植物营养与肥料学报   2018, Vol. 24  Issue (5): 1131-1148 
0
PDF 
中国畜禽粪尿中养分资源数量及利用潜力
宋大利, 侯胜鹏 , 王秀斌, 梁国庆, 周卫    
中国农业科学院农业资源与农业区划研究所,农业部植物营养与肥料重点实验室,北京 100081
摘要: 【目的】 有机与无机肥配合施用是提高农田生产力和改善土壤生态系统的有效措施,也是农业可持续发展的要求。理清中国畜禽粪尿资源数量及其养分资源量,对畜禽粪尿资源充分利用、提高肥料利用率、实现化肥使用量零增长和保障国家粮食安全具有重大意义。【方法】 以中国主要畜禽种类役用牛、肉牛、奶牛、羊 (山羊和绵羊)、马、驴、骡、猪 (育肥猪和母猪)、兔和家禽为研究对象,研究的主要农作物包括水稻、小麦、玉米、大豆、马铃薯、花生、油菜和棉花。通过查阅中国统计数据和公开发表的文献资料对2015年中国畜禽粪尿资源数量及其养分资源量进行估算,同时对各地区不同作物最佳施肥量进行统计,分析畜禽粪尿不同比例还田下氮、磷、钾输入量分别占化肥用量百分比。【结果】 2015年中国畜禽粪尿数量31.584亿t,氮 (N)、磷 (P2O5)、钾 (K2O) 养分资源总量分别达到1478.0万t、901.0万t和1453.9万t,其畜禽粪尿数量以猪最大,其次为肉牛和奶牛,分别占总量的36.8% (猪)、24.8% (肉牛) 和9.9% (奶牛),粪尿总养分量以猪最大,其次为肉牛和羊,分别占总量28.2% (猪)、22.8% (肉牛) 和15.0% (羊)。粪尿数量和养分资源量以西南和华北地区最多,粪尿数量分别占全国总量的22.3%和21.5%,养分资源量分别占全国总量的21.3%和21.9%,省市之间以四川、河南和山东最多。畜禽粪尿全量还田其养分输入量分别为811.8万t (N)、856.6万t (P2O5) 和849.5万t (K2O),分别占化肥用量的37.3% (N)、87.6% (P2O5) 和65.9% (K2O)。【结论】 中国畜禽粪尿数量及其养分资源量依然巨大,具有广阔的利用空间,充分利用畜禽粪尿养分资源是实现化肥减施增效的重要途径,畜禽粪尿全量还田下理论上氮、磷、钾施用量可以减少37.3%、87.6%和65.9%。
关键词: 畜禽粪尿     资源量     养分     利用     化肥减施    
Nutrient resource quantity of animal manure and its utilization potential in China
SONG Da-li, HOU Sheng-peng , WANG Xiu-bin, LIANG Guo-qing, ZHOU Wei    
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/ Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Beijing 100081, China
Abstract: 【Objectives】 Combined application of inorganic and organic fertilizations can enhance productivity of agricultural ecosystem and improve health of soil ecosystem, and that is also necessary for the sustainable agriculture. Clarifying the quantity of manure and the contained nutrient resources in China is the prerequisite for making full use of manure resources, improving fertilizer use efficiency, achieving zero growth of chemical fertilizers and ensuring national food security. 【Methods】 The research focused on manures from draft ox, beef cow, draft cow, sheep, horse, donkey, mule, pig, rabbit and poultry in China. The involved crops were rice, wheat, corn, soybeans, potatoes, peanuts, rape and cotton. Based on agricultural statistics and the data published in literatures, the amounts of manure and the contained nutrient resources were estimated in 2015, the quality of organic fertilizers applied to different crops in different regions and the percentages of manure nutrients for substitution of chemical fertilizers were calculated. 【Results】 The manure resource in China was about 3158.4 million tons in 2015, the contained nitrogen (N), phosphorus (P2O5) and potassium (K2O) nutrient resources were 14.78 million tons, 9.01 million tons and 14.54 million tons, respectively. The largest manure was from pigs, followed by beef cows and draft cows, accounting for 36.8%, 24.8% and 9.9%, respectively. The largest manure nutrient resources was from pigs, followed by beef cows and sheep, accounting for 28.2%, 22.8% and 15.0%, respectively. The highest quantity of animal manures and manure nutrient resources were respectively in Southwest and Northcentral of China, accounting for 22.3%, 21.5% and 21.3%, 21.9%, respectively. The applied amounts of nitrogen, phosphorus and potassium from manures were 8.12 million tons, 8.57 million tons, 8.50 million tons, accounting for 37.3% (N), 87.6% (P2O5) and 65.9% (K2O) of chemical fertilizers, respectively, when all the animal manure was returned to field. 【Conclusions】 The amount of animal manure and the contained nutrient resources are enormous, and there is great potential of returning to field in China. Making full use of animal manure nutrient resources may replace chemical N, P and K input by rate of 37.3% (N),87.6% (P2O5) and 65.9% (K2O).
Key words: animal manure     resource amount     nutrient     utilization     chemical fertilizer reduction    

近年来,我国畜禽养殖发展迅速,规模化比例显著提高,引发的环境污染问题也日益突出[1]。畜禽粪尿是畜禽养殖中主要副产物,也是主要的农业废弃物之一[2],粪尿中含有一定量的有机质和氮、磷、钾以及其他植物生长所需的营养元素,是植物重要的养分资源[3],但粪尿中的氮、磷也是导致环境污染的重要因素[4]。第一次全国污染源普查数据表明,化学需氧量 (COD)、总氮排放量、总磷排放量3项主要污染物指标,农业源污染物排放占全国排放总量的比重分别为43.7%、57.2%和67.4%,其中畜禽粪便中COD、总氮、总磷的产生量分别为1268、106和16万t,分别占农业污染源产生量的96%、38%、65%[5]。近年的污染源普查动态更新数据显示,畜禽粪尿污染物产生量在全国污染物总产生量中的占比有所上升[6]。畜禽粪便污染物减排已不容小觑,攸关国家节能减排目标的实现,而畜禽粪尿的任意排放既造成了养分资源的巨大浪费,又导致了严重的环境污染。

目前由于长期单施和过量施用化学肥料已造成土壤有机质含量降低、土壤结构退化[7]、肥料利用率下降[8]、土壤微生物多样性和生物活性降低[9],进而引起土壤肥力和生产力下降[10]。研究表明,化肥配施有机肥是保持土壤生产力和减少化肥施用的一种传统而有效的方法,可以达到节约成本和增加养分有效性的双重作用[11],而且在调控健康土壤微生物区系和防治土传病害方面同样有着突出作用[12],配施有机肥可减缓土传病害[13],进而提高土壤可持续利用程度[14]。洪瑜等[15]研究表明配施有机肥可降低灌淤土容重,显著提升土壤有机质和养分含量,对促进玉米产量和氮肥利用率具有积极作用。李慧等[16]利用东北黑土长期定位试验研究认为,有机肥料和化肥对玉米均具有显著的增产效果,有机肥化肥配施可降低玉米产量的变异系数和提高可持续性指数,从而保证玉米的持续稳产高产。郑亮等[17]研究表明,猪粪与化肥合理配施可以维持水稻产量和土壤无机氮水平,同时可提高土壤微生物生物量碳和微生物生物量氮,改善土壤肥力。从农业废弃物高效利用和维护农田地力的角度出发,有机无机配施将是我国今后肥料施用发展的必然趋势[18]

我国畜禽粪尿资源丰富,掌握我国畜禽粪尿养分资源数量、分布及其利用状况,制订合理利用策略是解决畜牧业环境污染和提高肥料利用率的重要途径。现有的研究中关于畜禽粪尿对耕地、水存在的潜在污染风险,大多是通过单位面积耕地的粪尿负荷来分析[6, 1925],而从国家尺度上分析畜禽粪尿养分资源数量对化肥减施影响的研究很少。因此,本文利用2016年国家统计数据和已发表资料的统计,探讨和分析了中国畜禽粪尿数量及其养分资源总量和分布情况,以期为中国畜禽粪尿资源的高效利用提供理论依据。

1 研究方法与数据来源 1.1 研究对象与区域划分

主要研究对象为中国31个省市,不包括香港、澳门、台湾和南海群岛。将中国省市分为六大农区[26],分别为东北地区,包括黑龙江、吉林和辽宁 3 省;华北地区,北京、天津、河北、河南、山东、山西6省 (市);长江中下游地区,上海、江苏、浙江、安徽、湖北、湖南、江西 7 省 (市);西北地区,内蒙古、陕西、宁夏、甘肃、青海、新疆 6 省 (自治区);西南地区,重庆、四川、贵州、云南、西藏 5 省 (市、自治区);东南地区,福建、广东、广西、海南 4 省 (自治区)。研究的畜禽种类包括役用牛、肉牛、奶牛、羊 (山羊和绵羊)、马、驴、骡、猪 (育肥猪和母猪)、兔和家禽。主要农作物为水稻、小麦、玉米、大豆、马铃薯、花生、油菜和棉花。

1.2 畜禽粪便产生总量及其养分量估算方法

中国历史上对畜禽粪尿数量没有专门的统计,本文参考国际上比较通用的和大多数研究所采用的方法,即通过畜禽养殖数量、畜禽饲养周期与粪尿排泄系数的关系得到,其计算公式如下:

$\begin{array}{l}{W_i} = \mathop \sum \limits_{j = 1}^{11} {N_{ij}} \times {T_j} \times {R_j}\\W_{\rm N}\left( {\rm N} \right) = {W_j} \times {N_j}\\W_{\rm P}\left( {{{\rm{P}}_2}{{\rm{O}}_5}} \right) = {W_j} \times {P_j}\\W_{\rm K}\left( {{{\rm{K}}_2}{\rm{O}}} \right) = {W_j} \times {K_j}\end{array}$

式中:Wi—第i个省 (市、自治区) 年粪 (尿) 产生量;Nij—第i个省 (市、自治区) 的第j类动物饲养量;Tj—第j类动物饲养期;Rj—第j类动物排泄系数;WN—畜禽粪 (尿) 中氮素 (N) 养分资源量;Wj—第j类动物年粪 (尿) 产生量;Nj—第j类动物粪 (尿) 中氮素养分含量;WP—畜禽粪 (尿) 中磷素 (P2O5) 养分资源量;Pj—第j类动物粪 (尿) 中磷素养分含量;WK—畜禽粪 (尿) 中钾素 (K2O) 养分资源量;Kj—第j类动物粪 (尿) 中钾素养分含量。i = 1, 2, 3, …, 31;j = 1, 2, 3, …, 11。本文收集国内公开发表的文章数据[1, 5, 2736],确定各种畜禽粪尿的排泄系数,畜禽粪尿排泄系数和养分含量见表1

畜禽粪尿不同回田比例化学养分替代率计算公式如下:

${\rm{N}}crop = {{P}} \times Yk \times {\rm{W}}k/\left( {\mathop \sum \limits_{n = 1}^8 Ckn \times Skn} \right)$

式中:Ncrop—畜禽粪尿回田化学N养分替代率;P—畜禽粪尿回田比例;Yk—第k地区畜禽粪尿收集系数;Wk—第k地区畜禽粪尿养分含量;Ckn—第k地区第n类作物最佳施肥量;Skn—第k地区第n类作物种植面积。n = 1, 2, 3, …, 8;k代表六大农区。每个地区P、K的养分替代率计算公式同上N养分替代率计算公式。内蒙古、新疆、青海和西藏四大牧区的畜禽粪尿养分不包括在本次计算内,这些区域的畜禽粪尿大多数直接排泄到环境中。

