植物营养与肥料学报   2018, Vol. 24  Issue (5): 1313-1320 
0
PDF 
施氮提高矿山生态型水蓼富集土壤磷能力研究
郭瑀, 李廷轩 , 张锡洲    
四川农业大学资源学院,四川成都 611130
摘要: 【目的】 适宜施氮可促进植物对磷的积累。本文探讨了施氮对磷富集植物磷积累能力的促进作用,为有效利用植物修复土壤磷过剩、减少磷的面源污染提供依据。【方法】 以磷富集植物矿山生态型水蓼(Polygonum hydropiper)为研究对象,非矿山生态型水蓼为对照,进行了土培盆栽试验。供试土壤为灰潮土,每盆(6 L)装土6 kg,基施800 mg/kg磷,陈化4周后分别施入处理的施氮量(0、25、50、100、200 mg/kg土),陈化后土壤有效磷为457 mg/kg。取2.5 kg土装入直径15 cm、高7.5 cm的尼龙纱网根袋(400目,孔径约38 µm)中,置于盆中央,其余3.5 kg土装入盆中。选取三叶一心的水蓼幼苗移栽至根袋中,每盆种2株,按田间持水量的70%确定灌水量,移栽10周后收获,调查水蓼生物量、分析植株磷含量。去掉表层2 cm土壤,采集根袋内、外土壤作根际、非根际土,用于测定土壤有效磷含量。【结果】 1) 供试施氮量范围内,矿山生态型水蓼地上部生物量、磷含量、磷积累量均在100 mg/kg土施氮量下达到最大,为不施氮处理的4.57、1.33、6.10倍,地上部磷积累量为228 mg/株;矿山生态型地上部磷含量和磷积累量在50、100、200 mg/kg土施氮量下均显著高于非矿山生态型,分别为非矿山生态型的1.14、1.08、1.03倍和1.25、1.11、1.09倍。2) 随施氮量的增加,矿山生态型地下部生物量、磷含量、磷积累量均逐渐增加,但均低于非矿山生态型,地下部磷积累量仅为非矿山生态型的39.5%~84.2%。3) 施氮处理条件下,矿山生态型磷富集系数及转运系数均大于1,在100 mg/kg土施氮量下达最大值,分别为12.5和1.33,明显高于相同施氮处理下非矿山生态型,为非矿山生态型的1.09、1.53倍,这表明矿山型水蓼向上运转磷的能力更强。4) 施氮增加了矿山生态型水蓼根际土壤有效磷含量,在施氮量为50、100、200 mg/kg土 时增长最为明显,且明显高于非根际土壤,更有利于植株对磷的吸收积累。【结论】 高磷条件下,施氮提高了根际土壤中的有效磷含量,增加了矿山生态型水蓼地上部积累磷的能力,100 mg/kg土施氮量为盆栽试验适宜用量,实际应用中的用量还需进一步试验。
关键词:      水蓼     磷积累     生态型     植物修复    
Application of nitrogen to increase phosphorus accumulation of Polygonum hydropiper with mining ecotype
GUO Yu, LI Ting-xuan , ZHANG Xi-zhou    
College of Resources, Sichuan Agricultural University, Chengdu 611130, China
Abstract: 【Objectives】 Appropriate nitrogen (N) application can improve phosphorus (P) accumulation in plants. The effect were testified using phosphorous hyper accumulator plants in this paper, which would provide practical support for effective remediation in environmental P pollution and the non-point source pollution of P. 【Methods】 Taking mining ecotype (ME) of Polygonum hydropiper as tested materials and non-mining ecotype (NME) as control, a pot experiment was conducted in a greenhouse under natural light at Sichuan Agricultural University, Sichuan Province, China in 2015. The used soil, calcareous alluvial soil, was applied 800 mg/kg of P and then designed N levels (0, 25, 50, 100 and 200 mg/kg soil) after standing for 4 weeks for stabilizing. The soil available P concentration became 425 mg/kg afterwards. Total 6 kg of the treated soils, 2.5 kg was loaded inside the root bags with 38 µm of pores in the central of pots and 3.5 kg outside the bags. 2 plants at age of three leaves and one sprout were transplanted inside the root bags for each pot, and the soil moisture was kept 75% of the field capacity. After growing for 10 weeks, the plants were harvested, the biomass were weighed and the P concentrations were determined. The soil samples both inside and outside the root bags were raped off the top 2 cm surface, and the available P concentrations were analyzed separately. 【Results】 1) The biomass, P concentration and P accumulation in shoots of ME reached the maximum under the N application rate of 100 mg/kg, which were 4.57, 1.33 and 6.10 times of those in the control plants. The P accumulation in shoots was increased to 228 mg/plant. The P concentration and P accumulation in shoots of ME were significantly higher than those in NME under N application rate of 50, 100 and 200 mg/kg, respectively, which were 1.14, 1.08, 1.03 and 1.25, 1.11, 1.09 times of NME. 2) The biomass, P concentration and P accumulation in roots of ME were increased with increasing N application. ME presented lower P concentration and P accumulation in roots, the P accumulation in roots were only 39.5% - 84.2% of NME. 3) Under the condition of N application, both bioaccumulation coefficient and translocation factor of P in ME were larger than 1, and reached the maximum under 100 mg/kg N application, which were 12.5 and 1.33, respectively. The bioaccumulation coefficient and translocation factor of P in ME were significantly higher than those in NME, which were 1.08 and 1.53 times of NME under 100 mg/kg N application, respectively. This indicated that the higher P transportation from roots to shoots in ME than the NME. 4) The N application improved P availability in rhizosphere soils of ME, which was more pronounced at 50, 100 and 200 mg/kg. In addition, it was higher than the corresponding bulk soil at any N treatments, thus promoting its P accumulation. 【Conclusions】 N application could effectively improve the up transportation and accumulation of P in the shoot of mining ecotype of Polygonum hydropiper, which are obtained by increasing the shoot biomass and the availability of soil P under high P condition. The optimal N application was 100 mg/kg in the pot experimental condition, and further experiment is needed for the practice of the remediation of P pollution in large scale.
Key words: nitrogen     Polygonum hydropiper     phosphorus accumulation     ecotype     phytoremediation    

