植物营养与肥料学报   2017, Vol. 23  Issue (6): 1536-1546 
0
PDF 
植物对不同形态磷响应特征研究进展
李廷轩, 叶代桦, 张锡洲, 郭静怡    
四川农业大学资源学院,四川成都 611130
摘要: 磷是植物生长发育所必需的大量营养元素之一,参与植物体内许多重要化合物的合成与代谢。土壤中磷素具有多种形态,且不同形态磷的植物有效性差异较大;植物在不同形态磷环境下,体内会形成相应的适应性机制。植物吸收积累磷通常与根形态、根系分泌物、体内磷转运等因素有关,受到特异基因表达的调控。了解植物对磷的吸收积累特性是筛选磷高效植物或磷富集植物的前提,也是充分利用土壤磷素资源、修复磷过剩环境的关键。根据国内外研究现状,本文从磷素吸收积累、根系形态特征、磷酸酶与植酸酶的变化以及磷营养高效的分子机制,综述了植物对不同形态磷的响应特征,并对未来该领域的研究进行了展望。
关键词: 磷形态     磷高效     磷富集     植物响应机制    
Research advances on response characteristics of plants to different forms of phosphorus
LI Ting-xuan, YE Dai-hua, ZHANG Xi-zhou, GUO Jing-yi    
College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Abstract: Phosphorus (P) is one of the essential macronutrients that participates in many important compound synthesis and metabolism of plants. P exists in many forms in soil and gives different phytoavailability. Plants have developed specific mechanisms to adapt the dominant P sources in soil. It has been proved that the efficient P uptake and accumulation of plants are closely related with root morphology, rhizosphere secretion and phosphate transporter. Comprehending P accumulation characteristics of plants is important for breeding high P efficient crops or P-accumulators, excavating the ability of high P efficiency crops in the utilization of the potential P sources, and the key of using plants to extract excess P from P-enriched environments. According to the research achievements at home and abroad, this paper summarized the characteristics of P uptake, root morphology, root activities of phosphatase and phytase of plants when grown in different forms of P, and reviewed the progress in the research of molecular mechanism of high P efficiency. Meanwhile, the future researches in this field were forecasted.
Key words: phosphorus forms     phosphorus-efficient     phosphorus accumulation     plant response mechanisms    

土壤中绝大部分磷以难溶性的无机态和有机态形式存在,其中仅有1%左右的磷可被植物直接吸收利用[1]。与植物其他必需矿质元素相比,土壤中磷的有效性低、迁移性差,导致部分土壤有效磷供应不足。全国农田土壤从南到北全磷含量变幅为0.31~1.72 g/kg,有效磷的平均含量仅为12.89 mg/kg[2]。研究表明,25 mg/kg左右的土壤有效磷是保障作物高产的前提[3]。农田土壤磷的有效性过低已成为作物生产的主要限制因素之一,施用磷肥可有效缓解这种现状。然而,大量施用磷肥不仅直接造成磷矿资源的逐渐耗竭,而且导致大量农田土壤中磷素过剩,进而引发一系列高风险的环境问题。中国与许多畜牧业发达国家常将土壤作为畜禽粪便的负载场所[4]。营养成分丰富的有机肥 (鸡粪、猪粪、山羊粪等) 施入土壤后,使得土壤中的磷含量超过了作物所需[5],造成土壤可溶性磷含量增加,地表径流中的磷流失量也增加[6]。当土壤有效磷含量超过60 mg/kg时,磷素易通过淋溶损失[7]。据统计,我国的磷肥施用量已占全球施用总量的52%,集约化耕作土壤的磷累积现象严重,平均磷素累积量高达242 kg/hm2[89],磷引起的面源污染对我国水体总污染的贡献高达93%[10]。因此,如何提高磷肥利用率、降低磷肥投入、减少土壤磷的流失以及提取环境中过剩的磷已成为资源环境领域研究的热点问题。

筛选干物质量大、磷含量低的磷高效植物 (牧草或谷物) 是降低磷肥施用量、缓解农田土壤有效磷含量过低的有效途径之一[1112];利用磷高效植物作为动物饲料能从源头上防控大量磷随畜禽粪便排出带来的环境污染风险。此外,利用磷富集植物从磷丰富土壤中提取过剩的磷是一种有效的治理方法[13]。植物修复具有成本低、不破坏土壤和水体生态环境、不引起二次污染等优点。磷富集植物收获后又可作为绿肥资源,从而降低化肥施用量,减缓施用化肥对资源环境的污染与破坏。土壤中不同形态磷的有效性差异较大[1417],不同植物对各形态磷的吸收利用各异[18],从而直接影响植物吸收积累磷素的能力。了解土壤中不同形态磷的有效性并从生理生化特征和分子水平变化角度阐明磷高效作物和磷富集植物对不同形态磷的吸收积累机制,可为充分利用磷资源,降低磷肥施用量,亦或有效提取土壤过剩磷提供依据。近年来,国内外关于植物对不同形态磷的吸收积累机制研究取得了较多进展。因此,本文总结了不同形态磷环境下,磷高效作物和磷富集植物对磷的吸收积累特征及其根系形态、磷酸酶、植酸酶和磷营养高效相关的特异基因在该过程中的作用。