1.3 数据来源

本文涉及的2015年主要农作物产量和种植面积均来自于《中国统计年鉴 2016》 、《中国农业年鉴 2016》和《 中国农村统计年鉴 2016》。畜禽出栏量和存栏量主要来源于《中国统计年鉴 2016》 、《中国农业年鉴 2016》和《中国畜牧兽医年鉴 2016》,其中畜禽养殖量由畜禽的平均饲养周期结合统计数据综合决定。一般饲养周期小于1年的畜禽,以当年出栏量作为养殖数量,存栏量不予考虑,饲养周期按平均饲养天数计算;平均饲养周期大于1年的畜禽,以当年末存栏量作为养殖数量,饲养周期按365天计算。畜禽饲养周期见表1

表1 主要畜禽的饲养周期、粪尿日排泄量、粪尿氮磷钾含量 (鲜基) 和收集系数 Table 1 Livestock feeding period, daily excrement/urine, NPK contents (based on fresh weight) and collection coefficients
2 结果与分析 2.1 中国畜禽粪尿数量及其养分资源量

本研究估算2015年中国畜禽粪尿数量为31.6 × 108t (表2),其粪尿数量以猪最大,其次为肉牛和奶牛,分别占总量的36.8%、24.8%和9.9%,其它畜禽粪尿数量占28.6%。从畜禽粪尿养分资源量看,养分资源总量为3832.9万t,其中N、P2O5和K2O养分资源量分别为1478.0、901.0和1453.9万t,粪尿总养分量以猪最大,其次为肉牛和羊,分别占总量的28.2%、22.8%和15.0%,家禽第四,其养分量占14.0%,其它畜禽粪尿总养分量占20.0%。粪尿单质养分资源量以猪的氮和磷养分数量最高,分别占单质养分总量的28.0% (N) 和39.3% (P2O5),钾养分数量以肉牛最高,占单质养分总量的28.7% (K2O)。

表2 2015年中国畜禽粪尿数量、所含养分资源量及其在全部资源量的占比 Table 2 Animal manure amounts, contained nutrient quantities and their percentages in the whole resources in China in 2015
2.2 畜禽粪尿资源区域分布特征

从不同地区畜禽粪尿数量及其养分资源分布来看,2015年中国31个省市的粪尿数量及其养分资源分布各地区差异较大 (表3),西南和华北地区粪尿数量和养分资源量最多,粪尿数量分别占全国总量的22.3%和21.5%,养分资源量分别占全国总量的21.3%和21.9%。2015年畜禽粪尿数量和粪尿养分总量前3个省份分别是四川、河南和山东,其畜禽粪尿数量分别占粪尿总量的8.9%、8.2%和6.5%,粪尿养分总量占养分资源总量的8.5%、8.0%和7.1%。从各省的畜禽粪尿数量看,大于2亿t的省 (市) 有3个,1亿~2亿t的省 (市) 有11个,0.5~1亿t的省 (市) 有8个,0.1~0.5亿t的省 (市) 有7个,低于0.1亿t的省 (市) 仅有2个。

表3 2015年中国不同地区畜禽粪尿资源分布 Table 3 Manure and contained nutrient resources in different regions of China in 2015
2.3 畜禽粪尿中氮素养分去向

不同畜禽种类粪尿中氮素养分去向参考刘晓利等[37]的研究,平均按50%的粪尿氮素养分还田利用,15 %的氮素养分挥发损失, 22 %的氮素养分进入水体污染环境,13%的氮素养分堆置废弃。从不同畜禽种类粪尿中氮素养分去向来看 (表4),2015年中国仅有613.7万t氮回田利用,221.7万t氮挥发损失,325.2万t氮素进入水体污染环境,317.4万t氮堆置废弃,其中畜禽粪尿氮素损失中以猪的最大,其次为肉牛。从不同区域来看畜禽粪尿中氮素养分去向 (表5),发现华北和西南地区氮素回田量最大,分别为161.6万t和133.9万t,西北地区氮素回田量最小,仅为40.4万t。

表4 2015年中国不同畜禽种类粪尿中氮素去向 (× 104 t) Table 4 Fate of N from different manure resources in 2015
表5 2015年中国不同区域粪尿中氮素去向 (× 104 t) Table 5 Fate of N from animal manure in different regions in 2015
2.4 畜禽粪尿中磷和钾素养分去向

2015年中国畜禽粪尿中磷和钾素回田量分别为389.6万t和501.4万t,仅占其养分总量的43.2% (P2O5) 和34.5% (K2O),进入环境的磷和钾素分别为511.3和952.5万t (表6)。中国不同畜禽种类粪尿中磷的还田量以猪的最高,回田量为224.9万t,家禽次之,为80.3万t,进入环境的磷素同样以猪和家禽的粪尿磷为主,分别为129.1万t和101.0万t;钾的回田量最高的为猪,回田量为199.4万t,其次为肉牛,为100.7万t,进入环境的钾素以肉牛和羊的粪尿钾为最高,分别为316.9万t和161.2万t。不同区域畜禽粪尿磷和钾的去向中,磷和钾还田量最高的均为华北区,分别为99.1万t和127.5万t,其中长江中下游地区磷的回田量与华北地区相近,磷和钾进入环境中数量最高的均为西北地区,分别为117.4万t和252.5万t (表7)。

表6 2015年中国各类畜禽粪尿中磷和钾素回田和进入环境的数量与百分比 Table 6 Quantities and percentages of manure P2O5 and K2O in field reused and into environment in 2015
表7 2015年中国不同区域粪尿中磷和钾素回田和进入环境的数量和百分比 Table 7 Quantity and percentage of manure P2O5 and K2O in field reused and into environment in 2015
2.5 畜禽粪尿不同回田比例对化肥减施的影响

畜禽粪尿是畜禽养殖中重要的副产物,同时也是环境污染物,而粪尿作为有机养分回田是减少化学肥料施用、培肥土壤的有效途径。根据《中国统计年鉴2016》各区域不同作物种植面积和各区域不同作物最佳施用量 (表8),可计算得到各区域的养分需求量。由表9可以看出,将畜禽粪尿全量还田N、P2O5、K2O输入量分别为811.8万t (已减去15 %的氮素养分挥发损失[37])、856.6万t和849.5万t。那么不同地区化肥氮的减施率为15.2%~91.1%,平均为45.3%;化肥磷的减施率为59.0%~220.2%,平均为106.8%;化肥钾的减施率为39.5%~115.6%,平均为76.5%。分析不同地区畜禽粪尿全量回田,发现N、P2O5和K2O减施量最高的均为华北地区,减施量分别为218.7万t、197.1万t和193.3万t,而N和P2O5减施率最高的为东南地区,K2O减施率最高的为西北地区。

表8 不同区域不同作物最佳施肥量 (kg/hm2) Table 8 Optimum fertilizer rates of different crops in different regions
表9 不同比例的畜禽粪尿回田的养分可替代化肥养分施用量的百分比 Table 9 Percentages of chemical nutrients substituted by the manure from different animal manure returning ratios
3 讨论 3.1 加强畜禽粪尿养分资源利用

畜禽粪尿是重要的有机肥,如果能把养殖场畜禽粪尿充分还田和有效利用起来,不但解决了养殖场污染问题,还催生了新的有机农业产业,生产高附加值的农产品。将畜禽粪尿作为农业产业链中的一个重要环节,以实现物质的多重循环和多次转化利用,从而提高畜禽粪尿的资源利用率以及整体效益[38]

中国畜禽粪尿的产生量已超过工业固体废弃物,成为环境污染的主要来源,至2020年,畜禽粪尿产生量将以平均每年2.32%的速度增加[33]。畜禽粪尿污染物减排已不容小觑,攸关国家节能减排目标的实现,而了解畜禽粪尿年产生量是其充分合理利用的基础。已有研究对中国各年份畜禽粪尿量及其各类污染物排放量进行了估算,而结果存在一定的偏差。许俊香等[39]研究认为中国2002年粪便量为33亿t;高定等[150]研究认为2002年是27.5亿t;王方浩等[28]认为2003年是31.9亿t;田宜水等[32]估算2009年我国规模化养殖畜禽粪便排放量8.37 × 108t;贾伟[151]估算2009我国畜禽粪便干重6.96亿t;张田等[34]估算 2009年中国畜禽粪便总量达 32.64亿t;也有研究表明2009年粪便量为21.83亿t[33]和39.92亿t[152],2010年22.35亿t[22],2011年是26.89亿t[153];朱建春等[20]认为2002年是23.35亿t,2003年是24.45亿t,2009年是24.22亿t,2010年是24.45亿t,2011年是25.45亿t;黎运红等[154]研究认为2013年我国主要畜禽粪便干重达6.23亿t。而本研究收集国内公开发表的文章,确定各种畜禽粪尿的排泄系数,估算2015年畜禽粪尿量为31.584亿t。结果的差异可能由于产排污系数选取、饲养周期和畜禽数量估算等因素的差别[21, 155]。虽然这些研究结果存在较大差异,但均证明了中国养殖业的畜禽粪尿产生量巨大,若需准确系统地获得可比性较强的估算结果,应对禽粪便的估算方法科学地进行统一。

畜禽粪尿会对环境造成很大影响,但同时又是一种宝贵的资源,畜禽粪尿中含有大量的有机物和氮、磷等营养元素,对其进行肥料化、能源化和饲料化等一系列资源化利用,在促进农业的可持续发展和维护生态平衡方面起到重要作用[31]。贾伟等[151]估算2009年畜禽粪尿氮、磷、钾养分资源数量分别为1290万t、310万t、1030万t。耿维等[22]估算2010 年畜禽粪便可提供总氮1900万t,占当年氮肥消费量的 79%;提供总磷400万t,占当年磷肥消费量的50%。黎运红等[154]研究认为2013年我国畜禽粪便资源中理论上含有氮养分 1155.42万t、磷养分 311.57万t、钾养分774.06万t,氮、磷、钾分别相当于我国 2013年农业氮、磷、钾肥施用量的 48.26%、37.51%、123.38%。本研究估算2015年我国畜禽粪尿资源中理论上含有氮、磷、钾养分分别为1478.0、901.0和1453.9万t。因此加强畜禽粪尿资源的利用不但可以降低环境污染,同时能够实现农田化肥减施,提高畜禽粪尿的资源利用率。

3.2 畜禽粪尿还田潜力研究

畜禽粪尿含有的氮磷钾养分资源如果能够合理返还农田,将大量减少化学肥料施用[156]。本研究发现2015年,中国畜禽粪尿中氮素养分为1478.0万t,相当于3213.0万t尿素中的氮含量,约为2015年消费的氮肥中氮素养分的62.6%,粪尿全量还田理论上氮、磷、钾施用量平均可以减少37.3%、87.6%和65.9%。路国彬等[157]利用模型估算了畜禽粪肥替代化肥潜力,结果表明2014年畜禽粪肥可替代氮肥、磷肥、钾肥的潜力分别为1186.78万t、806.41万t和1169.25万t,分别占当年实际化肥施用量的38.30%、52.00%和86.77%;我国不同地区畜禽粪肥可替代化肥潜力差异较大,河南、四川、山东、湖南和湖北畜禽粪肥替代化肥潜力排在前五位;其研究的畜禽种类为猪、牛和家禽,而不包含其它畜禽。赵俊伟等[27]在确定畜禽粪便年排放量和农田所需养分量估算方法的基础上,根据2011—2014年青岛市畜禽养殖量和农作物产量数据,从肥料化利用角度分析畜禽粪便资源化利用潜力,结果发现如果畜禽粪便能够完全实现肥料化利用,则畜禽粪便中养分的化肥替代率达60%以上。宇万太等[158]利用中长期定位试验研究了有机肥料 (猪圈肥) 的养分利用率,结果发现猪圈肥中氮和磷的5年平均表观利用率分别为61%和39%,且有随施肥年限的延长而增长的趋势,表明有机肥中养分具有较强的残效迭加作用。孙聪姝等[159]利用长期定位试验研究同样认为有机肥具有明显的后效性。因此,在畜禽粪肥长期还田下不仅需要考虑当季作物对其养分的吸收,还需考虑畜禽粪肥养分的后效问题,而目前有关不同种类畜禽粪肥在不同土壤中养分有效性及其后效的研究较少。