农业生产中磷肥的大量投入和畜禽粪便的不合理施用,导致磷在土壤中大量积累,易对生态环境构成威胁[1]。磷富集植物对高磷环境具有很强的适应性,可有效提取土壤中过量的磷[2]。目前,筛选出的黄瓜 (Cucumis sativus)、西葫芦 (Cucurbita pepo)、狗牙草 (Cynodon dactylon)、黑麦草 (Lolium multiflorum) 等磷富集植物,存在着磷含量较低或生物量较小的缺点,导致植物对磷的积累能力有限[3, 4]。因此,需寻求一种经济有效的方法以提高磷富集植物的磷积累能力。

间作种植豆科植物、添加溶磷微生物或培育转基因磷富集植物等均能提高植物磷积累能力[57],但在应用上存在较多限制。再力花 (Thalia dealbata)、鸢尾 (Iris tectorum)、菖蒲 (Acorus calamus) 等不同湿地植物对污水中的氮和磷均具有较好的去除效果[8];黄瓜在吸收磷的同时,对氮也具有较大的需求量,且随生长期的延长其氮磷含量均逐渐增加[9]。因此,可采用施氮的方式提高磷富集植物的磷积累能力。余红梅等[10]指出,施氮可显著提高种植在高磷土壤上的磷富集植物矿山生态型粗齿冷水花 (Pilea sinofasciata) 的生物量和磷含量,增强植物对土壤磷的提取能力;适宜施氮可有效提高磷富集牧草百喜草 (Paspalum notatum) 和扁穗牛鞭草 (Hemarthria altissima) 的生物量和磷去除量,以降低表层土壤磷含量[11]

前期研究发现,高无机磷条件下矿山生态型水蓼磷富集能力强于非矿山生态型,地上部磷积累量可达105 mg/株,非矿山生态型仅为31.3 mg/株[12];有机磷源处理下矿山生态型水蓼表现出较强的磷吸收积累能力,但地上部磷积累量较无机磷处理有所下降[13]。由此可见,矿山生态型水蓼对高磷环境具有很强的适应能力,其磷富集能力仍有待提高。本文以磷富集植物矿山生态型水蓼为材料,研究高磷条件下施氮对矿山生态型水蓼磷积累能力的影响,确定适宜施氮量,为后期合理利用矿山生态型水蓼提取土壤中过量的磷提供一定的理论依据。

