构,使根际土壤环境向着有益的方向发展;芹菜和紫背天葵伴生都能提高豇豆产量。伴生处理均有利于缓解豇豆连作障碍,其中以芹菜伴生处理的效果较佳。

参考文献
[1] 喻景权, 周杰. " 十二五”我国设施蔬菜生产和科技进展及其展望[J]. 中国蔬菜, 2016, 1(9): 18–30.
Yu J Q, Zhou J. Progress in protected vegetable production and research during China's 12th five-year plan[J]. China Vegetables, 2016, 1(9): 18–30. DOI:10.3969/j.issn.1000-6346.2016.09.006
[2] 瞿云明, 杨新琴, 赵建阳, 等. 豇豆连作障碍消减关键技术[J]. 北方园艺, 2017, (4): 205–207.
Qu Y M, Yang X Q, Zhao J Y. Key techniques for alleviating continuous cropping obstacle of vigna unguiculata[J]. Northern Horticulture, 2017, (4): 205–207.
[3] Tiroesele B, Matshela O. The effect of companion planting on the abundance of cabbage aphid, Brevicoryne brassicae L., on kale (Brassica oleracea var. acephala) [J]. Journal of Plant and Pest Science, 2015, 2(3): 57–65.
[4] Yang R P, Mo Y L, Liu C M, et al. The effects of cattle manure and garlic rotation on soil under continuous cropping of watermelon (Citrullus lanatus L.) [J]. PLoS One, 2016, 11(6): e0156515. DOI:10.1371/journal.pone.0156515
[5] Gao D M, Zhou X G, Duan Y D, et al. Wheat cover crop promoted cucumber seedling growth through regulating soil nutrient resources or soil microbial communities?[J]. Plant & Soil, 2017, 418: 1–17.
[6] Razze J M, Liburd O E, Webb S E. Intercropping buckwheat with squash to reduce insect pests and disease incidence and increase yield[J]. Journal of Sustainable Agriculture, 2016, 40(8): 863–891.
[7] Ahmad A A, Radovich T J K, Hue N V. Effect of intercropping three legume species on growth and yield of sweet corn (Zea mays) in Hawaii [J]. Journal of Crop Improvement, 2015, 29(3): 370–378. DOI:10.1080/15427528.2015.1041666
[8] Fu X P, Wu X, Zhou X G, et al. Companion cropping with potato onion enhances the disease resistance of tomato against verticillium dahliae [J]. Frontiers in Plant Science, 2015, 6(1): 726.
[9] 吴瑕, 吴凤芝, 周新刚. 分蘖洋葱伴生对番茄矿质养分吸收及灰霉病发生的影响[J]. 植物营养与肥料学报, 2015, 21(3): 734–742.
Wu X, Wu F Z, Zhou X G. Effect of intercropping with tillered onion on mineral nutrient uptake and gray mold disease occurrence of tomato[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 734–742.
[10] 徐伟慧, 吴凤芝. 西瓜根际土壤酶及微生物对小麦伴生的响应[J]. 浙江农业学报, 2016, 28(9): 1588–1594.
Xu W H, Wu F Z. Response of soil enzymes activities and microorganism in rhizosphere of watermelon to wheat as companion crop[J]. Acta Agriculturae Zhejiangensis, 2016, 28(9): 1588–1594. DOI:10.3969/j.issn.1004-1524.2016.09.19
[11] 衡森, 周福才, 陈学好, 等. 芹菜不同种植方式对3种蔬菜田烟粉虱的控制作用[J]. 植物保护, 2017, 43(3): 110–113.
Heng S, Zhou F C, CHEN X H, et al. Control effects of different planting ways of celery on Bemisia tabaci on three vegetable species [J]. Plant Protection, 2017, 43(3): 110–113. DOI:10.3969/j.issn.0529-1542.2017.03.018
[12] 赵晴. 伴生弱选择性蔬菜对黄瓜烟粉虱的防治作用及其机理初步研究[D]. 北京: 中国农业大学博士学位论文, 2014.
Zhao Q. The effect of less preferred vegetables against the Bemisia tabaci on cucumber and a preliminary study on its mechanism. [D]. Beijing: PhD Dissertation of China Agricultural University, 2014.
[13] 王东凯, 杨威, 吴凤芝, 等. 不同栽培方式对设施黄瓜主要病害及品质的影响[J]. 北方园艺, 2012, (9): 10–13.
Wang D K, Yang W, Wu F Z, et al. Effect of different cultivation modes on cucumber growth and the numbers of culturable rhizosphere soil microorganisms[J]. Northern Horticulture, 2012, (9): 10–13.
[14] 韩哲, 刘守伟, 潘凯, 等. 不同栽培模式对黄瓜根际土壤酶活性及细菌群落结构的影响[J]. 植物营养与肥料学报, 2012, 18(4): 922–931.
Han Z, Liu S W, Pan K, et al. Effects of cultivation modes on soil enzyme activities and bacterial community structures in the cucumber rhizosphere[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 922–931.
[15] 王彦平, 杨庆莹, 汤高奇, 等. 紫背天葵营养成分、保健功能及开发利用研究进展[J]. 食品研究与开发, 2017, 38(13): 213–216.
Wang Y P, Yang Q Y, Tang G Q, et al. Research progress on nutritional and healthy functions of gynura bicolor[J]. Food Research and Development, 2017, 38(13): 213–216. DOI:10.3969/j.issn.1005-6521.2017.13.046
[16] 罗开梅, 黄轶群, 张国广, 等. 紫背天葵提取物的抑菌活性研究[J]. 闽南师范大学学报(自然科学版), 2011, 24(4): 83–86.