相关研究表明[160],若用有机肥替代化肥,全球变暖潜力、富营养化潜力和环境酸化潜力将分别降低17.5%、52.9%和62.6%。研究[161-162]表明新鲜的猪粪中不仅含有作物生长所需的矿质营养元素,而且含有挥发性脂肪酸,能有效抑制和消除植物土传病害。杨娟等[163]研究表明,猪粪50%、100%替代化肥分别比单施化肥水稻增产15.87%、9.14%。侯苗苗等[164]研究认为在鴥土小麦/玉米轮作体系中牛粪有机氮替代化肥氮75%最好,可以保证作物产量、实现N2O减排。赵军等[165]研究认为,在稻麦轮作体系中猪粪有机无机复合肥替代70%常规化肥施用能有效提高作物产量,同时是一种具有培育高产土壤微生物区系潜力的施肥措施。李江涛等[166]认为,长期施用畜禽粪尿能够通过增加土壤活性有机碳含量和改善土壤理化性质来改善土壤生物化学质量。雷成等[167]研究了畜禽粪尿的不同处理途径,认为直接施入农田是最为简单的做法。杨世琦等[24]研究认为,我国农田消纳畜禽粪尿的潜力较大,通过畜禽粪尿还田利用能够有效地解决粪尿污染问题。

畜禽粪肥从养殖场到农田的转移存在一定局限性[24]。畜禽粪尿的特点决定了其无法进行大范围、跨地区的移动,所以在当前经济可行的技术条件下,耕地消纳仍是较为经济可行的畜禽粪肥处理手段[168]。然而在一定时期内,单位耕地面积对畜禽粪尿的消纳容量有限,区域畜禽养殖业的发展应该符合该地区的土壤环境承载力,其饲养密度应不超过该地区耕地资源的最大承载能力[169]。李祖章等[170]研究表明,每年每公顷稻田施用猪粪量应控制在15 t以内,每公顷农田承载母猪粪便能力为15头、果园为30头,承载存栏育肥猪粪便能力为45头。陆善玲等[171]对上海郊区研究表明,在每公顷施225 kg纯氮的基础上,水稻田的猪粪肥适宜施用量为15~35 t/hm2,临界施用量为45 t/hm2。土壤粪便的年施用量中磷含量不能超过35 kg/hm2 (P2O5 80 kg/hm2),否则会引起磷的淋洗造成环境污染[172]

4 结论

目前中国畜禽粪尿数量及其养分资源量依然巨大,2015年中国畜禽粪尿数量31.584亿t,其中氮 (N)、磷 (P2O5)、钾 (K2O) 养分资源总量分别达到1478.0万t、901.0万t和1453.9万t,畜禽粪尿回田是实现化肥减施增效的有效措施,具有广阔的利用空间。畜禽粪尿资源数量以猪、肉牛和奶牛占据主要部分,其总养分量以猪、肉牛和羊最大,同时西南和华北地区粪尿数量和养分资源量最多。改善畜禽粪尿处理、运输和还田方式,提高畜禽粪尿养分资源利用率仍是未来一段时间急需解决的问题,畜禽粪尿资源充分利用同样是实现化肥施用零增长行动和保障国家粮食安全的重要措施。