1 材料与方法 1.1 供试材料

供试植物:水蓼 (Polygonum hydropiper),矿山生态型种子采自四川省什邡磷矿区 (104°01′ E, 31°25′ N),非矿山生态型种子采自四川省都江堰市灵岩山 (103°36′ E, 31°00′ N)。

供试土壤:灰潮土,采自四川省都江堰市浦阳镇双柏村,基本理化性质为pH 6.32、有机质15.9 g/kg、全氮1.39 g/kg、碱解氮53.1 mg/kg、速效钾51.8 mg/kg、有效磷4.65 mg/kg。

供试肥料:尿素 (N 46.67%)、磷酸二氢钾 (P2O5 52.1%,K2O 34.6%),均为分析纯。

1.2 试验设计与处理

试验设施氮 (N)量为 0 (CK)、25、50、100、200 mg/kg土共5个处理,所有处理基施磷 (P) 800 mg/kg。每处理重复3次,完全随机排列。采用土培盆栽试验,将土壤风干磨碎后,过筛混匀,每盆 (6 L) 装土6 kg。装盆前施入磷,陈化4周,移栽前施入氮肥,磷、氮施入时以溶液的形式加入,并充分混匀。取2.5 kg土装入直径15 cm、高7.5 cm的尼龙纱网根袋中 (400目,孔径约38 µm),置于盆中央,其余3.5 kg土装入盆中。陈化后土壤有效磷为457 mg/kg。

分别选取饱满度一致的两种生态型水蓼种子,用10%的H2O2消毒30 min,经30℃温水浸泡6 h后,播种于装有珍珠岩和蛭石的塑料盘,放入25℃恒温培养箱中,待种子萌发后,从培养箱中取出在室温下培育。待水蓼生长至三叶一心时,选取长势一致的幼苗移栽至根袋中,每盆种2株,按田间持水量的70%确定灌水量,采用自然光照和常规管理。试验于2015年6月至8月,在四川农业大学大佛寺教学科研实习苗圃有防雨设施的网室中进行。

1.3 样品采集与制备

于移栽后10周采样,植株样品先用自来水冲洗再用蒸馏水润洗,洗净后用吸水纸擦干,将其分为地上部和地下部。装袋后于105℃杀青30 min,75℃烘干至恒重,粉碎后过1 mm筛用于测定磷含量。

根袋内去掉表面2 cm土,收集袋内其余土壤作为根际土,根袋外2 cm土壤为非根际土。土样风干贮存,用于土壤有效磷的测定。

1.4 测定项目及方法

采用H2SO4–H2O2消煮—钒钼黄比色法[14] 测定植株磷含量;土壤有效磷测定采用0.5 mol/L NaHCO3提取—钼锑抗比色法[14]

1.5 数据处理

富集系数 = 植株磷含量/土壤有效磷含量;

转运系数 = 植株地上部磷含量/地下部磷含量;

采用DPS (11.0) 进行统计分析,选择LSD法进行多重比较,图表制作采用Excel (2013) 和Origin 8.1。

2 结果与分析 2.1 高磷条件下施氮对矿山生态型水蓼生物量的影响

图1可知,随施氮量的增加,两种生态型地上部和地下部生物量均先升高后降低,在施氮量为100 mg/kg时达到最大,其中矿山生态型地上部和地下部生物量分别为40.03 g/株和3.24 g/株,地上部生物量明显大于地下部。各施氮处理下,矿山生态型地上部生物量,分别为不施氮处理的2.58、3.91、4.57、2.59倍。但两种生态型地上部生物量无显著差异。与非矿山型相比,施氮更有利于矿山生态型地下部生物量的提高,各施氮处理下,矿山生态型地下部生物量为不施氮处理的2.10、3.19、3.48、2.90倍,非矿山生态型为1.76、2.17、2.76、1.85倍。但矿山生态型地下部生物量在0、25、100 mg/kg施氮量下显著低于非矿山生态型,仅为非矿山生态型的56.7%、67.7%、71.1%。以上结果表明,100 mg/kg施氮量更有利于水蓼地上部生物量的增加。

图1 不同施氮量下两种生态型水蓼地上部和地下部的生物量 Fig. 1 Biomass of the shoots and the roots in two ecotypes of Polygonum hydropiper grown under different dosages of N [注(Note):柱上不同字母表示不同施氮量间差异显著 (P < 0.05),*表示同一处理不同生态型间差异显著 (P < 0.05) Different letters above the bars mean significantly different among the N treatments (P < 0.05) and * means significantly different between the ecotypes (P < 0.05)].
2.2 高磷条件下施氮对矿山生态型水蓼磷积累能力的影响 2.2.1 磷含量