1 土壤中磷的形态

磷分为无机态和有机态。无机态磷主要包括原生矿物和次生矿物中的无机磷酸盐[19]。土壤无机态磷除少量的水溶态外,大部分以吸附态和矿物态存在于土壤中。有机态磷分为小分子有机态磷和大分子有机态磷,许多小分子有机态磷易溶于水、含量较低,但容量大、持续供应能力强,因此其对植物磷营养的贡献不容低估。

1.1 无机态磷

土壤无机态磷约有99%以矿物态存在,根据其在不同化学提取剂中的选择溶解性差异可分为磷酸铝类 (Al-P)、磷酸铁类 (Fe-P)、磷酸钙 (镁) 类 (Ca-P) 和闭蓄态磷 (O-P)。蒋柏藩和顾益初将石灰性土壤的Ca-P分为磷酸二钙型 (Ca2-P)、磷酸八钙型 (Ca8-P) 和磷灰石型 (Ca10-P)[1415]。各形态磷有效性差异较大,具体表现为Ca2-P有效性较高、持续性好,Ca8-P为缓效性磷源,Ca10-P是一种潜在性磷源。闭蓄态磷溶解度小,难以被植物利用。

土壤中吸附态磷含量较低,以H2PO4 和HPO42–为主,PO43– 很少。当土壤pH < 6.5时,吸附态磷是土壤溶液磷的主要来源 [20]。磷酸根的吸附以交换吸附和配位交换为主[21],影响其吸附的因素较多,如氧化铁铝含量、pH、土壤黏粒和有机质等。

土壤中的水溶态磷是植物吸收利用的最有效形态,但其含量极低,变化范围在0.003~0.3 mg/L之间[22]。土壤水溶性磷含量主要受土壤pH、施肥方式及土壤固相磷的浓度和结合状态影响,其补给主要源于磷酸盐矿物的溶解和吸附固定态磷的释放。

1.2 有机态磷

有机态磷在土壤磷库中占较大的比例,为土壤全磷的20%~50%[2324],包括植素类 (如肌醇磷酸盐),核酸类 (如核酸、核苷酸),磷脂类 (如磷脂) 和其他有机磷化合物 (如微生物磷)。植素类的肌醇磷酸盐占比最大,约为有机态磷总量的一半[25]。肌醇磷酸盐包括一磷酸盐到六磷酸盐的系列磷酸盐,并以肌醇六磷酸盐 (植酸) 为主[24]。磷脂、核酸、核苷酸和磷酸糖类约占5%。土壤微生物磷含量仅占微生物干物质量的1.4%~4.7%[23],其周转速率快,能释放出活性较高的磷,被视为植物有效磷供应的重要来源。研究表明,已鉴别出来的土壤有机态磷含量大小为肌醇磷酸盐>多聚糖磷酸盐>核酸>磷脂>磷糖[19]。除上述有机态磷外,至今仍有近一半的成分没有鉴别出来。有机态磷需在酶的作用下分解成无机态磷后才能发挥其植物有效性[17]。有研究认为,小分子有机态磷能被某些植物直接吸收利用[2628]。土壤有机态磷的年矿化率较小 (2%~4%),但可逐渐矿化,从而增加土壤有效态磷含量,满足植物对磷的吸收需求[24]