参考文献
[1] 孟祥海, 周海川, 张俊飚. 中国畜禽污染时空特征分析与环境库兹涅茨曲线验证[J]. 干旱区资源与环境, 2015, 29(11): 104–108.
Meng X H, Zhou H C, Zhang J B. Spatial and temporal characteristics and EKC verification for livestock pollution[J]. Journal of Arid Land Resources and Environment, 2015, 29(11): 104–108.
[2] 鲁如坤, 刘鸿翔, 闻大中, 等. 我国典型地区农业生态系统养分循环和平衡研究: I.农田养分支出参数[J]. 土壤通报, 1996, 27(4): 145–151.
Lu R K, Liu H X, Wen D Z, et al. Study on nutrient cycling and balance in agricultural ecosystems of China. I Parameters of nutrient expenditure in field[J]. Chinese Journal of Soil Science, 1996, 27(4): 145–151.
[3] 李书田, 刘荣乐, 陕红. 我国主要畜禽粪便养分含量及变化分析[J]. 农业环境科学学报, 2009, 28(1): 179–184.
Li S T, Liu R L, Shan H. Nutrient contents in main animal manures in China[J]. Journal of Agro-Environment Science, 2009, 28(1): 179–184. DOI:10.3321/j.issn:1672-2043.2009.01.033
[4] 徐云连, 马友华, 吴蔚君, 等. 农田中有机肥氮磷流失的研究[J]. 中国农学通报, 2017, 33(14): 75–80.
Xu Y L, Ma Y H, Wu W J, et al. Nitrogen and phosphorus loss under organic fertilizer application in farmland[J]. Chinese Agricultural Science Bulletin, 2017, 33(14): 75–80.
[5] 第一次全国污染源普查资料编纂委员会. 污染源普查产排污系数手册[M]. 北京: 中国环境科学出版社, 2011.
The First National Pollution Census of Pollution Compilation Committee. Handbook of pollution discharge coefficient of pollution sources[M]. Beijing: Environmental Science Press, 2011.
[6] 史瑞祥, 薛科社, 周振亚. 基于耕地消纳的畜禽粪便环境承载力分析—以安康市为例[J]. 中国农业资源与区划, 2017, (6): 55–62.
Shi R X, Xue K S, Zhou Z Y. Analysis on the environmental bearing capacity of livestock and poultry breeding based on land consumptive—A case of Ankang city[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, (6): 55–62.
[7] Wang J. Negative effects of application chemical fertilizers on farmland and the control measures[J]. Agro-Environmental Protection, 1998, .
[8] Roelcke M, Yong H, Schleef K H, et al. Recent trends and recommendations for nitrogen fertilization in intensive agriculture in eastern China[J]. Pedosphere, 2004, 14(4): 449–460.
[9] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008–1010. DOI:10.1126/science.1182570
[10] Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology, 2007, 36(2-3): 84–91. DOI:10.1016/j.apsoil.2006.12.001
[11] Misselbrook T H, Menzi H, Cordovil C. Preface – Recycling of organic residues to agriculture: Agronomic and environmental impacts[J]. Agriculture Ecosystems & Environment, 2012, 160(10): 1–2.
[12] Janvier C, Villeneuve F, Alabouvette C, et al. Soil health through soil disease suppression: Which strategy from descriptors to indicators?[J]. Soil Biology & Biochemistry, 2007, 39(1): 1–23.
[13] Yang X M, Xu Y C, Huang Q W, et al. Organic-link fertilizers and its relation to sustainable development of agriculture and protection of eco-environment[J]. Acta Pedologica Sinica, 2008, 45(5): 925–932.
[14] Chen F, Xiao T J, Zhu Z, et al. Effect of bio-organic fertilizers on root-knot nematode of muskmelon in field[J]. Plant Nutrition & Fertilizer Science, 2011, 17(5): 1262–1267.
[15] 洪瑜, 王芳, 刘汝亮, 等. 长期配施有机肥对灌淤土春玉米产量及氮素利用的影响[J]. 水土保持学报, 2017, 31(2): 248–252.
Hong Y, Wang F, Liu R L, et al. Effects of long-term fertilization on yield and nitrogen utilization of spring maize in irrigation silting soils[J]. Journal of Soil and Water Conservation, 2017, 31(2): 248–252.
[16] 李慧, 徐明岗, 朱平, 等. 长期培肥我国典型黑土玉米氮肥效应的演变趋势[J]. 植物营养与肥料学报, 2015, 21(6): 1506–1513.
Li H, Xu M G, Zhu P, et al. Change of nitrogen use efficiency of maize affected by long-term manure fertilization in the typical black soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1506–1513.
[17] 郑亮, 沈健林, 邹冬生, 等. 猪粪化肥配施对双季稻稻田土壤活性碳氮含量及水稻产量的影响[J]. 农业现代化研究, 2014, (5): 633–639.
Zheng L, Shen J L, Zou D S, et al. Effects of combined applications of pig manure and chemical fertilizers on soil carbon and nitrogen fertility and gain yield in double-rice ecosystem[J]. Research of Agricultural Modernization, 2014, (5): 633–639.
[18] 陶磊, 褚贵新, 刘涛, 等. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响[J]. 生态学报, 2014, 34(21): 6137–6146.
Tao L, Chu G X, Liu T, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition[J]. Acta Ecologica Sinica, 2014, 34(21): 6137–6146.
[19] 杨飞, 杨世琦, 诸云强, 等. 中国近30年畜禽养殖量及其耕地氮污染负荷分析[J]. 农业工程学报, 2013, 29(5): 1–11.
Yang F, Yang S Q, Zhu Y Q, et al. Analysis on livestock and poultry production and nitrogen pollution load of cultivated land during last 30 years in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(5): 1–11.
[20] 朱建春, 张增强, 樊志民, 等. 中国畜禽粪便的能源潜力与氮磷耕地负荷及总量控制[J]. 农业环境科学学报, 2014, 33(3): 435–445.
Zhu J C, Zhang Z Q, Fan Z M, et al. Biogas potential, cropland load and total amount control of animal manure in China[J]. Journal of Agro-Environment Science, 2014, 33(3): 435–445.
[21] 景栋林, 陈希萍, 于辉, 等. 佛山市畜禽粪便排放量与农田负荷量分析[J]. 生态与农村环境学报, 2012, 28(1): 108–111.
Jing D L, Chen X P, Yu H, et al. Analysis on the total amount of domestic animal excrement and the load in farmland in Foshan[J]. Journal of Ecology and Rural Environment, 2012, 28(1): 108–111. DOI:10.3969/j.issn.1673-4831.2012.01.019
[22] 耿维, 胡林, 崔建宇, 等. 中国区域畜禽粪便能源潜力及总量控制研究[J]. 农业工程学报, 2013, 29(1): 171–179.
Geng W, Hu L, Cui J Y, et al. Biogas energy potential for livestock manure and gross control of animal feeding in region level of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 171–179.
[23] 杨世琦, 韩瑞芸, 刘晨峰. 中国畜禽粪便磷的农田消纳量及承载负荷研究[J]. 中国农学通报, 2016, 32(32): 111–116.
Yang S Q, Han R Y, Liu C F. The given amount and loading capacity of phosphorus from livestock and poultry manure in China[J]. Chinese Agricultural Science Bulletin, 2016, 32(32): 111–116. DOI:10.11924/j.issn.1000-6850.casb16040096
[24] 杨世琦, 韩瑞芸, 刘晨峰. 省域尺度下畜禽粪便的农田消纳量及承载负荷研究[J]. 中国农业大学学报, 2016, 21(7): 142–151.
Yang S Q, Han R Y, Liu C F. Study on the given amount per unit field and load capacity of livestock and poultry manure at provincial scale[J]. Journal of China Agricultural University, 2016, 21(7): 142–151.
[25] 潘瑜春, 孙超, 刘玉, 等. 基于土地消纳粪便能力的畜禽养殖承载力[J]. 农业工程学报, 2015, 31(4): 232–239.
Pan Y C, Sun C, Liu Y, et al. Carrying capacity of livestock and poultry breeding based on feces disposal volume of land[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 232–239. DOI:10.3969/j.issn.1002-6819.2015.04.033
[26] 李书田, 金继运. 中国不同区域农田养分输入、输出与平衡[J]. 中国农业科学, 2011, 44(20): 4207–4229.
Li S T, Jin J Y. Characteristics of nutrient input/output and nutrient balance in different regions of China[J]. Scientia Agricultura Sinica, 2011, 44(20): 4207–4229.
[27] 赵俊伟, 尹昌斌. 青岛市畜禽粪便排放量与肥料化利用潜力分析[J]. 中国农业资源与区划, 2016, 37(7): 108–115.
Zhao J W, Yin C B. Analysis on the total amount of domestic animal excrement and the potential of fertilizer utilization in Qingdao city[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(7): 108–115.
[28] 王方浩, 马文奇, 窦争霞, 等. 中国畜禽粪便产生量估算及环境效应[J]. 中国环境科学, 2006, 26(5): 614–617.
Wang F H, Ma W Q, Dou Z X, et al. The estimation of the production amount of animal manure and its environmental effect in China[J]. China Environmental Science, 2006, 26(5): 614–617. DOI:10.3321/j.issn:1000-6923.2006.05.024
[29] 黄美玲, 夏颖, 范先鹏, 等. 湖北省畜禽养殖污染现状及总量控制[J]. 长江流域资源与环境, 2017, 26(2): 209–219.
Huang M L, Xia Y, Fan X P, et al. Pollution status and total amount control of livestock and poultry breeding in Hubei province[J]. Resources and Environment in the Yangtze Basin, 2017, 26(2): 209–219. DOI:10.11870/cjlyzyyhj201702006
[30] 全国农业技术推广服务中心. 中国有机肥料资源[M]. 北京: 中国农业出版社, 1999.
China National Agricultural Technology Extension Service. Data collection for organic fertilizer nutrients in China[M]. Beijing: China Agriculture Press, 1999.
[31] 刘忠, 段增强. 中国主要农区畜禽粪尿资源分布及其环境负荷[J]. 资源科学, 2010, 32(5): 946–950.
Liu Z, Duan Z Q. Distribution of manure resources and environmental loads of agro-ecological regions in China[J]. Resources Science, 2010, 32(5): 946–950.
[32] 田宜水. 中国规模化养殖场畜禽粪便资源沼气生产潜力评价[J]. 农业工程学报, 2012, 28(8): 230–234.
Tian Y S. Potential assessment on biogas production by using livestock manure of large-scale farm in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 230–234. DOI:10.3969/j.issn.1002-6819.2012.08.036
[33] 林源, 马骥, 秦富. 中国畜禽粪便资源结构分布及发展展望[J]. 中国农学通报, 2012, 28(32): 1–5.
Lin Y, Ma J, Qin F. The structure distribution and prospect of China manure resource[J]. Chinese Agricultural Science Bulletin, 2012, 28(32): 1–5. DOI:10.3969/j.issn.1000-6850.2012.32.001
[34] 张田, 卜美东, 耿维. 中国畜禽粪便污染现状及产沼气潜力[J]. 生态学杂志, 2012, 31(5): 1241–1249.
Zhang T, Bu M D, Geng W. Pollution status and biogas- producing potential of livestock and poultry excrements in China[J]. Chinese Journal of Ecology, 2012, 31(5): 1241–1249.
[35] 仇焕广, 廖绍攀, 井月, 等. 我国畜禽粪便污染的区域差异与发展趋势分析[J]. 环境科学, 2013, 34(7): 2766–2774.
Qiu H G, Liao S P, Jing Y, et al. Regional differences and development tendency of livestock manure pollution in China[J]. Environmental Science, 2013, 34(7): 2766–2774.
[36] 陈微, 刘丹丽, 刘继军, 等. 基于畜禽粪便养分含量的畜禽承载力研究[J]. 中国畜牧杂志, 2009, 45(1): 46–50.
Chen W, Liu D L, Liu J J, et al. Study on livestock carrying capacity based on manure nutrients[J]. Chinese Journal of Animal Science, 2009, 45(1): 46–50.
[37] 刘晓利, 许俊香, 王方浩, 等. 我国畜禽粪便中氮素养分资源及其分布状况[J]. 河北农业大学学报, 2005, 28(5): 27–32.
Liu X L, Xu J X, Wang F H, et al. The resource and distribution of nitrogen nutrient in animal excretion in China[J]. Journal of Agricultural University of Hebei, 2005, 28(5): 27–32. DOI:10.3969/j.issn.1000-1573.2005.05.006
[38] 顾树华. 能源利用与农业可持续发展[M]. 北京出版社, 2001.
Gu S H. Energy utilization and sustainable development of agriculture[M]. Beijing Publishing House, 2001.