表1可知,随施氮量的增加,两种生态型地上部和地下部磷含量逐渐增加,矿山生态型地上部和非矿山生态型地下部在100 mg/kg后趋于平稳。高磷条件下,矿山生态型地上部和地下部磷含量在施氮处理下均显著高于不施氮处理。各施氮处理下,矿山生态型地上部磷含量为不施氮处理的1.14、1.25、1.33、1.32倍,矿山生态型地下部的磷含量为不施氮处理的1.13、1.20、1.22、1.53倍。矿山生态型地上部磷含量在50、100、200 mg/kg施氮量下均显著高于非矿山生态型,为非矿山生态型的1.14、1.08、1.03倍;但相同处理下,矿山生态型的地下部磷含量均显著低于非矿山生态型,为非矿山生态型的70.0%、73.1%、74.4%、70.8%、91.8%。表明施氮能有效提高矿山生态型地上部磷含量。

表1 不同施氮量下两种生态型水蓼的磷含量 (g/kg) Table 1 P concentrations in two ecotypes of Polygonum hydropiper grown under different dosages of N
2.2.2 磷积累量

图2可知,随着施氮量的增加,两种生态型地上部和地下部磷积累量逐渐增加,两种生态型地上部及非矿山生态型地下部的磷积累量在100 mg/kg达到最大,其中矿山生态型地上部磷积累量最大为228 mg/株。施氮显著提高了矿山生态型地上部和地下部的磷积累量,各施氮处理下,矿山生态型地上部磷积累量分别为不施氮处理的2.93、4.89、6.10、3.43倍;矿山生态型地下部磷积累量为不施氮的2.38、3.83、4.44、4.24倍。相同施氮量下,矿山生态型地上部磷积累量均显著高于非矿山生态型,为非矿山生态型的1.08、1.25、1.11、1.09倍;但矿山生态型地下部磷积累量均显著低于非矿山生态型,仅为非矿山生态型的39.5%、49.4%、62.2%、52.5%、77.7%。表明,施氮更有利于矿山生态型水蓼地上部磷积累量的增加。

图2 不同施氮量下两种生态型水蓼地上部和地下部的磷积累量 Fig. 2 P accumulation of the shoots and the roots in two ecotypes of Polygonum hydropiper grown under different dosages of N [注 (Note):柱上不同字母表示不同施氮量间差异显著 (P < 0.05),*表示同一处理不同生态型间差异显著 (P < 0.05) Different letters above the bars mean significantly different among the N treatments (P < 0.05) and * means significantly different between the ecotypes (P < 0.05).]
2.2.3 磷富集系数和转运系数

富集系数反映了植物对磷的吸收能力。由表2可知,施氮增加了两种生态型的磷富集系数,其中矿山生态型磷富集系数在100 mg/kg施氮量下达到最大值。相同施氮量下,矿山生态型磷富集系数高于非矿山生态型,在50、100 mg/kg时分别为非矿山生态型的1.14、1.08倍。表明施氮促进了矿山生态型水蓼对磷的吸收。

转运系数主要表征植物向地上部转移磷的能力。随施氮量的增加,矿山生态型水蓼转运系数表现为先升高后降低。在25、50、100 mg/kg施氮处理下,矿山生态型转运系数均高于不施氮处理,最高可达1.33。相同施氮量下,矿山生态型转运系数高于非矿山生态型,在25、50、100 mg/kg时分别为非矿山生态型的1.38、1.53、1.53倍。因此,施氮有利于矿山生态型水蓼将更多的磷转移到地上部,增强植株地上部对磷的积累。

表2 不同施氮量下两种生态型水蓼的磷富集系数和转运系数 Table 2 Bioaccumulation coefficients and translocation factors of P in two ecotypes of Polygonum hydropiper grown under different dosages of N
2.3 施氮对矿山生态型水蓼根际土壤有效磷含量的影响