2 植物对不同形态磷的吸收积累

植物根系从土壤中吸收的磷主要为通过扩散形式到达根系表面的H2PO4 和HPO42–。磷常与土壤中的阳离子和有机物紧密结合,形成不同形态的磷,影响着植物对磷的吸收积累。不同磷效率植物对各形态磷的吸收利用差异较大,磷高效基因型植物对环境中有机态磷的吸收利用能力强于磷低效基因型。在Al-P条件下,大豆生物量及磷含量均高于Fe-P和Ca-P处理,且高效基因型对Al-P和Fe-P的吸收利用能力更强[29]。在控释肥和KH2PO4条件下,磷高效基因型白羽扇豆生物量和体内磷含量无明显差异,均显著高于Al-P和Ca-P处理[30];磷高效基因型小麦的吸磷量和磷吸收效率也显著高于磷低效基因型[31]。水稻在Ca-P处理下能正常生长,且磷高效基因型Pembe对根际碳酸氢钠提取态和氢氧化钠提取态有机磷的吸收利用能力强于磷低效基因型Zhongbu51[32]。牧草 (Trifolium subterraneum L.) 能高效吸收利用有机态磷α-D-葡萄糖-1-磷酸二钠盐 (G1P) 和Na2HPO4,但对于植酸态磷 (IHP) 的吸收利用能力却较弱[33],在G1P和Na2HPO4条件下植株体内磷含量是IHP处理下的4~7倍。小麦 (Triticum aestivum L.) 对不同形态磷的响应各异,与IHP处理相比,在G1P、腺苷-5′-三磷酸二钠 (ATP) 和Na2HPO4条件下磷积累量更高,地上部生物量更大[34]。IHP处理对植物生长具有明显的抑制作用,与无机态磷处理相比,两种基因型水稻“中部51”、“Azucena”和野生型烟草的生物量和磷含量均降低[3536]。对磷富集植物水蓼 (Polygonum hydropiper) 的研究发现,矿山生态型在不同形态磷条件下吸收积累磷的能力均强于非矿山生态型,其对KH2PO4和IHP中磷的吸收积累能力显著高于AMP、ATP和G1P处理[3739]。矿山生态型粗齿冷水花 (Pilea sinofasciata) 对KH2PO4的吸收积累能力强于非矿山生态型,体内磷含量可达16.23 g/kg DW[37, 40]。在高磷条件下,磷富集植物Duo festulolium体内磷含量高达12 g/kg DW,具有较强的磷积累特性,能吸收利用不同形态的磷,在ATP条件下地上部磷含量最高[16]。Sharma等[17]发现Gulf和Marshall黑麦草 (Lolium multiflorum L.) 对IHP的吸收积累能力与对磷酸盐的吸收积累能力相当,且远高于对其他有机态磷的吸收积累。底物有效性较低可能是限制植物利用IHP能力的因素之一,高浓度IHP处理下植株地上部干物质量、磷含量等均显著高于低浓度IHP处理[17, 36, 41]。浮游植物可以利用溶解态磷,包括正磷酸盐 (PO43-、HPO42–、H2PO4、H3PO4),无机缩聚磷酸盐 (焦磷酸盐、偏磷酸盐和多聚磷酸盐) 和有机结合磷 (氨基磷酸、磷核苷酸类化合物、磷蛋白、核蛋白、磷脂和糖类磷酸酯等)。正磷酸盐是最有效的磷形态,能被浮游植物直接吸收利用。亚磷酸盐[42]和多磷酸盐[43]等溶解态无机磷也能被某些浮游植物直接吸收。溶解态有机磷 (磷酸酯和膦酸酯) 也是浮游植物极其重要的磷源[44],但不同种类的浮游植物会选择性吸收磷酸酯和膦酸酯,如聚球藻、原绿球藻[45]、束毛藻[46]等固氮蓝藻可以利用膦酸酯。浮游植物能否高效利用大分子有机态磷 (如卵磷脂) 因物种不同存在明显差异[4748]。个别浮游植物在有机态磷条件下的生长情况好于正磷酸盐[47, 49]

3 植物根系形态对不同形态磷的响应

土壤中磷素的扩散速率低且易被固定,导致其有效性较低,植物获取磷素有赖于根系生长和根系形态的改变。根系的发育状况直接决定根土界面的大小,影响根系可接触的土壤体积和植物有效吸收矿质养分的面积[5051]。植物根系形态不仅受到供磷水平的影响,也受到供磷形态的影响。关于植物根系形态对供磷水平的响应,尤其是以增大根长、根表面积、侧根数目等的研究报道较多[5256];关于其对供磷形态的响应还鲜见报道。Shu等[57]研究发现难溶性磷可刺激根系的生长,植物通过改变根系形态以增大根系与环境接触的机会,从而提高根系对不同形态难溶性磷的适应能力。与Ca-P和KH2PO4处理相比,在Fe-P和IHP处理下白羽扇豆的排根形成比例更大,促进了白羽扇豆对低有效性磷源的吸收利用,缓解低有效性磷源对其生长的限制,其吸磷量可达4 mg/plant以上。施用Fe-P时小麦 (小偃54) 仅出现根系伸长的适应性反应,而施用IHP时小偃54则表现为根系伸长、根尖数增加、酸性磷酸酶分泌量增加的适应性反应,导致其磷吸收量由0.14 mg/pot增加至0.52 mg/pot[58]。大豆通过改变根系形态来提高对各形态磷浓度变化的适应能力,其根长和根表面积在Al-P处理下最高,而Ca-P和Fe-P次之,KH2PO4处理下最低[59]。油茶幼苗的根系生长受供磷形态的影响较为显著,Ca-P、Al-P和Fe-P处理均显著促进了油茶主根生长,减小了侧根数和根冠比,且Ca-P的影响作用最大[60]。磷富集植物矿山生态型水蓼丰富的细根为其吸收利用不同形态磷源提供了优越的条件,其总根长、根表面积、根体积均在IHP和KH2PO4处理下显著高于其他有机态磷处理,在IHP和KH2PO4处理下的吸磷量分别达到32.85和40.02 mg/plant[61]。IHP处理下,磷高效野生大麦磷含量急剧下降,刺激其通过增加根长、根系吸收面积等扩大对水分和养分的接触空间,以保证正常生长[62]。可见,磷高效植物根系形态对不同形态磷的适应性变化能提高其对磷素的获取。