[39] 许俊香, 刘晓利, 王方浩, 等. 中国畜禽粪尿磷素养分资源分布以及利用状况[J]. 河北农业大学学报, 2005, 28(4): 5–9.
Xu J X, Liu X L, Wang F H, et al. The distribution of phosphorus resources and utilization of animal manure in China[J]. Journal of Agricultural University of Hebei, 2005, 28(4): 5–9. DOI:10.3969/j.issn.1000-1573.2005.04.002
[40] 侯云鹏, 韩立国, 孔丽丽, 等. 不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡[J]. 植物营养与肥料学报, 2015, 21(4): 836–845.
Hou Y P, Han L G, Kong L L, et al. Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 836–845.
[41] 杨继学, 黄珊珊, 杨明亮, 等. 密度和施肥量对不同分枝类型大豆产量的影响[J]. 大豆科学, 2012, 31(3): 381–384.
Yang J X, Huang S S, Yang M L, et al. Effect of density and fertilizer amount on yield of different branching types of soybeans[J]. Soybean Science, 2012, 31(3): 381–384. DOI:10.3969/j.issn.1000-9841.2012.03.009
[42] 周敬霄. 密度及氮磷钾施肥量对夏大豆邯豆5号产量影响[J]. 大豆科技, 2011, (2): 13–16.
Zhou J X. The influence of planting density and different NPK on the yield of Handou No-5[J]. Soybean Bulletin, 2011, (2): 13–16. DOI:10.3969/j.issn.1674-3547.2011.02.005
[43] 王志刚, 高强, 冯国忠. 吉林省大豆施肥指标体系初步建立[J]. 大豆科学, 2010, 29(4): 669–672.
Wang Z G, Gao Q, Feng G Z. Preliminary raising fertilization index system for soybean in Jilin Province[J]. Soybean Science, 2010, 29(4): 669–672.
[44] 杨继学. 不同类型大豆品种在不同密度和肥力下的高产潜力研究[D]. 黑龙江哈尔滨: 东北农业大学硕士学位论文, 2012.
Yang J X. The study of high yield potency in different types of cultivars under different density and fertility on soybean[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agriculture University, 2012.
[45] 范荣, 杜霄, 白宏鹏. 旱地大豆全膜覆土穴播最佳施肥量试验总结[J]. 农业科技与信息, 2012, (15): 6–7.
Fan R, Du X, Bai H P. A Summary of the experiment on the best fertilizer application of soybean mulched with plastic film in dry land[J]. Agricultural Science-Technology and Information, 2012, (15): 6–7. DOI:10.3969/j.issn.1003-6997.2012.15.002
[46] 张瑞, 崔萌萌, 冯洁琼. 不同播种期、施肥量和种植密度对秋大豆十月黄产量的影响[J]. 上海蔬菜, 2016, (2): 34–35.
Zhang R, Cui M M, Feng J Q. Effects of different sowing time, fertilizer amount and planting density on yield of autumn soybean Shiyuehuang[J]. Shanghai Vegetables, 2016, (2): 34–35. DOI:10.3969/j.issn.1002-1469.2016.02.023
[47] 李文龙, 李喜焕, 王瑞霞, 等. 河北省夏播极早熟区施肥与密度对大豆农艺性状和品质的影响[J]. 河北农业科学, 2015, (1): 10–13.
Li W L, Li X H, Wang R X, et al. Effects of fertilizer and planting density on agronomic traits and quality of soybean in extremely early mature soybean region of Hebei Province[J]. Journal of Hebei Agricultural Sciences, 2015, (1): 10–13.
[48] 李文龙, 李喜焕, 王瑞霞, 等. 河北省夏播早熟区不同施肥水平和种植密度对大豆产量及品质的影响[J]. 河南农业科学, 2015, 44(3): 40–44.
Li W L, Li X H, Wang R X, et al. Effects of different fertilizer levels and planting densities on yield and quality of soybean in early mature soybean region of Hebei[J]. Journal of Henan Agricultural Sciences, 2015, 44(3): 40–44.
[49] 王斌斌, 朱洪德, 唐培坤, 等. 不同肥密对高油大豆品种产量的影响[J]. 现代化农业, 2015, (10): 16–17.
Wang B B, Zhu H D, Tang P K, et al. Effects of different fertilizers and densities on yield of high oil content soybean varieties[J]. Modernizing Agriculture, 2015, (10): 16–17. DOI:10.3969/j.issn.1001-0254.2015.10.007
[50] 姬景红, 李玉影, 刘双全, 等. 平衡施肥对松嫩平原黑土区大豆产量效益的影响[J]. 大豆科学, 2010, 29(5): 820–825.
Ji J H, Li Y Y, Liu S Q, et al. Effect of balanced fertilization on yield of soybean and nutrients balance of soil-crop system[J]. Soybean Science, 2010, 29(5): 820–825.
[51] 张明怡, 刘颖, 李玉影, 等. 施肥对大豆产量、效益及养分平衡影响的研究[J]. 中国土壤与肥料, 2010, (3): 31–33.
Zhang M Y, Liu Y, Li Y Y, et al. The effect of balanced fertilization on yield of soybean and nutrient input-output in soil crop system[J]. Soil and Fertilizer Sciences in China, 2010, (3): 31–33. DOI:10.3969/j.issn.1673-6257.2010.03.008
[52] 苗任重, 任秀荣, 王建立, 等. 氮磷钾肥配施对大豆生长发育及产量的影响[J]. 湖南农业科学, 2014, (5): 29–31.
Miao R Z, Ren X R, Wang J L, et al. Effects of combined application of NPK fertilizers on growth and yield of soybean[J]. Hunan Agricultural Sciences, 2014, (5): 29–31. DOI:10.3969/j.issn.1006-060X.2014.05.009
[53] 魏丹, 李艳, 李玉梅, 等. 氮磷钾元素对黑龙江不同地区大豆产量和品质的影响[J]. 大豆科学, 2017, 36(1): 87–91.
Wei D, Li Y, Li Y M, et al. Effect of N, P, K fertilization on yield and quality of soybean in Heilongjiang Province[J]. Soybean Science, 2017, 36(1): 87–91.
[54] 李玉影, 刘双全, 姬景红, 等. 黑龙江省不同农业生态区大豆平衡施肥效果研究[J]. 大豆科学, 2015, 34(6): 1029–1038.
Li Y Y, Liu S Q, Ji J H, et al. Study on the effect of balanced fertilization of soybean in different agricultural ecological regions of Heilongjiang Province[J]. Soybean Science, 2015, 34(6): 1029–1038.
[55] 刘润梅, 范茂攀, 付云章, 等. 云南省马铃薯施肥量与化肥偏生产力的关系研究[J]. 土壤学报, 2014, 51(4): 753–760.
Liu R M, Fan M P, Fu Y Z, et al. Relationship between fertilization rate and fertilizer partial factor productivity in potato production in Yunnan province[J]. Acta Pedologica Sinica, 2014, 51(4): 753–760.
[56] 段玉, 张君, 李焕春, 等. 马铃薯氮磷钾养分吸收规律及施肥肥效的研究[J]. 土壤, 2014, 46(2): 212–217.
Duan Y, Zhang J, Li H C, et al. Fertilization effect and nutrition use efficiency of potato in Inner Mongolia[J]. Soils, 2014, 46(2): 212–217.
[57] 杨德桦. 不同施肥量和不同施肥方式对襄阳地区马铃薯产量、养分积累规律和品质的影响[D]. 湖北: 华中农业大学硕士学位论文, 2012.
Yang D H. Effect of different fertilizer rates and fertilization methods on yield, nutrients accumulation and tuber quality of potato in Xiangyang[D]. Hubei: MS Thesis of Huazhong Agricultural University, 2012.
[58] 戴树荣. 应用" 3414”试验设计建立二次肥料效应函数寻求马铃薯氮磷钾适宜施肥量的研究[J]. 中国农学通报, 2010, 26(12): 154–159.
Dai S R. NPK reasonable application rate on potato by establishing fertilizer effect model of second degree polynomial using " 3414” experimental design[J]. Chinese Agricultural Science Bulletin, 2010, 26(12): 154–159.
[59] 谭乾开, 黎华寿, 林洁, 等. 不同施肥配方对冬种马铃薯农艺性状和产量质量的影响研究[J]. 中国农学通报, 2012, 28(33): 166–171.
Tan Q K, Li H S, Lin J, et al. Effect of different fertilization level on the agronomic traits and yield of potato[J]. Chinese Agricultural Science Bulletin, 2012, 28(33): 166–171. DOI:10.3969/j.issn.1000-6850.2012.33.033
[60] 张平良, 郭天文, 李书田, 等. 不同覆盖种植方式与平衡施肥对马铃薯产量及水分利用效率的影响[J]. 干旱地区农业研究, 2017, 35(1): 50–54.
Zhang P L, Guo T W, Li S T, et al. Effects of different coverage cultivation and balanced fertilization on yield and water use efficiency of potato in the dry-land[J]. Agricultural Research in the Arid Areas, 2017, 35(1): 50–54.
[61] 何文寿, 马琨, 代晓华, 等. 宁夏马铃薯氮、磷、钾养分的吸收累积特征[J]. 植物营养与肥料学报, 2014, 20(6): 1477–1487.
He W S, Ma K, Dai X H, et al. Characteristics of nitrogen, phosphorus and potassium uptake and accumulation of potato in Ningxia[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1477–1487.
[62] 杨胜先, 龙国, 张绍荣, 等. 喀斯特冷凉山区不同种植密度及氮、磷、钾配施对马铃薯产量的影响[J]. 江苏农业科学, 2015, 43(7): 85–88.
Yang S X, Long G, Zhang S R, et al. Effects of different planting density and nitrogen, phosphorus and potassium on yield of potato in Karst[J]. Jiangsu Agricultural Sciences, 2015, 43(7): 85–88.
[63] 王涛, 何文寿, 姜海刚, 等. 氮磷钾不同用量对马铃薯产量和淀粉含量的影响[J]. 中国土壤与肥料, 2016, (3): 80–86.
Wang T, He W S, Jiang H G, et al. The effects of nitrogen, phosphorus and potassium application on yield and starch content of potato plants[J]. Soil and Fertilizer Sciences in China, 2016, (3): 80–86.
[64] 马俊伟, 涂新红, 何远杰, 等. 粤北地区花生氮磷钾" 3414”肥料效应试验[J]. 安徽农学通报, 2017, 23(6): 81–82.
Ma J W, Tu X H, He Y J, et al. The " 3414” fertilizer effect of peanut in northern Guangdong Province[J]. Anhui Agricultural Science Bulletin, 2017, 23(6): 81–82.
[65] 王红军, 张静, 皇甫自起, 等. 豫东平原高产花生施用氮磷钾肥增产效应研究[J]. 中国农学通报, 2017, 33(13): 1–5.
Wang H J, Zhang J, Huangfu Z Q, et al. Yield-increasing effect of NPK fertilizer on high-yield peanut in east Henan Plain[J]. Chinese Agricultural Science Bulletin, 2017, 33(13): 1–5.
[66] 徐文霞, 刘听报. 新野县夏花生氮肥最佳经济施用量试验研究[J]. 现代农业科技, 2016, (2): 19.
Xu W X, Liu T B. Experimental study on optimum economic application rate of summer peanut nitrogen in Xinye County[J]. Modern Agricultural Science and Technology, 2016, (2): 19. DOI:10.3969/j.issn.1007-5739.2016.02.005
[67] 司贤宗, 张翔, 毛家伟, 等. 高产夏花生养分限制因子及养分吸收积累研究[J]. 河南农业科学, 2016, 45(11): 34–37.
Si X Z, Zhang X, Mao J W, et al. Nutrient restricting factors and accumulation of high-yield summer peanut[J]. Journal of Henan Agricultural Sciences, 2016, 45(11): 34–37.
[68] 张桥, 张育灿, 林日强, 等. 广东省花生测土配方施肥氮素指标体系研究[J]. 中国农学通报, 2014, 30(33): 101–104.
Zhang Q, Zhang Y C, Lin R Q, et al. Research of nitrogen in formula fertilization by soil testing index system for peanut in Guangdong[J]. Chinese Agricultural Science Bulletin, 2014, 30(33): 101–104.
[69] 金昆, 邱源. 自贡市贡井区花生‘3414’试验报告[J]. 南方农业, 2015, 9(6): 17–18.
Jin K, Qiu Y. Test report on peanut ‘3414’ in Gongjing District of Zigong City[J]. South China Agriculture, 2015, 9(6): 17–18. DOI:10.3969/j.issn.1673-890X.2015.06.005
[70] 龚永锋, 刘鲜珍, 李利民, 等. 宁远县丘陵红壤旱地花生" 3414”田间肥效试验[J]. 现代农业科技, 2015, (7): 33–34.
Gong Y F, Liu X Z, Li L M, et al. Effect of field fertilizer on peanut " 3414” in dryland of red soil in Ningyuan County[J]. Modern Agricultural Science and Technology, 2015, (7): 33–34. DOI:10.3969/j.issn.1007-5739.2015.07.014
[71] 颜明娟, 章明清, 李娟, 等. 福建花生测土配方施肥指标体系研究[J]. 中国油料作物学报, 2010, 32(3): 424–430.
Yan M J, Zhang M Q, Li J, et al. Soil testing and formula fertilization index for peanut in Fujian province[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 424–430.
[72] 张桂兴, 严学东, 康轩, 等. 花生测土配方施肥试验研究[J]. 现代农业科技, 2016, (16): 17.
Zhang G X, Yan X D, Kang X, et al. Experimental study on soil testing and fertilizer recommendation of peanut[J]. Modern Agricultural Science and Technology, 2016, (16): 17. DOI:10.3969/j.issn.1007-5739.2016.16.006
[73] 郑荔敏. 花生测土配方施肥指标体系研究[J]. 福建农业科技, 2016, (10): 7–10.