表3可知,随着施氮量的增加,矿山生态型水蓼根际土壤有效磷含量先升高后趋于平稳,而非矿山生态型根际土壤和两种生态型非根际土壤均无显著变化。在50、100、200 mg/kg施氮量下,矿山生态型根际土壤有效磷含量与不施氮相比分别增加了8.39%、6.45%、7.74%。相同施氮量下,矿山生态型根际土壤有效磷含量均显著高于非矿山生态型根际土壤,分别为非矿山生态型的1.29、1.33、1.39、1.33、1.42倍;相同施氮量下,两种生态型非根际土壤有效磷含量无显著差异。同时,矿山生态型根际土壤有效磷含量明显高于非根际土壤,为非根际土壤的1.26、1.31、1.42、1.40、1.39倍,而非矿山生态型根际土壤与非根际土壤之间差异不大。表明,施氮提高了矿山生态型水蓼根际土壤的有效磷含量。

表3 不同施氮量下两种生态型水蓼的土壤有效磷含量 (mg/kg) Table 3 Soil available P content in two ecotypes of Polygonum hydropiper grown under different N dosages
3 讨论

目前,有关磷富集植物的研究多集中于磷富集植物的筛选比较和富磷特性的研究等方面,对提高植物磷富集能力的研究较少[15, 16]。氮是植物所需的大量营养元素,参与植物生长调节[17]。增施氮肥可显著增加植物茎秆、叶片等部位的生物量[18]。Soons等[19]发现,施氮可增加高磷土壤植物地上部的生物量,与不施氮相比生物量可增加139%;种植在高磷土壤上的磷富集植物黑麦草和狗牙根,在适宜施氮条件下也具有更大的生物量[3]。本研究中,高磷条件下,施氮促进了矿山生态型水蓼地上部生物量的增加,且在施氮量为100 mg/kg时达到最大。高磷条件下,植物净光合速率下降,施氮能提高叶片光合作用,促进光合产物积累,进而促进生物量增加[20]。不同生态型植物对环境具有不同的适应性,生长在逆境中的植物具有更高的耐性[21]。在本研究中,虽在各施氮量下,矿山生态型地下部生物量显著低于非矿山生态型。但前期水培试验发现,矿山生态型的总根长、比根长、根表面积均显著高于非矿山生态型,具有较多细根结构[22]。较多的细根结构更有利于矿山生态型对养分的吸收。

施氮影响植物生长的同时,也参与磷的吸收积累与分配[23]。增加施氮量,能提高植物对磷的吸收和积累能力[2425]。Dodd等[26]指出,施用氮肥能显著提高牧草的磷积累量,降低土壤中可溶性磷的含量,减少磷淋失风险。本研究中,施氮增加了矿山生态型地上部的磷含量、磷积累量,其中磷积累量在施氮量为100 mg/kg时达到最大,为228 mg/株。在高磷水培条件和高磷猪粪处理下,矿山生态型水蓼地上部磷积累量为40.5 mg/株和65.9 mg/株[13, 27];多年生磷富集植物矿山生态型粗齿冷水花的整株磷积累量也仅为129 mg/株[10],均低于本研究中适宜施氮条件下矿山生态型水蓼地上部磷积累量,说明适宜施氮能提高矿山生态型的磷积累能力。施氮促进植物中磷积累量的增加,与氮磷协同作用密切相关[28]。施氮能增加磷酸盐吸收相关基因的表达量,促进植物对磷的吸收[2930]。同时,矿山生态型地上部磷含量、磷积累量、转运系数在施氮量为50、100、200 mg/kg时,均高于非矿山生态型,具有更强的向地上部富集磷的能力。根系吸收的磷主要通过磷酸盐转运蛋白向地上部运输[31]。磷酸盐转运蛋白合成量的增加,能促进磷从根系向地上部的运输,增加地上部磷积累量[32]。较高的磷酸盐转运蛋白丰度也能提高植物对高磷条件的适应性[33]。矿山生态型地上部磷积累量更高而地下部磷积累量更低,可能是由于体内具有更高的磷酸盐转运蛋白。应用植物修复技术去除土壤中的污染物,一般仅收割植物地上部,地下部被保留在土壤中[34]。矿山生态型水蓼将磷更多地积累在地上部,地下部积累较少,更有利于通过地上部的收获,带走土壤中过量的磷。