4 植物酶活性对不同形态磷的响应 4.1 磷酸酶活性对不同形态磷的响应

磷酸酶的水解能促进植物吸收利用有机态磷,但其活性在不同形态磷条件下表现出较大的差异。对磷富集植物Lolium multiflorum的研究表明,IHP和KH2PO4促进其根系磷酸酶活性升高,且显著高于腺苷-3′,5′-环状单磷酸钠 (AMP) 和ATP处理,而与G1P和无磷 (对照) 间差异不显著[17]。在IHP和Na2HPO4处理下,拟南芥根系酸性磷酸酶活性高于G1P处理[34]。磷酸酶根据其催化反应的最适pH不同分为碱性磷酸酶、中性磷酸酶和酸性磷酸酶。碱性磷酸酶和酸性磷酸酶活性对不同形态磷的响应研究报道较为集中。

4.1.1 碱性磷酸酶

碱性磷酸酶是一种正磷酸单酯水解酶,主要参与浮游植物细胞磷代谢和信号肽传导,催化水解磷酸单酯化合物以释放正磷酸根,对磷酸单酯键具有高度专一性。目前,碱性磷酸酶的研究主要集中于蓝藻、甲藻、金藻等浮游植物。碱性磷酸酶在水体中主要以溶解态和细胞结合态存在,能指示磷缺乏,补充磷营养和影响磷循环[63]。当水体中无机磷酸盐浓度很低时,碱性磷酸酶能水解水体中的溶解态有机磷,释放无机磷酸盐供藻类利用[64]。不同形态磷条件下,浮游植物体内碱性磷酸酶活性差异较大。环境中无机态磷的浓度影响着浮游植物体内的碱性磷酸酶活性,溶解态无机磷充足条件下浮游植物碱性磷酸酶活性通常较低。无机态磷条件下,中肋骨条藻和东海原甲藻的碱性磷酸酶活性在培养4天内不断下降[28],球形棕囊藻[65]和米氏凯伦藻[48]的碱性磷酸酶活性变化不明显。在低浓度无机态磷处理下,藻类的碱性磷酸酶活性通常较高。然而,一些藻类生长所需的无机态磷浓度较低,且其细胞内磷浓度较高,导致其即使在磷胁迫条件下也不产生碱性磷酸酶[65, 67]。不同种类及同一种类的不同个体存在磷生理状态差异,即使在相同的环境条件下,并非每一种浮游植物都会诱导产生碱性磷酸酶[6869]。藻类对溶解态有机磷的吸收利用途径存在差异,导致体内碱性磷酸酶的响应不同。中肋骨条藻和东海原甲藻在小分子溶解态有机磷β甘油磷酸钠 (G-P) 处理下其碱性磷酸酶活性最高,在6-磷酸葡萄糖 (G-6-P) 和ATP处理下次之,三种藻类对G-P、G-6-P和ATP具有相似的吸收利用机制[2728]。然而,庞勇等[48]发现G-P、ATP和卵磷脂 (LEC) 处理均抑制了米氏凯伦藻碱性磷酸酶的表达。在G-P处理下,球形棕囊藻碱性磷酸酶活性变化不明显,而在LEC作为磷源时,其碱性磷酸酶活性迅速提高[65]。因此,浮游植物对溶解态有机磷的利用主要包括两种途径:1) 细胞直接吸收;2) 通过相关酶 (如碱性磷酸酶) 降解后再吸收利用。浮游植物 (如藻类) 产生的碱性磷酸酶可矿化有机态磷,是促进其对磷吸收积累的一种重要机制。有机态磷种类繁多、结构复杂,浮游植物对不同形态有机磷的吸收利用机理有待进一步深入研究。