Zheng L M. Study on index system of soil testing and formulated fertilization for peanut[J]. Fujian Agricultural Science and Technology, 2016, (10): 7–10.
[74] 祁大成, 冯旭东, 董红梅, 等. 花生" 3414”肥料效应试验及推荐施肥分析[J]. 湖北农业科学, 2011, 50(14): 2831–2834.
Qi D C, Feng X D, Dong H M, et al. " 3414” fertilizer trial of peanut and analysis on the optimal fertilization amounts[J]. Hubei Agricultural Sciences, 2011, 50(14): 2831–2834. DOI:10.3969/j.issn.0439-8114.2011.14.007
[75] 邹娟. 冬油菜施肥效果及土壤养分丰缺指标研究[D]. 湖北: 华中农业大学博士学位论文, 2010.
Zhou J. Study on response of winter rapeseed to NPKB fertilization and abundance & deficiency indices of soil nutrients[D]. Hubei: PhD Dissertation of Huazhong Agricultural University, 2010.
[76] 黄亿, 李廷轩, 张锡洲, 等. 基于" 3414”试验的川中丘陵区油菜施肥指标体系构建[J]. 中国农业科学, 2013, 46(10): 2058–2066.
Huang Y, Li T X, Zhang X Z, et al. Establishment of fertilization recommendation indexes of rapeseed soil based on the " 3414” field experiments in the middle of Sichuan hilly regions[J]. Scientia Agricultura Sinica, 2013, 46(10): 2058–2066. DOI:10.3864/j.issn.0578-1752.2013.10.011
[77] 朱克保, 吴传洲, 奚波, 等. 应用‘3414’试验建立芜湖县油菜施肥指标体系[J]. 中国农学通报, 2010, 26(19): 155–160.
Zhu K B, Wu C Z, Xi B, et al. Establishing fertilization recommendation index of rapeseed in Wuhu County based on the‘3414’ field experiments[J]. Chinese Agricultural Science Bulletin, 2010, 26(19): 155–160.
[78] 许福涛, 顾黄辉, 徐军. 海门市油菜氮磷钾肥料效应研究Ⅱ: 施肥效益[J]. 土壤, 2012, 44(2): 237–241.
Xu F T, Gu H H, Xu J. Response of rape to N, P and K fertilizer in Haimen: Fertilizing benefits[J]. Soils, 2012, 44(2): 237–241.
[79] 邹小云, 陈伦林, 李书宇, 等. 氮、磷、钾、硼肥施用对甘蓝型杂交油菜产量及经济效益的影响[J]. 中国农业科学, 2011, 44(5): 917–924.
Zou X Y, Chen L L, Li S Y, et al. Effect of nitrogen, phosphorus, potassium, and boron fertilizers on yield and profit of hybrid rapeseed[J]. Scientia Agricultura Sinica, 2011, 44(5): 917–924. DOI:10.3864/j.issn.0578-1752.2011.05.007
[80] 张萌, 王寅, 任涛, 等. 施肥对贵州直播油菜产量和养分吸收的影响[J]. 中国油料作物学报, 2014, (3): 369–373.
Zhang M, Wang Y, Ren T, et al. Effects of fertilization on yield and nutrient uptake of direct-sowing oilseed rape in Guizhou Province[J]. Chinese Journal of Oil Crop Sciences, 2014, (3): 369–373.
[81] 杨俐苹, 白由路, 王贺, 等. 测土配方施肥指标体系建立中" 3414”试验方案应用探讨[A]. 中国植物营养与肥料学会2010年学术年会论文集[C]. 北京: 中国植物营养与肥料学会, 2010.
Yang L P, Bai Y L, Wang H, et al. Application of " 3414” field trial design for establishing soil testing and fertilizer recommendation index[A]. Chinese Society of Plant Nutrition and Fertilizer Sciences Proceeding of Annual Conference 2010[C]. Beijing: Chinese Society of Plant Nutrition and Fertilizer Sciences, 2010.
[82] 刘炜, 谷思玉, 白雅梅, 等. 施肥量与灌溉量对黑龙江省黑土区水稻产量的影响[J]. 东北农业大学学报, 2012, 43(4): 49–54.
Liu W, Gu S Y, Bai Y M, et al. Effect of fertilizer levels and irrigation on yield of rice in black soil area[J]. Journal of Northeast Agricultural University, 2012, 43(4): 49–54.
[83] 姬景红, 李玉影, 刘双全, 等. 平衡施肥对玉米产量、效益及土壤-作物系统养分收支的影响[J]. 中国土壤与肥料, 2010, (4): 37–41.
Ji J H, Li Y Y, Liu S Q, et al. The effect of balanced fertilization on yield, benefit of corn and nutrient balance[J]. Soil and Fertilizer Sciences in China, 2010, (4): 37–41. DOI:10.3969/j.issn.1673-6257.2010.04.008
[84] 串丽敏. 基于产量反应和农学效率的小麦推荐施肥方法研究[D]. 中国农业科学院博士学位论文, 2013.
Chuan L M. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for wheat[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2013.
[85] 耿以工, 李洪山, 丁振云. 天津市冬小麦节水栽培条件下施氮量的效应研究[J]. 河北农业科学, 2011, 15(7): 13–15.
Geng Y G, Li H S, Ding Z Y. Effects of nitrogen application level on water-saving cultivation of winter wheat in Tianjin[J]. Journal of Hebei Agricultural Sciences, 2011, 15(7): 13–15. DOI:10.3969/j.issn.1088-1631.2011.07.004
[86] 马志强, 黄智谋, 刘伟, 等. 不同施钾量对中单509玉米植株性状及产量的影响[J]. 现代农业科技, 2017, (1): 1–3.
Ma Z Q, Huang Z M, Liu W, et al. Effect of different potash levels on yield and plant traits of maize Zhongdan 509[J]. Modern Agricultural Science and Technology, 2017, (1): 1–3. DOI:10.3969/j.issn.1007-5739.2017.01.001
[87] 王永华, 黄源, 辛明华, 等. 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响[J]. 中国农业科学, 2017, 50(6): 1031–1046.
Wang Y H, Huang Y, Xin M H, et al. Effects of the year-round management model of N, P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil[J]. Scientia Agricultura Sinica, 2017, 50(6): 1031–1046.
[88] 黄立梅, 黄绍文, 韩宝文. 冬小麦-夏玉米适宜氮磷用量和平衡施肥效应[J]. 中国土壤与肥料, 2010, (5): 38–44.
Huang L M, Huang S W, Han B W. Winter wheat-summer corn response to nitrogen and phosphorus application and balanced fertilization[J]. Soil and Fertilizer Sciences in China, 2010, (5): 38–44. DOI:10.3969/j.issn.1673-6257.2010.05.008
[89] 沙之敏, 边秀举, 郑伟, 等. 最佳养分管理对华北冬小麦养分吸收和利用的影响[J]. 植物营养与肥料学报, 2010, 16(5): 1049–1055.
Sha Z M, Bian X J, Zheng W, et al. Effects of optimum nutrient management on nutrient uptake and utilization of winter wheat in North China Plain[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1049–1055.
[90] 王宜伦, 李潮海, 何萍, 等. 超高产夏玉米养分限制因子及养分吸收积累规律研究[J]. 植物营养与肥料学报, 2010, 16(3): 559–566.
Wang Y L, Li C H, He P, et al. Nutrient restrictive factors and accumulation of super-high-yield summer maize[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 559–566.
[91] 王红军, 张静, 皇甫自起, 等. 豫东平原超高产夏玉米测土配方施肥技术参数研究[J]. 土壤与作物, 2017, 6(1): 55–60.
Wang H J, Zhang J, Huangfu Z Q, et al. Parameter determination to formula fertilization by soil testing for super high-yield maize: A case study in Yudong Plain, Henan Province[J]. Soils and Crops, 2017, 6(1): 55–60.
[92] 文德泽. 不同施肥处理对晋南旱地小麦产量及水肥利用的影响[D]. 山西太古: 山西农业大学硕士学位论文, 2015.
Wen D Z. Effects of different fertilization on dry plateau wheat yield and water fertilizer use in Southern Shanxi[D]. Taigu Shanxi: uMS Thesis of Shanxi Agriculture University, 2015.
[93] 郭玲玲. " 3414”测土配方施肥对玉米产量和养分吸收的影响[J]. 山西农业科学, 2015, 43(5): 576–578.
Guo L L. Effect of " 3414” formula fertilization on yield and nutrient absorption of maize[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(5): 576–578. DOI:10.3969/j.issn.1002-2481.2015.05.20
[94] 杨峰, 闫秋艳, 鲁晋秀, 等. 氮肥运筹对夏玉米产量、氮素利用率及土壤养分残留量的影响[J]. 华北农学报, 2017, 32(1): 171–178.
Yang F, Yan Q Y, Lu J X, et al. Effects of nitrogen application on summer maize yield, nutrient utilization efficiency and soil available nutrient residues[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(1): 171–178.
[95] 程秋华, 陆萍, 冯建忠, 等. 水稻氮、磷、钾" 3414”肥效试验初报[J]. 上海农业学报, 2012, 28(2): 137–142.
Cheng Q H, Lu P, Feng J Z, et al. Preliminary study on effects of N, P and K on rice by " 3414” fertilizer test[J]. Acta Agriculturae Shanghai, 2012, 28(2): 137–142. DOI:10.3969/j.issn.1000-3924.2012.02.032
[96] 陈小倩, 石建福, 诸海焘, 等. " 3414”肥料效应试验在东滩小麦上的应用初探[J]. 上海农业科技, 2014, (5): 118–119.
Chen X Q, Shi J F, Zhu H T, et al. Application of " 3414” fertilizer effect experiment on Dongtan wheat[J]. Shanghai Agricultural Science and Technology, 2014, (5): 118–119. DOI:10.3969/j.issn.1001-0106.2014.05.079
[97] 李鸿伟, 杨凯鹏, 曹转勤, 等. 稻麦连作中超高产栽培小麦和水稻的养分吸收与积累特征[J]. 作物学报, 2013, 39(3): 464–477.
Li H W, Yang K P, Cao Z Q, et al. Characteristics of nutrient uptake and accumulation in wheat and rice with continuous cropping under super-high-yielding cultivation[J]. Acta Agronomica Sinica, 2013, 39(3): 464–477.
[98] 于林惠, 李刚华, 徐晶晶, 等. 机插粳稻氮磷钾吸收分配特征[J]. 作物学报, 2012, 38(4): 707–716.
Yu L H, Li G H, Xu J J, et al. Characteristics of uptake of nitrogen, phosphorus, and potassium and partitioning in mechanical transplanting Japonica rice[J]. Acta Agronomica Sinica, 2012, 38(4): 707–716.
[99] 殷建华, 孙同林. 小麦平衡施肥参数试验初探[J]. 上海农业科技, 2010, (3): 72–73.
Yin J H, Sun T L. Study on balanced fertilizer application in wheat parameter test[J]. Shanghai Agricultural Science and Technology, 2010, (3): 72–73. DOI:10.3969/j.issn.1001-0106.2010.03.046
[100] 董作珍, 吴良欢, 柴婕, 等. 不同氮磷钾处理对中浙优1号水稻产量、品质、养分吸收利用及经济效益的影响[J]. 中国水稻科学, 2015, 29(4): 399–407.
Dong Z Z, Wu L H, Cai J, et al. Effecys of different nitrogen, phosphorus and potassium treatments on rice yield, quality, nutrient absorption-utilization and economic benefit of Zhongzheyou 1 in central Zhejiang province[J]. Chinese Journal of Rice Science, 2015, 29(4): 399–407. DOI:10.3969/j.issn.1001-7216.2015.04.009
[101] 张国荣, 谷思玉, 李菊梅, 等. 长江中下游地区高产稻田施肥与产量的关系[J]. 中国土壤与肥料, 2010, (1): 75–80.
Zhang G R, Gu S Y, Li J M, et al. The relationship between fertilization and yield of high-yield paddy field in middle and lower reaches of Yangtze River[J]. Soil and Fertilizer Sciences in China, 2010, (1): 75–80. DOI:10.3969/j.issn.1673-6257.2010.01.016
[102] 雷之萌, 韩上, 武际, 等. 淮北砂姜黑土区氮钾配施对小麦产量及氮、钾养分吸收利用的影响[J]. 农业资源与环境学报, 2017, 34(2): 161–167.
Lei Z M, Han S, Wu J, et al. Effects of combined application of nitrogen and potassium on yield and nutrient accumulation of wheat in Huaibei lime concretion black soil area, China[J]. Journal of Agricultural Resources and Environment, 2017, 34(2): 161–167.
[103] 王伟妮. 基于区域尺度的水稻氮磷钾肥料效应及推荐施肥量研究[D]. 湖北: 华中农业大学博士学位论文, 2014.
Wang W N. Evaluating fertilization effect and fertilizer recommendation of N, P and K for rice at a regional scale [D]. Hubei; PhD Dissertation of Huazhong Agricultural University, 2014.
[104] 孙继成, 袁先圣, 董正香, 等. 湖北潜江小麦" 3414”施肥效果评价试验[J]. 安徽农学通报, 2011, 17(22): 27–28.
Sun J C, Yuan X S, Dong Z X, et al. Evaluation on fertilization effect of " 3414” wheat in Qianjiang, Hubei Province[J]. Anhui Agricultural Science Bulletin, 2011, 17(22): 27–28. DOI:10.3969/j.issn.1007-7731.2011.22.017
[105] 刘新伟, 龚德平, 巩细民, 等. 湖北江北农场小麦肥效试验与施肥推荐[J]. 麦类作物学报, 2012, 32(2): 338–343.