有效磷是土壤中可被植物直接吸收利用的磷形态,是评价土壤供磷能力的重要指标[35]。在不施肥的情况下,植物的生长会降低植物根际土壤中有效磷的含量[36]。周纪冬等[37]指出,随着施氮强度的增加,土壤有效磷的含量呈增加趋势。本研究发现,与不施氮相比,施氮显著提高了矿山生态型根际土壤有效磷含量。这可能与根系分泌物有关[38]。施氮可增加植物根系分泌物的含量,通过调节根际土壤pH,降低土壤对磷的固定,提高根际土壤的有效磷含量[39]。此外,矿山生态型根际土壤的有效磷含量显著高于非矿山生态型。矿山生态型水蓼根系分泌的酸性磷酸酶和植酸酶活性均高于非矿山生态型[12]。磷酸酶活性的增加,有利于土壤中难利用的磷向有效态转化[40]。因此,矿山生态型根际土壤中有效磷含量更高,更有利于植株对磷的吸收积累。

4 结论

高磷条件下,施氮增加了矿山生态型水蓼生物量、磷含量和磷积累量,并促进了植株中的磷向地上部迁移,在100 mg/kg施氮量下,地上部磷积累量达228 mg/株。与非矿山生态型相比,施氮更有利于矿山生态型磷积累能力的提升。施氮为矿山生态型水蓼根际土壤提供了更多可利用的磷,促进了植物对磷的积累。本研究中,矿山生态型水蓼适宜施氮量为100 mg/kg。