4.1.2 酸性磷酸酶

酸性磷酸酶是存在于土壤和植物体中的一种诱导酶,在植物碳水化合物转化和蛋白质合成中起着重要作用,能促使有机磷的磷酯键水解,释放相应的醇和无机态磷,从而提高土壤磷的有效性。植物根系分泌的磷酸酶在调控植物磷营养、有机磷代谢及再利用方面有着非常重要的作用,其活性影响有机态磷有效性的高低。目前,根系酸性磷酸酶活性对不同形态磷响应机理的研究集中于磷高效作物 (如小麦等) 和磷富集植物 (如黑麦草等)。低磷条件可诱导磷高效植物分泌酸性磷酸酶[70]。低浓度无机态磷处理和正常浓度植酸态磷处理可诱导磷高效基因型小麦 (3-2917) 根系产生酸性磷酸酶,酶活性显著高于正常浓度无机态磷处理[71]。在植酸和核糖核酸作磷源时,不同基因型白羽扇豆 (Lupinus angustifolius L.和L. albus L.) 根系分泌的酸性磷酸酶活性表现为核糖核酸>植酸>无机磷[72]。与无机态磷处理相比,植酸态磷促进了豆科植物根系分泌酸性磷酸酶,使其能有效利用植酸[73]。小麦 (T. aestivum L.) 根系酸性磷酸酶活性在IHP处理下显著高于Na2HPO4和G1P处理[74];在以无机态磷和有机态磷为混合磷源的处理下,种植9天的小麦体内酸性磷酸酶活性显著高于Ca-P处理[75]。Yadav和Tarafdar[76]认为酸性磷酸酶活性的高低与有机态磷的水解难易有关,植酸钙镁处理下植物酶活性大于卵磷脂和甘油磷酸处理。因此,磷高效植物根系酸性磷酸酶活性的增加能促进有机态磷矿化为无机态磷,增强体内磷素再利用,是植株响应低磷胁迫的重要机制之一。具有磷富集能力的黄南瓜 (Cucurbita pepo var. melopepo)、黄瓜 (Cucumis sativus) 在高浓度KH2PO4条件下根系能产生更多的酸性磷酸酶[77]。在高浓度无机态磷条件下,一年生黑麦草Gulf和Marshall体内磷酸酶活性高于不施磷处理,且不同形态磷培养下植物体内酸性磷酸酶活性差异极大[78]。在不同形态磷培养下,牧草 (D. festulolium) 根系酸性磷酸酶活性表现为G1P > IHP > AMP > ATP > KH 2PO4处理[16]。磷富集植物矿山生态型水蓼根系在高浓度KH2PO4、畜禽废水 (无机态磷和有机态磷)、猪粪 (无机态磷和有机态磷) 或IHP培养下酸性磷酸酶活性较高,均显著高于对照[3839, 7981];在不同形态有机磷处理下,IHP处理的水蓼根系酸性磷酸酶活性显著高于AMP、ATP和G1P处理[39]。可见,植物酸性磷酸酶不仅能被低磷胁迫诱导,在不同形态的高磷环境下也可诱导产生 (如磷富集植物)。植物体通过其酶合成机制,对不同形态磷作出相应的响应,以促进其对磷的吸收积累。此外,植物对各形态磷的吸收积累能力大小不仅与根系酸性磷酸酶活性的高低相关,也取决于植物本身的遗传特性。

4.2 植酸酶活性对不同形态磷的响应

土壤全磷的20%~50%以有机态存在[2324],植酸及其盐类约占有机态磷的50%[25],是植物生长重要的磷源。植酸酶可将植酸及其盐类催化水解为肌醇与磷酸 (盐),属磷酸单酯水解酶[16, 78],对植酸态磷具有高度的专一性。植酸酶通常分为3-植酸酶和6-植酸酶,来源于植物的植酸酶多属于6-植酸酶,植物体内含量低。多数植物不能直接吸收利用植酸态磷,植酸酶水解矿化后方能被植物利用。野生型烟草不能吸收利用植酸磷的根本原因在于根部不能分泌植酸酶[36],野生型拟南芥也缺乏直接利用植酸磷的能力[34]。磷富集植物Gulf和Marshall根系植酸酶活性在高浓度KH2PO4处理下显著增加,且显著高于畜禽粪便处理 (无机态磷和有机态磷)[78];不同形态磷条件下,牧草根系植酸酶活性、生物量和磷含量在IHP条件下均显著高于其他有机态磷处理,且随着IHP处理浓度的提高而增加[17]。Priya等[16]认为AMP促进了一年生牧草 (D. festulolium) 根系植酸酶活性的增强,且在IHP处理下根系植酸酶活性较高。因此,IHP能提高一年生根系分泌植酸酶以促进其吸收利用植酸盐类有机磷,相对于许多野生型植物而言,牧草利用植酸磷的能力较强。酶活性和底物有效性是影响环境中有机态磷水解释放无机态磷速率的因素。Richardson等[34]将曲霉中的植酸酶基因转入拟南芥,转基因株系在IHP处理下植酸酶活性高于其他形态磷处理。以IHP为唯一磷源时,牧草 (T. subterraneum) 较低的根系植酸酶活性是限制其利用IHP的重要原因之一,当添加外源植酸酶 (源于Aspergillus niger) 后,牧草的长势与无机态磷处理相当[32]。此外,植物根系植酸酶对不同形态磷的响应受磷浓度、各形态磷比例及生长期等因素的影响。具有磷富集能力的水蓼在KH2PO4处理下生长良好,根系植酸酶活性随着处理浓度的增加而显著提高,且随生长期的增加两种生态型间差异较大[38, 79]。Ye等[81]研究表明,在不同浓度畜禽废水条件下,两种生态型水蓼根系植酸酶活性随生长期的延长不断降低,且在高浓度畜禽废水处理下的酶活性高于低浓度处理,但均低于无机态磷处理。在以猪粪作为磷源的土培试验中发现,水蓼根系植酸酶活性随着猪粪处理浓度的增加而增加[80]