Liu X W, Gong D P, Gong X M, et al. Fertilizer effect on wheat and recommendation of fertilizer for wheat production in Jiangbei farm[J]. Journal of Triticeae Crops, 2012, 32(2): 338–343.
[106] 刘淑军, 秦道珠, 梁海军, 等. 水稻不同基因型品种养分吸收特性[J]. 中国农学通报, 2015, 31(3): 16–22.
Liu S J, Qin D Z, Liang H J, et al. Nutrient absorption characteristics of different rice genotype varieties[J]. Chinese Agricultural Science Bulletin, 2015, 31(3): 16–22.
[107] 张智, 李小坤, 丛日环, 等. 稻田优化施肥效果与氮、磷环境效益评价[J]. 中国农业科学, 2016, 49(5): 906–915.
Zhang Z, Li X K, Cong R H, et al. Optimized fertilization effects and environmental benefits evaluation of nitrogen and phosphorus in the paddy soil[J]. Scientia Agricultura Sinica, 2016, 49(5): 906–915.
[108] 汤雷雷, 万开元, 李祖章, 等. 施肥模式对双季稻产量、养分吸收及经济效益的影响[J]. 植物营养与肥料学报, 2011, 17(2): 259–268.
Tang L L, Wan K Y, Li Z Z, et al. Effect of fertilizing patterns on grain yield, nutrient uptake and economical efficiency of double-season rice[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 259–268.
[109] 刘德平, 杨树青, 史海滨, 等. 小麦/玉米套作条件下氮、磷配施的肥料效应研究[J]. 中国生态农业学报, 2014, 22(3): 136–142.
Liu D P, Yang S Q, Shi H B, et al. Effect of combined nitrogen and phosphorus fertilizer application of wheat-maize intercropping system[J]. Chinese Journal of Eco-Agriculture, 2014, 22(3): 136–142.
[110] 张明. 陕西关中冬小麦/夏玉米轮作体系下合理施肥技术研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2011.
Zhang M. Research of reasonable fertilizer application technology of winter wheat/summer maize rotation system in Guangzhong area of Shaanxi [D]. Yangling: Shaanxi: MS Thesis of Northwest A&F University, 2011.
[111] 赵营, 周涛, 郭鑫年, 等. 优化施肥对春小麦产量、氮素利用及氮平衡的影响[J]. 干旱地区农业研究, 2011, 29(6): 119–124.
Zhao Y, Zhou T, Guo X N, et al. Effect of optimum fertilization on spring wheat yield, N utilization and apparent N balance[J]. Agricultural Research in the Arid Areas, 2011, 29(6): 119–124.
[112] 田惠萍. 氮、磷、钾配比施肥对玉米产量的影响[J]. 宁夏农林科技, 2013, 54(2): 24–26.
Tian H P. Effect of Fertilization of nitrogen, phosphorus and potassium on corn yield[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2013, 54(2): 24–26. DOI:10.3969/j.issn.1002-204X.2013.02.012
[113] 张亚丽. 长期不同施肥对青海小麦产量和土壤钾素的影响[J]. 青海大学学报, 2013, 31(6): 69–72.
Zhang Y L. Effects of long-term different fertilization on grain yield and soil K in Qinghai Province[J]. Journal of Qinghai University, 2013, 31(6): 69–72.
[114] 徐富贤, 熊洪, 张林, 等. 西南稻区不同地域和施氮水平对杂交中稻氮、磷、钾吸收累积的影响[J]. 作物学报, 2011, 37(5): 882–894.
Xu F X, Xiong H, Zhang L, et al. Characteristics of nutrient uptake and utilization of mid-season hybrid rice under different nitrogen application rates in different locations of southwest China[J]. Acta Agronomica Sinica, 2011, 37(5): 882–894.
[115] 刘慧远, 丁永峰. 玉米" 3414”不完全施肥研究[J]. 宁夏农林科技, 2012, 53(3): 18–19.
Liu H Y, Ding Y F. Research on corn " 3414” incomplete test[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2012, 53(3): 18–19. DOI:10.3969/j.issn.1002-204X.2012.03.010
[116] 柴颖, 赵靓, 黄婷, 等. 不同氮、磷配施对春玉米养分吸收和产量的影响[J]. 新疆农业科学, 2015, 52(3): 444–449.
Chai Y, Zhao J, Huang T, et al. Effects of different combination ratios of N, P fertilizer on nutrient uptake of maize and yield[J]. Xinjiang Agricultural Sciences, 2015, 52(3): 444–449.
[117] 吴向海, 陈淑芳. 彭水县半山区玉米" 3414”肥料试验初报[J]. 南方农业, 2012, 6(4): 19–21.
Wu X H, Chen S F. Preliminary report on " 3414” fertilizer experiment in mid-mountain area of Pengshui County[J]. South China Agriculture, 2012, 6(4): 19–21. DOI:10.3969/j.issn.1673-890X.2012.04.005
[118] 蒋鹏, 熊洪, 朱永川, 等. 施氮量和氮肥运筹模式对糯稻养分吸收积累和氮肥利用率的影响[J]. 湖南农业大学学报(自然科学版), 2016, 42(4): 349–353.
Jiang P, Xiong H, Zhu Y C, et al. Effect of nitrogen rates and nitrogen application patterns on nutrient accumulation and nitrogen use efficiency of glutinous rice[J]. Journal of Hunan Agricultural University (Natural Science Edition), 2016, 42(4): 349–353.
[119] 蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响[J]. 植物营养与肥料学报, 2017, 23(2): 342–350.
Jiang P, Xiong H, Zhang L, et al. Effects of N rate and planting density on nutrient uptake and utilization of hybrid rice under different ecological conditions[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 342–350.
[120] 罗永. 四川丘陵区玉米高产高效及最佳养分管理技术研究[D]. 四川雅安: 四川农业大学硕士学位论文, 2011.
Luo Y. Study on high yield and efficiency and the best nutrient management of maize in hill area of Sichuan[D]. Ya'an, Sichuan: MS Thesis of Sichuan Agriculture University, 2011.
[121] 王旭, 冯跃华, 李杰, 等. 氮磷钾肥对超级杂交水稻 Q 优 6 号干物质积累、养分吸收及产量的影响[J]. 中国稻米, 2016, 22(6): 25–29.
Wang X, Feng Y H, Li J, et al. Effects of nitrogen, phosphorus and potassium fertilizer on dry matter accumulation, nutrient uptake and yield of super hybrid rice Q you 6[J]. China Rice, 2016, 22(6): 25–29. DOI:10.3969/j.issn.1006-8082.2016.06.006
[122] 黄国斌, 李家贵. 测土配方施肥对玉米养分吸收、产量及效益的影响[J]. 贵州农业科学, 2010, 38(1): 23–25.
Huang G B, Li J G. Effects of formulation application on nutrition absorption, yield and benefit of maize[J]. Guizhou Agricultural Sciences, 2010, 38(1): 23–25. DOI:10.3969/j.issn.1001-3601.2010.01.008
[123] 邓小强, 邓金池, 汪亮, 等. 氮磷钾配施对杂交玉米禾玉9566农艺性状、产量与养分吸收利用的影响[J]. 作物杂志, 2016, (4): 156–161.
Deng X Q, Deng J C, Wang L, et al. Effects of NPK fertilizers combined on agronomic traits, yield, nutrient uptake and utilization of ‘Heyu 9566’ maize[J]. Crops, 2016, (4): 156–161.
[124] 覃金鼓. 杂交玉米肥料利用率试验初报[J]. 陕西农业科学, 2016, 62(1): 14–16.
Tan J G. Preliminary report on utilization rate of hybrid maize fertilizer[J]. Shaanxi Journal of Agricultural Sciences, 2016, 62(1): 14–16. DOI:10.3969/j.issn.0488-5368.2016.01.005
[125] 李洪文, 苏正飙, 李春莲, 等. 云南紫泥田水稻测土配方施肥试验初报[J]. 中国农学通报, 2014, 30(15): 17–23.
Li H W, Su Z B, Li C L, et al. Study on formula application by soil testing of rice in purple paddy field in Yunnan[J]. Chinese Agricultural Science Bulletin, 2014, 30(15): 17–23. DOI:10.11924/j.issn.1000-6850.2013-2469
[126] 李洪文, 李保华, 李春莲, 等. 紫砂泥田水稻" 3414”肥料效应田间试验[J]. 现代农业科技, 2012, (19): 14–16.
Li H W, Li B H, Li C L, et al. Field experiment on fertilizer effect of " 3414” rice in muddy field[J]. Modern Agricultural Science and Technology, 2012, (19): 14–16. DOI:10.3969/j.issn.1007-5739.2012.19.004
[127] 刘国一. 西藏一江两河流域农田土壤养分限制因子与小麦氮磷钾最佳施用量研究[D]. 北京: 中国农业科学院硕士学位论文, 2012.
Liu G Y. Study on soil nutrient limiting factors and optimized fertilization rates for winter wheat in main agricultural regions of central Tibet[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2012.
[128] 黄东风, 李卫华, 王利民, 等. 水肥管理措施对水稻产量、养分吸收及稻田氮磷流失的影响[J]. 水土保持学报, 2013, 27(2): 62–66.
Huang D F, Li W H, Wang L M, et al. Effects of water and fertilizer managements on yield, nutrition uptake of rice and loss of nitrogen and phosphorus by runoff from paddy field[J]. Journal of Soil and Water Conservation, 2013, 27(2): 62–66.
[129] 李娟, 章明清, 孔庆波, 等. 构建县域早稻氮磷钾施肥的系统聚类方法研究[J]. 植物营养与肥料学报, 2017, 23(2): 531–538.
Li J, Zhang M Q, Kong Q B, et al. Building fertilization categories of N, P and K fertilization for early rice using systematic clustering method in county territory[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 531–538.
[130] 李建国, 刘翠花, 白玛卓玛, 等. 平衡施肥对西藏玉米生物产量及秸秆营养成份的影响[J]. 西藏科技, 2013, (9): 3–6.
Li J G, Liu C H, Bai M Z M, et al. Effect of balanced fertilization on biomass of corn and straw nutrients in Tibet[J]. Tibet Science and Technology, 2013, (9): 3–6. DOI:10.3969/j.issn.1004-3403.2013.09.001
[131] 高凡, 张建, 沈建荣, 等. 西双版纳糯玉米3414肥效试验研究[J]. 农业科技通讯, 2014, (8): 146–149.
Gao F, Zhang J, Shen J R, et al. Experimental study of Xishuangbanna waxy corn fertilizer " 3414”[J]. Yunnan Agricultural Science and Technology, 2014, (8): 146–149. DOI:10.3969/j.issn.1000-6400.2014.08.055
[132] 何艳琼, 堵文丽, 朱能宏. 氮磷钾肥配施对玉米产量影响的试验研究[J]. 云南农业, 2010, (3): 24–25.
He Y Q, Du W L, Zhu N H. Experimental study on the effect of N, P and K fertilizer on maize yield[J]. Yunnan Agriculture, 2010, (3): 24–25. DOI:10.3969/j.issn.1005-1627.2010.03.017
[133] 章赞德. 闽中丘陵区中稻氮磷钾肥效-及其适宜用量研究[J]. 福建农业学报, 2016, 31(12): 1294–1298.
Zhang Z D. Effect of NPK fertilization and recommendation for single cropping rice in hilly regions in central Fujian[J]. Fujian Journal of Agricultural Sciences, 2016, 31(12): 1294–1298.
[134] 张桥, 黄旭, 张育灿, 等. 高州市水稻施肥状况分析[J]. 广东农业科学, 2012, 39(11): 86–88.
Zhang Q, Huang X, Zhang Y C, et al. Analysis of status in fertilization on rice in Gaozhou[J]. Guangdong Agricultural Sciences, 2012, 39(11): 86–88. DOI:10.3969/j.issn.1004-874X.2012.11.027
[135] 曾艳, 谢如林, 黄金生, 等. 广西早晚稻氮磷钾锌肥施肥效应[J]. 西南农业学报, 2016, 29(4): 831–836.
Zeng Y, Xie R L, Huang J S, et al. Effects of fertilizer application on rice in Guangxi[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(4): 831–836.
[136] 徐新朋, 王秀斌, 李大明, 等. 双季稻最佳磷肥和钾肥用量与密度组合研究[J]. 植物营养与肥料学报, 2016, 22(3): 598–608.
Xu X P, Wang X B, Li D M, et al. Optimum combination of phosphorus, potassium and density for double-rice systems[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 598–608.
[137] 张冬明, 王绥干, 吴光辉, 等. 平衡施肥对海南早稻经济性状和产量的影响[J]. 湖北农业科学, 2017, 56(9): 1623–1627.
Zhang D M, Wang S G, Wu G H, et al. Effects of balanced fertilization on yield and economic characters of early-season rice[J]. Hubei Agricultural Sciences, 2017, 56(9): 1623–1627.
[138] 朱文明, 戴勤珍, 吴雄兴, 等. 杂交晚粳" 交源优69”特征特性及高产栽培技术初报[J]. 上海农业科技, 2017, (3): 40-42.
Zhu W M, Dai Q Z, Wu X X, et al. Preliminary study on the characteristics and high-yielding cultivation techniques of late Japonica hybrid rice[J]. Shanghai Agricultural Science and Technology, 2017, (3): 40-42.
[139] 包红静, 邢月华, 刘艳, 等. 养分专家系统推荐施肥对玉米产量及肥料利用率的影响[J]. 辽宁农业科学, 2016, (2): 74–76.