参考文献
[1] Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil, 2011, 349(1-2): 157–167. DOI:10.1007/s11104-011-0909-5
[2] 吴浩, 卢志军, 黄汉东,等. 三种植物对土壤磷吸收和富集能力的比较[J]. 植物生态学报, 2015, 39(1): 63–71.
Wu H, Lu Z J, Huang H D, et al. Comparison of phosphorus uptake and accumulation capacity among three plant species[J]. Chinese Journal of Plant Ecology, 2015, 39(1): 63–71.
[3] Read J J. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus-enriched soils[J]. Agronomy Journal, 2012, 104(4): 908–916. DOI:10.2134/agronj2011.0385
[4] 卫泽斌, 胡启智, 刘雯,等. 利用磷富集植物去除和回收污水中的磷[J]. 水处理技术, 2010, 36(4): 6–8.
Wei Z B, Hu Q Z, Liu W, et al. Removing and recovering phosphorus from wastewater by phosphorus-accumulating plant[J]. Technology of Water Treatment, 2010, 36(4): 6–8.
[5] 邓小燕, 王小春, 杨文钰,等. 玉米/大豆和玉米/甘薯模式下玉米磷素吸收特征及种间相互作用[J]. 作物学报, 2013, 39(10): 1891–1898.
Deng X Y, Wang X C, Yang W Y, et al. Phosphorus uptake and utilization of maize and inter-species interactions in maize/soybean and maize/sweet potato relay intercropping systems[J]. Acta Agronomica Sinica, 2013, 39(10): 1891–1898.
[6] Chirakkara R A, Reddy K R. Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils[J]. Ecological Engineering, 2015, 85(9): 265–274.
[7] Dilfuza E, Elsayed A, Jaime A S. Microbially assisted phytoremediation of heavy metal-contaminated soils[M]. Plant Metal Interaction, 2016, 20: 483–498.
[8] 彭婉婷, 邹琳, 段维波,等. 多种湿地植物组合对污水中氮和磷的去除效果[J]. 环境科学学报, 2012, 32(3): 612–617.
Peng W T, Zou L, Duan W B, et al. Efficiency of nitrogen and phosphorus removal from sewage by various combinations of wetland plants[J]. Acta Scientiae Circumstantiae, 2012, 32(3): 612–617.
[9] 刘军, 曹之富, 黄延楠,等. 日光温室黄瓜冬春茬栽培氮磷钾吸收特性研究[J]. 中国农业科学, 2007, 40(9): 2109–2113.
Liu J, Cao Z F, Huang Y N, et al. Nutrients absorption properties of cucumber in long-season cultivation in solar greenhouse[J]. Scientia Agricultura Sinica, 2007, 40(9): 2109–2113. DOI:10.3321/j.issn:0578-1752.2007.09.036
[10] 余红梅, 李廷轩, 张锡洲,等. 施氮量对矿山生态型粗齿冷水花磷富集特性的影响[J]. 草业学报, 2015, 24(8): 85–92.
Yu H M, Li T X, Zhang X Z, et al. Effect of different levels of N supply on P accumulation characteristics of a ‘mining ecotype’ of Pilea sinofasciata [J]. Acta Prataculturae Sinica, 2015, 24(8): 85–92.
[11] Newman Y C, Agyinbirikorang S, Adjei M B, et al. Enhancing phosphorus phytoremedation potential of two warm-season perennial grasses with nitrogen fertilization[J]. Agronomy Journal, 2009, 101(6): 1345–1351. DOI:10.2134/agronj2009.0163
[12] 叶代桦, 李廷轩, 张锡洲,等. 高磷对矿山生态型水蓼磷富集特性的影响[J]. 植物营养与肥料学报, 2014, 20(1): 186–194.
Ye D H, Li T X, Zhang X Z, et al. Effect of high phosphate supply on P accumulation characteristics of mining ecotype of Polygonum hydropiper [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 186–194.
[13] Ye D, Li T, Chen G, et al. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper [J]. Chemosphere, 2014, 105(3): 139–145.
[14] 鲁如坤. 土壤农业化学分析[M]. 中国农业科技出版社, 2000.
Lu R. Analytical methods of soil and agriculural chemistry[M]. China Agricultural Science and Technology Press, 2000.
[15] Xiao G, Li T, Zhang X, et al. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area[J]. Journal of Hazardous Materials, 2009, 171(11): 542–550.
[16] 彭长连, 温学, 林植芳, 等. 龙须菜对海水氮磷富营养化的响应[J]. 植物生态学报, 2007, 31(3): 505–512.
Peng C L, Wen X, Lin Z F, et al. Response of Gracilaria Lemaneiformis to nitrogen and phosphorus eutrophic seawater [J]. Chinese Journal of Plant Ecology, 2007, 31(3): 505–512. DOI:10.3321/j.issn:1005-264X.2007.03.023
[17] Moreira A, Moraes L A C, Schroth G, et al. Effect of nitrogen, row spacing, and plant density on yield, yield components, and plant physiology in soybean–wheat intercropping[J]. Agronomy Journal, 2015, 107(6): 2162–2170. DOI:10.2134/agronj15.0121
[18] Chen Q, Mu X, Chen F, et al. Dynamic change of mineral nutrient content in different plant organs during the grain filling stage in maize grown under contrasting nitrogen supply[J]. European Journal of Agronomy, 2016, 80(9): 137–153.
[19] Soons M B, Hefting M M, Dorland E, et al. Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus[J]. Biological Conservation, 2017, 212(11): 390–397.
[20] Naidoo G. Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves [J]. Aquatic Botany, 2009, 90(2): 184–190. DOI:10.1016/j.aquabot.2008.10.001
[21] Liancourt P, Spence L A, Song D S, et al. Plant response to climate change varies with topography, interactions with neighbors, and ecotype[J]. Ecology, 2013, 94(2): 444–453. DOI:10.1890/12-0780.1
[22] Ye D, Li T, Zheng Z, et al. Root physiological adaptations involved in enhancing P assimilation in mining and non-mining ecotypes of Polygonum hydropiper grown under organic P media [J]. Frontiers in Plant Science, 2015, 6: 36–45.