5 不同形态磷条件下植物磷营养高效的分子机制

植物对磷吸收积累的高效机制主要涉及根形态、根分泌、膜转运、体内转运等的适应性变化,有的在植物生长发育中必然产生 (结构性的),有的需要经过低磷条件诱导才能产生 (诱导性的),但都受遗传控制[82]。植物磷高效基因的识别与克隆,尤其是基因表达及其调控机制的逐步清楚,使通过基因工程技术培育磷营养高效型作物新品种和高效提取过剩磷的修复植物成为可能。植物在不同磷营养条件下会发生形态、生理、生化等方面的变化,这一系列适应性变化是相关响应基因协调表达的结果。磷胁迫下,在植物根和茎中发现了许多特异性表达的基因,包括高亲和力磷转运子、分泌有机酸的相关基因、植酸酶相关基因、酸性磷酸酶相关基因、TPSI1/Mt4基因家族等[83],磷胁迫特异性基因的表达对植物吸收利用磷起到重要作用。Mitsukawa等[84]研究报道,拟南芥的高亲和磷转运蛋白基因AtPT1在烟草的悬浮细胞中高效表达,转基因细胞生物量增加,对磷 (KH2PO4) 的吸收能力也明显提高。与对照相比,超表达水稻高亲和磷转运蛋白基因OsPT1的转基因植株其磷素吸收能力更强,低浓度KH2PO4条件下植株的长势明显得到改善[85]。在低浓度无机态磷胁迫下,与磷转运蛋白PHT3和PT2高度同源的两个基因 (ULF14ULF15) 在小麦 (石新828) 体内特异增强表达,其在应答低磷胁迫和改善植株对低磷胁迫的适应能力中具有重要作用[86]。转基因拟南芥中柠檬酸合成酶基因的表达水平和活性均显著高于野生型植株[87]。Tesfaye等[88]发现,与对照相比,超量表达根瘤增强型苹果酸脱氢酶 (neMDH) 基因的苜蓿根尖苹果酸脱氢酶的活性增强了1.6倍,根部有机酸含量增加了4.2倍,同时根系分泌的苹果酸、柠檬酸、草酸、琥珀酸和乙酸的量也增加,其对磷的吸收能力也相应提高。当前,对植酸酶基因工程的研究主要集中于降低种子中的植酸含量,提高单胃动物对植酸的吸收积累和根系植酸酶的分泌量,从而促进根际有机态磷的活化和对土壤有机态磷的吸收利用。在玉米胚中特异表达A.niger phyA2基因,测得转基因种子中植酸酶活性显著提高,植酸含量与对照相比明显降低,并且转基因株系的种子萌发率和产量并没有受到影响[89]。转酸性磷酸酶和植酸酶基因可以提高植物吸收利用植酸盐或其他有机态磷的能力。在以IHP为唯一磷源的条件下,与对照相比,超量表达MtPAP1的转基因拟南芥中,根系细胞间隙中的酸性磷酸酶活性明显提高。液体培养基中的有机态磷可被转基因拟南芥分泌的酸性磷酸酶快速降解,且拟南芥转基因植株的生物学产量、植株无机磷含量和全磷含量明显高于野生物种[90]。植酸态磷处理下,转紫色酸性磷酸酶基因拟南芥根系GUS表达和GUS活性分别比KH2PO4处理提高了1.3倍和1.9倍[91];转M. truncatula紫色酸性磷酸酶基因的表达提高了拟南芥获取磷的能力,使得其生物量也显著增加[92]。在以植酸为磷源的条件下,转紫色酸性磷酸酶 (MtPAP1) 基因的表达,使得转基因苜蓿 (Medicago sativa L.) 生物量和磷获取量均显著高于对照植株[93]。菜豆 (Phaseolus vulgaris) 叶片和根系紫色酸性磷酸酶 (PvPAP3) 受低磷诱导,参与利用外源ATP,以维系植物以ATP为唯一磷源时正常生长[94]。在充足的K2HPO4处理下,Gulf黑麦草长势明显优于磷缺乏处理,其体内超量表达紫色酸性磷酸酶基因LmPAP1是磷积累量增加的根本原因之一[95]。表达了转胞外植酸酶基因的小麦、拟南芥等从IHP中获取的磷是在磷酸盐培养下的7倍左右[73, 96]。在植酸态磷培养下,转M. truncatula植酸酶基因的拟南芥生物量及体内磷含量均显著高于对照[97],在拟南芥体内表达转曲霉植酸酶基因的研究中也有类似发现[34]。利用根癌农杆菌菌株LBA4404,通过两步再生方法将植物表达载体pBINPR-phyI中含有的带胞外分泌信号肽序列的植酸酶基因转入油菜 (中双6号),转基因油菜能以植酸为唯一磷源正常生长,根系分泌大量高活性植酸酶有助于土壤有机态磷转化为有效态磷供植物利用,非转基因植株则不能[98];在转枯草芽孢杆菌植酸酶基因烟草的研究中也有类似现象[36]。而TPSI1/Mt4基因家族则被认为是新的磷缺乏诱导基因家族,其在低磷条件的早期上调,在植物适应低磷胁迫的初期具有十分重要的作用。与低浓度Ca-P处理相比,当Ca-P供给充足时,番茄叶片和根系中磷饥饿诱导表达基因TPSI1的转录显著降低,表明TPSI1基因可能是番茄磷饥饿的早期反应之一[99]。在未受VAM侵染且处于磷饥饿状态时,Mt4在根系中正常表达,自侵染早期开始,Mt4的表达明显减弱,环境中高浓度的KH2PO4抑制Mt4的表达[100]。Burleigh和Harrison[101]发现Mt4基因在紫花苜蓿中的表达并非受根内磷含量的影响,而是受茎中磷状态的调节。Martín等[102]在拟南芥突变体中发现了TPSI1/Mt4的同源基因At4At4在茎内组成型表达,无论无机态磷供应充足与否,拟南芥pho1突变体均不能将磷转移至木质部,说明早期反应相关基因TPSI1/Mt4家族可能是受茎内磷状态的调节。水稻体内发现了TPSI1/Mt4的同源基因OsPI1,它受低浓度的NaH2PO4快速诱导,能对低磷环境产生特异性响应[103]。小麦 (小偃54) 的IPS基因属于典型的受缺磷条件特异诱导的TPSI1/MT4小基因家族,该基因家族在正常营养条件下表达量很低,而缺磷显著增加了根系中TaIPS1.1TaIPS1.2TaIPS1.3基因与地上部TaIPS2.1TaIPS2.2基因的表达,通过比较其对缺磷的响应,认为TaIPS1.1是相对理想的用于诊断小麦植株磷素丰缺的基因[104]