Bao H J, Xing Y H, Liu Y, et al. Effect of nutrition experts recommend fertilization systems on maize yield and fertilizer use efficiency[J]. Liaoning Agricultural Sciences, 2016, (2): 74–76. DOI:10.3969/j.issn.1002-1728.2016.02.021
[140] 曹立燕. 高产夏玉米群体发育与养分吸收规律研究[D].河北保定: 河北农业大学硕士学位论文, 2014.
Cao L Y. Studies on group growth and development and nutrient absorption of high yielding summer maize[D]. Baoding, Hebei: MS Thesis of Agricultural University of Hebei, 2014.
[141] 王艳, 杜永, 陈焕淦, 等. 淮北地区偏大穗型中粳水稻养分吸收特性[J]. 耕作与栽培, 2013, (1): 10–12.
Wang Y, Du Y, Chen H G, et al. Nutrient uptake characteristics of large spike-type Japonica rice in Huaibei region[J]. Tillage and Cultivation, 2013, (1): 10–12. DOI:10.3969/j.issn.1008-2239.2013.01.005
[142] 段敏. 陕西关中地区小麦玉米养分资源管理及其高产探索研究[D]. 陕西: 西北农林科技大学硕士学位论文, 2010.
Duan M. Study on nutrients management and high yield of wheat and maize in Guanzhong area of Shaanxi province[D]. Shaanxi: MS Thesis of Northwest A&F University, 2010.
[143] 曹克莉, 覃金鼓, 蒙正杰, 等. 低产田测土配方施肥对水稻肥料利用率的影响[J]. 现代农业科技, 2014, (19): 23–24.
Cao K L, Tan J G, Meng Z J, et al. Effect of fertilization on fertilizer use efficiency of rice in low yield field[J]. Modern Agricultural Science and Technology, 2014, (19): 23–24. DOI:10.3969/j.issn.1007-5739.2014.19.012
[144] 郭昱. 春播和夏播玉米产量形成特点的研究及适宜品种的筛选[D]. 四川成都: 四川农业大学硕士学位论文, 2013.
Guo Y. Research about spring and summer sowing maize character of grain yield formation and screening of summer-resistant maize varieties[D]. Chengdu, Sichuan: MS Thesis of Sichuan Agriculture University, 2013.
[145] 熊艳, 王平华, 何晓滨, 等. 云南省水稻土壤养分丰缺指标及肥料利用率研究[J]. 西南农业学报, 2012, 25(3): 930–934.
Xiong Y, Wang P H, He X B, et al. Study on soil nutrient rich-lack index and fertilizer using efficiency of rice in Yunnan Province[J]. Southwest China Journal of Agricultural Sciences, 2012, 25(3): 930–934. DOI:10.3969/j.issn.1001-4829.2012.03.038
[146] 熊艳, 王平华, 何晓滨, 等. 云南省旱地玉米土壤养分丰缺指标及肥料利用率研究[J]. 西南农业学报, 2013, 26(1): 203–208.
Xiong Y, Wang P H, He X B, et al. Research on soil nutrient rich-lack index and fertilizer using efficiency of maize in Yunnan Province[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(1): 203–208. DOI:10.3969/j.issn.1001-4829.2013.01.042
[147] 谢振宇, 沈建凯, 尹明, 等. 不同施肥水平对杂交水稻氮、磷、钾吸收积累的影响[J]. 热带农业科学, 2014, 34(9): 1–5.
Xie Z Y, Shen J K, Yin M, et al. Effects of different fertilizer application rates on uptake of nitrogen, phosphorus and potassium of hybrid rice[J]. Chinese Journal of Tropical Agriculture, 2014, 34(9): 1–5. DOI:10.3969/j.issn.1009-2196.2014.09.001
[148] 徐新朋. 基于产量反应和农学效率的水稻和玉米推荐施肥方法研究[D]. 北京: 中国农业科学院博士学位论文, 2015.
Xu X P. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice and maize[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2015.
[149] 王宜伦, 白由路, 王磊, 等. 基于养分专家系统的小麦-玉米推荐施肥效应研究[J]. 中国农业科学, 2015, 48(22): 4483–4492.
Wang Y L, Bai Y L, Wang L, et al. Effects of recommended fertilization based on Nutrient Expert in winter wheat and summer maize rotation system[J]. Scientia Agricultura Sinica, 2015, 48(22): 4483–4492. DOI:10.3864/j.issn.0578-1752.2015.22.009
[150] 高定, 陈同斌, 刘斌, 等. 我国畜禽养殖业粪便污染风险与控制策略[J]. 地理研究, 2006, 25(2): 311–319.
Gao D, Chen T B, Liu B, et al. Releases of pollutants from poultry manure in China and recommended strategies for the pollution prevention[J]. Geographical Research, 2006, 25(2): 311–319. DOI:10.3321/j.issn:1000-0585.2006.02.015
[151] 贾伟. 我国粪肥养分资源现状及其合理利用分析[D]. 北京: 中国农业大学博士学位论文, 2014.
Jia W. Studies on the evaluation of nutrient resources derived from manure and optimized utilization in arable land of China[D]. Beijing: PhD Dissertation of China Agricultural University, 2014.
[152] 张绪美, 董元华, 王辉, 等. 中国畜禽养殖结构及其粪便N污染负荷特征分析[J]. 环境科学, 2007, 28(6): 1311–1318.
Zhang X M, Dong Y H, Wang H, et al. Structure of livestock and variation of fecal nitrogen pollution load in China[J]. Environmental Science, 2007, 28(6): 1311–1318. DOI:10.3321/j.issn:0250-3301.2007.06.026
[153] 梁华东, 何迅, 巩细民, 等. 中国畜禽粪便污染问题、无害化处理及开发生产有机肥料技术与政策[J]. 中国农学通报, 2014, 30: 75–80.
Liang H D, He X, Gong X M, et al. Pollution problems and harmless treatment of livestock manure and the technology of organic fertilizer production in China[J]. Chinese Agricultural Science Bulletin, 2014, 30: 75–80. DOI:10.3969/j.issn.1007-7774.2014.04.017
[154] 黎运红. 畜禽粪便资源化利用潜力研究[D].湖北武汉: 华中农业大学硕士学位论文, 2015.
Li Y H. Study on resource utilization potential of livestock and poultry manure[D]. Wuhan, Hubei: MS Thesis of Huazhong Agricultural University, 2015.
[155] 董红敏, 朱志平, 黄宏坤, 等. 畜禽养殖业产污系数和排污系数计算方法[J]. 农业工程学报, 2011, 27(1): 303–308.
Dong H M, Zhu Z P, Huang H K, et al. Pollutant generation coefficient and discharge coefficient in animal production[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 303–308. DOI:10.3969/j.issn.1002-6819.2011.01.049
[156] Yang H S. Resource management, soil fertility and sustainable crop production: Experiences of China[J]. Agriculture Ecosystems & Environment, 2006, 116(1-2): 27–33.
[157] 路国彬, 王夏晖. 基于养分平衡的有机肥替代化肥潜力估算[J]. 中国猪业, 2016, 11(11): 15–18.
Lu G B, Wang X H. Potential estimation of organic manure substitute for fertilizer based on nutrient balance[J]. China Swine Industry, 2016, 11(11): 15–18. DOI:10.3969/j.issn.1673-4645.2016.11.002
[158] 宇万太, 关焱, 李建东, 等. 氮和磷在饲养-堆腐环中的循环率及有机肥料养分利用率[J]. 应用生态学报, 2005, 16(8): 1563–1565.
Yu W T, Guan Y, Li J D, et al. Recycling rate of N and P through a feeding-composting cycle and their recoveries in agro-ecosystems[J]. Chinese Journal of Applied Ecology, 2005, 16(8): 1563–1565. DOI:10.3321/j.issn:1001-9332.2005.08.035
[159] 孙聪姝, 王兆荣, 金明花, 等. 长期培肥定位试验耗竭阶段各培肥物质对土壤氮库持续效应的研究[J]. 东北农业大学学报, 1998, 29(3): 209–218.
Sun C S, Wang Z R, Jin M H, et al. The sustainable effect of fertilizing maters on soil nitrogen content during fertility exhausting stage of long-term location test[J]. Journal of Northeast Agricultural University, 1998, 29(3): 209–218.
[160] 杨泳冰, 胡浩, 王益文. 农户以商品有机肥替代化肥的行为分析——基于江苏南通市228户调查数据[J]. 湖南农业大学学报 (社会科学版), 2012, (6): 1–6.
Yang Y B, Hu H, Wang Y W. Behavior of farmers’ using merchandise organic fertilizer as the substitution of chemical fertilizer: Based on the survey data of 228 households in Nantong city, Jiangsu province[J]. Journal of Hunan Agricultural University, 2012, (6): 1–6.
[161] Bailey K L, Lazarovits G. Suppressing soil-borne diseases with residue management and organic amendments[J]. Soil & Tillage Research, 2003, 72(2): 169–180.
[162] Schnitzer M I, Monreal C M, Facey G A, et al. The conversion of chicken manure to biooil by fast pyrolysis I. Analyses of chicken manure, biooils and char by 13C and 1H NMR and FTIR spectrophotometry [J]. Journal of Environmental Science & Health (Part b. Pesticides Food Contaminants & Agricultural Wastes), 2007, 42(1): 71.
[163] 杨娟, 王昌全, 蔡艳, 等. 猪粪农田施用下的水稻生产生命周期碳排放[J]. 中国生态农业学报, 2015, 23(9): 1131–1141.
Yang J, Wang C Q, Cai Y, et al. Life cycle greenhouse gases emission of rice production with pig manure application[J]. Chinese Journal of Eco-Agriculture, 2015, 23(9): 1131–1141.
[164] 侯苗苗, 吕凤莲, 张弘弢, 等. 有机氮替代比例对冬小麦/夏玉米轮作体系作物产量及N2O排放的影响 [J]. 环境科学, 2018, (1): 1–21.
Hou M M, Lü F L, Zhang H T, et al. Effect of organic manure substitution of synthetic nitrogen on crop yield and N2O emission in winter wheat-summer maize rotation system [J]. Environmental Science, 2018, (1): 1–21. DOI:10.3969/j.issn.1006-4427.2018.01.001
[165] 赵军, 李勇, 冉炜, 等. 有机肥替代部分化肥对稻麦轮作系统产量及土壤微生物区系的影响[J]. 南京农业大学学报, 2016, 39(4): 594–602.
Zhao J, Li Y, Ran W, et al. Effects of organic manure partial substitution for chemical fertilizer on crop yield and soil microbiome in a rice-wheat cropping system[J]. Journal of Nanjing Agricultural University, 2016, 39(4): 594–602.
[166] 李江涛, 钟晓兰, 刘勤, 等. 长期施用畜禽粪便对土壤生物化学质量指标的影响[J]. 土壤, 2010, 42(4): 526–535.
Li J T, Zhong X L, Liu Q, et al. Effects of long-term application of livestock manures on soil biochemical quality indicators[J]. Soils, 2010, 42(4): 526–535.
[167] 雷成, 陈佰鸿, 郁继华, 等. 西部七省区畜禽废弃物利用状况的调查与探讨[J]. 干旱区资源与环境, 2014, 28(5): 77–83.
Lei C, Chen B H, Yu J H, et al. The investigate and analysis of livestock excrement’s utilization situation in seven western provinces of China[J]. Journal of Arid Land Resources and Environment, 2014, 28(5): 77–83.
[168] 徐勇峰, 阮子学, 吴翼, 等. 环洪泽湖地区耕地养殖污染负荷估算及其风险评价[J]. 南京林业大学学报(自然科学版), 2016, 40(4): 35–42.
Xu Y F, Ruan Z X, Wu Y, et al. Estimation of livestock pollution loading and the risk assessment for farmland in Hung-tse Lake regions[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(4): 35–42.
[169] 潘丹. 鄱阳湖生态经济区畜禽养殖土壤环境承载力及污染风险研究[J]. 水土保持通报, 2016, 36(2): 254–259.
Pan D. Environment carrying capacity and pollution risk of livestock breeding in ecological economic zone of Poyang Lake[J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 254–259.
[170] 李祖章, 谢金防, 蔡华东, 等. 农田土壤承载畜禽粪便能力研究[J]. 江西农业学报, 2010, 22(8): 140–145, 149.
Li Z Z, Xie J F, Cai H D, et al. Environmental loading capacity of farm land soil for dung of livestock and poultry[J]. Acta Agriculturae Jiangxi, 2010, 22(8): 140–145, 149. DOI:10.3969/j.issn.1001-8581.2010.08.043
[171] 卢善玲, 沈根祥. 粮区和菜区的畜禽粪便适宜施用量[J]. 上海农业学报, 1994, (10): 51–56.
Lu S L, Shen G X. Study on suitable application amount of livestock and poultry droppings in Shanghai area[J]. Acta Agriculturae Shanghai, 1994, (10): 51–56.
[172] Oenema O, Van L L, Plette S, et al. Environmental effects of manure policy options in The Netherlands[J]. Water Science & Technology, 2004, 49(3): 101–108.