[23] 杨雄, 马群, 张洪程, 等. 不同氮肥水平下早熟晚粳氮和磷的吸收利用特性及相互关系[J]. 作物学报, 2012, 38(1): 174–180.
Yang X, Ma Q, Zhang H C, et al. Characteristics and correlation analysis of N and P uptake and utilization of early maturing late Japonica under different N fertilizer levels [J]. Acta Agronomica Sinica, 2012, 38(1): 174–180.
[24] Masoni A, Ercoli L, Mariotti M, et al. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type[J]. European Journal of Agronomy, 2007, 26(3): 179–186. DOI:10.1016/j.eja.2006.09.006
[25] 李伶俐, 房卫平, 马宗斌, 等. 施氮量对杂交棉氮、磷、钾吸收利用和产量及品质的影响[J]. 植物营养与肥料学报, 2010, 16(3): 663–667.
Li L L, Fang W P, Ma Z B, et al. Effects of nitrogen fertilization on uptake and utilization of NPK and yield and quality of hybrid cotton[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 663–667.
[26] Dodd R J, Mcdowell R W, Condron L M. Manipulation of fertiliser regimes in phosphorus enriched soils can reduce phosphorus loss to leachate through an increase in pasture and microbial biomass production[J]. Agriculture Ecosystems and Environment, 2014, 185(3): 65–76.
[27] Ye D, Li T, Liu D, et al. P accumulation and physiological responses to different high P regimes in Polygonum hydropiper for understanding a P-phytoremediation strategy [J]. Scientific Reports, 2015, 5: 17835–17846.
[28] Yan K, Duan C, Fu D, et al. Leaf nitrogen and phosphorus stoichiometry of plant communities in geochemically phosphorus-enriched soils in a subtropical mountainous region, SW China[J]. Environmental Earth Sciences, 2015, 74(5): 3867–3876. DOI:10.1007/s12665-015-4519-z
[29] Feng H, Yan M, Fan X, et al. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. Journal of Experimental Botany, 2011, 62(7): 2319–2332. DOI:10.1093/jxb/erq403
[30] Feng H, Li B, Zhi Y, et al. Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation[J]. Plant Cell Reports, 2017, 36(8): 1287–1296. DOI:10.1007/s00299-017-2153-9
[31] 袁硕, 李春俭, 彭正萍,等. 磷对不同玉米品种生长、体内磷循环和分配的影响[J]. 植物营养与肥料学报, 2011, 17(2): 310–316.
Yuan S, Li C J, Peng Z P, et al. Effects of phosphorus on the plant growth, phosphorus cycling and distribution in different maize cultivars[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 310–316.
[32] Ai P, Sun S J, Fan X, et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. Plant Journal, 2009, 57(5): 798–809. DOI:10.1111/tpj.2009.57.issue-5
[33] Webb J, Zhang X H. Organ-disparate allocation of plasticity in phosphorus response as an underlying mechanism for the sawgrass-to-cattail habitat shift in Florida Everglades Wetlands[J]. International Journal of Plant Sciences, 2013, 174(5): 779–790. DOI:10.1086/670236
[34] 黄小娟, 江长胜, 郝庆菊. 重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征[J]. 生态学报, 2014, 34(15): 4201–4211.
Huang X J, Jiang C S, Hao Q J, et al. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi manganese mineland of Chongqing[J]. Acta Ecologica Sinica, 2014, 34(15): 4201–4211.
[35] 张凤华, 刘建玲, 廖文华. 农田磷的环境风险及评价研究进展[J]. 植物营养与肥料学报, 2008, 14(4): 797–805.
Zhang F H, Liu J L, Liao W H, et al. Environmental risk and assessment of agricultural phosphorus: a review[J]. Plant Nutrition and Fertilizer Science, 2008, 14(4): 797–805.
[36] 杨军, 高伟, 任顺荣. 长期施肥条件下潮土土壤磷素对磷盈亏的响应[J]. 中国农业科学, 2015, 48(23): 4738–4747.
Yang J, Gao W, Ren S R, et al. Response of soil phosphorus to P balance under long-rerm fertilization in Fluvo-aquic soil[J]. Scientia Agricultura Sinica, 2015, 48(23): 4738–4747. DOI:10.3864/j.issn.0578-1752.2015.23.015
[37] 周纪东, 史荣久, 赵峰,等. 施氮频率和强度对内蒙古温带草原土壤pH及碳、氮、磷含量的影响[J]. 应用生态学报, 2016, 27(8): 2467–2476.
Zhou J D, Shi R J, Zhao F, et al. Effects of the frequency and intensity of nitrogen addition on soil pH, the contents of carbon, nitrogen and phosphorus in temperate steppe in Inner Mongolia, China[J]. Chinese Journal of Applied Ecology, 2016, 27(8): 2467–2476.
[38] 梁翠月, 廖红. 植物根系响应低磷胁迫的机理研究[J]. 生命科学, 2015, 27(3): 2467389–397.
Liang C Y, Liao H, et al. Molecular mechanisms underlying the responses of plant roots to low P stress[J]. Chinese Bulletin of Life Sciences, 2015, 27(3): 2467389–397.
[39] 杨建华, 王芳, 张军辉,等. 长期施氮与减水处理对红松和蒙古栎根际磷浓度的影响[J]. 生态学杂志, 2015, 34(10): 2699–2704.
Yang J H, Wang F, Zhang J H, et al. Influence of long-term nitrogen fertilization and precipitation reduction on rhizospheric phosphorus concentration of Pinus koraiensis and Quercus mongolica [J]. Chinese Journal of Ecology, 2015, 34(10): 2699–2704.
[40] Liang X, Jin Y, He M, et al. Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates[J]. Agriculture Ecosystems and Environment, 2017, 237(16): 173–180.