Luo K M, Huang Y Q , Zhang G G, et al. Study on antimicrobial effect of the extracts from gynura[J]. Journal of Minnan Normal University (Nat. Sci.), 2011, 24(4): 83–86. DOI:10.3969/j.issn.1008-7826.2011.04.015
[17] 许光辉. 土壤微生物分析方法手册 [M]. 北京: 农业出版社, 1986.
Xu G H. Soil microbiology analysis handbook [M]. Beijing: Agriculture Press, 1986.
[18] 关松荫. 土壤酶及其研究法 [M]. 北京: 农业出版社, 1986.
Guan S Y. Soil enzyme and its research method [M]. Beijing: Agriculture Press, 1986.
[19] 李合生. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社, 2000.
Li H S. Principles and techniques of plant physiology and biochemistry experiment [M]. Beijing: Higher Education Press, 2000.
[20] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiology, 1992, 98(4): 1222. DOI:10.1104/pp.98.4.1222
[21] Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21–25. DOI:10.1007/BF00386001
[22] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant & Cell Physiology, 1981, 22(5): 867–880.
[23] 陈天祥, 孙权, 顾欣, 等. 设施蔬菜连作障碍及调控措施研究进展[J]. 北方园艺, 2016, (10): 193–197.
Chen T X, Sun Q, Gu X, et al. Research progress of continuous cropping obstacles of amenities vegetable and its control measures[J]. Northern Horticulture, 2016, (10): 193–197.
[24] Macdonald C. Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with pinus radiata[J]. Soil Biology & Biochemistry, 2009, 41(8): 1642–1651.
[25] Zhang H L, Jiang Z T, Liu L D, et al. Effects of intercropping on microbial community function and diversity in continuous watermelon cropping soil[J]. Fresenius Environmental Bulletin, 2015, 24(10A): 3288–3294.
[26] 杨瑞娟, 王腾飞, 周希, 等. 禾本科作物伴生对番茄根区土壤酶活性、微生物及根结线虫的影响[J]. 中国蔬菜, 2017, 1(3): 38–42.
Yang R J, Wang T F, Zhou X, et al. Effects of companion cereal crops on soil enzyme activities, microorganism and root knot nematodes of tomato rhizosphere[J]. China Vegetables, 2017, 1(3): 38–42.
[27] 刘峰, 温学森. 根系分泌物与根际微生物关系的研究进展[J]. 食品与药品, 2006, 8(10): 37–40.
Liu F, Wen X S. Progress in relationship between root exudates and rhizospheric microorganism[J]. Food and Drug, 2006, 8(10): 37–40. DOI:10.3969/j.issn.1672-979X.2006.10.011
[28] Utobo E. Soil enzymes as bioindicators of soil ecosystem status[J]. Applied Ecology & Environmental Research, 2014, 13(1): 147–169.
[29] Kotroczó Z, Veres Z, Fekete I, et al. Soil enzyme activity in response to long-term organic matter manipulation[J]. Soil Biology & Biochemistry, 2014, 70(2): 237–243.
[30] 陈继峰, 孙会, 夏阳, 等. 不同连作年限烟田土壤酶活性及养分含量变化[J]. 河南农业科学, 2016, 45(10): 60–64.
Chen J F, Sun H, Xia Y, et al. Changes of enzyme activities and nutrient contents in continuous cropping tobacco soil for different years[J]. Journal of Henan Agricultural Sciences, 2016, 45(10): 60–64.
[31] 韩哲, 徐丽红, 刘聪, 等. 小麦残茬对连作西瓜生长及根际土壤微生物的影响[J]. 中国农业科学, 2016, 49(5): 952–960.
Han Z, Xu L H, Liu C, et al. Effect of wheat residues on growth and rhizosphere microorganisms of continuously monocropped watermelon[J]. Scientia Agricultura Sinica, 2016, 49(5): 952–960.
[32] 薛鑫, 张芊, 吴金霞. 植物体内活性氧的研究及其在植物抗逆方面的应用[J]. 生物技术通报, 2013, (10): 6–11.
Xue X, Zhang Q, Wu J X. Research of reactive oxygen species in plants and its application on stress tolerance[J]. Biotechnology Bulletin, 2013, (10): 6–11.
[33] 杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报(自然科学版), 2016, 45(5): 481–489.
Yang S Y, Chen X Y, Hui W K, et al. Progress in responses of antioxidant enzyme systems in plant to environmental stresses[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(5): 481–489.
[34] 高春琦. 伴生小麦延缓黄瓜叶片衰老的生理及分子机理[D]. 哈尔滨: 东北农业大学硕士学位论文, 2014.
Gao C Q. Physiological and molecular mechanisms of delaying cucumber leaf senescence as accompany growth with wheat [D]. Harbin: MS Thesis of Northeast Agricultural University, 2014.
[35] 徐伟慧, 吴凤芝, 王志刚, 等. 连作西瓜光合特性及抗病性对小麦伴生的响应[J]. 中国生态农业学报, 2014, 22(6): 655–660.
Xu W H, Wu F Z, Wang Z G, et al. Response of photosynthetic characteristics and disease resistance of watermelon to companion with wheat[J]. Chinese Journal of Eco-Agriculture, 2014, 22(6): 655–660.
[36] 焦念元, 宁堂原, 杨萌珂, 等. 玉米花生间作对玉米光合特性及产量形成的影响[J]. 生态学报, 2013, 33(14): 4324–4330.
Jiao N Y, Ning T Y, Yang M K, et al. Effects of maize peanut intercropping on photosynthetic characters and yield forming of intercropped maize[J]. Acta Ecologica Sinica, 2013, 33(14): 4324–4330.