6 展望

近年来,为挖掘磷高效植物充分利用土壤磷素的能力,探讨磷富集植物对磷过剩土壤的修复潜力,展开了植物对不同形态磷吸收积累及生理生化特征的研究,但其内在机制不够深入,缺乏系统性研究。为了深入揭示和弄清植物对不同形态磷的响应机理,尚有以下方面需要进一步深入研究。

6.1 磷高效植物和磷富集植物的筛选

筛选能吸收利用土壤中大量的潜在磷源以提高干物量与籽粒产量的磷高效植物,充分利用土壤储备态磷以缓解土壤有效态磷不足的问题;筛选用于修复磷过剩土壤及富营养化水体的理想磷富集植物,其应具备地上部生物量大、磷积累量高和生物安全等特点。其次,建立一套磷高效植物和磷富集植物筛选的评价指标也十分必要。

6.2 根土界面的研究

为何植物能适应多种形态磷环境,是否与根系构型、根系分泌物、根系次生代谢物以及细胞组分有一定关系,这一理论尚不清楚,应加强根系对不同形态磷的形态学及生理生化响应特征研究。其次,根际特殊的物理、化学及生物学特性决定磷的植物有效性,从而影响植物的生长及对磷的吸收积累。土壤化学成分的组成及根际特性的变化将改变磷素形态及其生物有效性,微生物活动及其产酶、产酸特性在这一过程中起着重要作用,应深入研究植物的磷高效吸收积累与根际磷组分、微生物特性的关系。

6.3 特异基因的分离与表达

虽然转基因植株在适应不同形态磷和吸收积累磷方面有明显的优势,但特异基因所调控的生理生化特性及相关基因在不同植物中的作用仍需深入探究。因此,深入研究基因的分离克隆,将不同形态磷下特异性表达的基因分离出来,使其在生物量大的植株体内表达,并将其与根吸收利用磷的研究相结合,为更深入地探讨植物吸收利用不同形态磷的内在机理,为充分利用土壤中大量的磷,防治土壤磷素过剩或水体富营养化等问题作出更大的贡献。

参考文献
[1] Raghothama K G. Phosphorus and plant nutrition: an overview [A]. Sims J T, Sharpley A N. Phosphorus: Agriculture and the environment [C]. Madison: American Society of Agronomy, 2005, 355–378.
[2] 王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1): 260–268.
Wang Y Z, Chen X, Shi Y. Phosphorus availability in cropland soils of China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 260–268.
[3] Higgs B, Johnston A E, Salter J L, et al. Some aspects of achieving sustainable phosphorus use in agriculture[J]. Journal of Environmental Quality, 2000, 29(1): 80–87.
[4] 王方浩, 马文奇, 窦争霞, 等. 中国畜禽粪便产生量估算及环境效应[J]. 中国环境科学, 2006, 26(5): 614–617.
Wang F H, Ma W Q, Dou Z X, et al. The estimation of the production amount of animal manure and its environmental effect in China[J]. China Environmental Science, 2006, 26(5): 614–617.
[5] Guo Y, Li G. Nitrogen leaching and phosphorus accumulation in a perennial pasture after composted goat manure was top dressed and incorporated in the Three Gorges region[J]. Journal of Soils and Sediments, 2012, 12(5): 674–682.
[6] Wang W, Liang T, Wang L, et al. The effects of fertilizer applications on runoff loss of phosphorus[J]. Environmental Earth Sciences, 2013, 68(5): 1313–1319.
[7] Heckrath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the broad balk experiment[J]. Journal of Environmental Quality, 1995, 24(5): 904–910.
[8] FAO. Fertilizer consumption in nutrients per ha of arable land (2002 and 2009)[EB/OL]. http://faostat.fao.org/site/405/default.aspx, 2009.
[9] Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China: a review[J]. Plant and Soil, 2011, 349(1-2): 157–167.
[10] Ongley E D, Zhang X L, Yu T. Current status of agricultural and rural non-point source pollution assessment in China[J]. Environmental Pollution, 2010, 158(5): 1159–1168.
[11] James R A, Weligama C, Verbyla K, et al. Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control[J]. Journal of Experimental Botany, 2016, 67(12): 3709–3718.
[12] Wang X, Shen J, Liao H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?[J]. Plant Science, 2010, 179(4): 302–306.
[13] Pant H K, Mislevy P, Rechcigl J E. Effects of phosphorus and potassium on forage nutritive value and quantity: environmental implications[J]. Agronomy Journal, 2004, 96(5): 1299–1305.
[14] 蒋柏藩, 顾益初. 石灰性土壤无机磷分级体系的研究[J]. 中国农业科学, 1989, 22(3): 58–66.
Jiang B F, Gu Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils[J]. Scientia Agricultura Sinica, 1989, 22(3): 58–66.
[15] 顾益初, 蒋柏藩. 石灰性土壤无机磷分级的测定方法[J]. 土壤, 1990, 22(2): 101–102.
Gu Y C, Jiang B F. Methods of determination of inorganic phosphorus fractionation in calcareous soil[J]. Soils, 1990, 22(2): 101–102.
[16] Priya P, Sahi S V. Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium) [J]. Plant Physiology and Biochemistry, 2009, 47(1): 31–36.
[17] Sharma N C, Sahi S V. Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions [J]. Environmental Science Technology, 2011, 45(24): 10531–10537.
[18] Xue A O, Guo X, Qian Z H U, et al. Effect of phosphorus fertilization to P uptake and dry matter accumulation in soybean with different P efficiencies[J]. Journal of Integrative Agriculture, 2014, 13(2): 326–334.
[19] 孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展[J]. 中国土壤与肥料, 2011, (2): 1–9.
Sun G F, Jin J Y, Shi Y L, et al. Research advance on soil phosphorous forms and their availability to crops in soil[J]. Soil and Fertilizer Sciences in China, 2011, (2): 1–9.
[20] 尹逊霄, 华珞, 张振贤, 等. 土壤中磷素的有效性及其循环转化机制研究[J]. 首都师范大学学报 (自然科学版), 2005, 26(3): 95–101.
Yin X X, Hua L, Zhang Z X, et al. Study on the effectiveness of phosphorus and mechanism of its circle in soil[J]. Journal of Capital Normal University (Natural Science Edition), 2005, 26(3): 95–101.
[21] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: A review[J]. Plant and Soil, 2001, 237(2): 173–195.
[22] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.
Huang C Y. Soil science [M]. Beijing: China Agriculture Press, 2000.
[23] 鲁如坤. 土壤-植物营养学原理和施肥[M]. 北京: 化学工业出版社, 1998.
Lu R K. Theory of soil-plant nutrition and fertilization [M]. Beijing: Chemical Industry Press, 1998.
[24] 赵少华, 宇万太, 张璐, 等. 土壤有机磷研究进展[J]. 应用生态学报, 2004, 15(11): 2189–2194.
Zhao S H, Yu W T, Zhang L, et al. Research advance in soil organic phosphorus[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2189–2194.
[25] Hayes J E, Richardson A E, Simpson R J. Components of organic phosphorus in soil extracts that are hydrolyzed by phytase and acid phosphates[J]. Biology and Fertility of Soils, 2000, 32(4): 279–286.
[26] 来璐, 郝明德, 彭令发. 黄土旱塬长期施肥条件下土壤磷素变化及管理[J]. 水土保持研究, 2003, 10(1): 68–70.
Lai L, Hao M D, Peng L F. The variation of soil phosphorus of long–term continuous cropping and management in the Loess Plateau[J]. Research of Soil and Water Conservation, 2003, 10(1): 68–70.
[27] 李英, 吕颂辉, 徐宁, 等. 东海原甲藻对不同磷源的利用特征[J]. 生态科学, 2005, 24(4): 314–317.
Li Y, Lü S H, Xu N, et al. The utilization of Prorocentrum donghaiense to four different types of phosphorus [J]. Ecologic Science, 2005, 24(4): 314–317.
[28] 赵艳芳, 俞志明, 宋秀贤, 等. 不同磷源形态对中肋骨条藻和东海原甲藻生长及磷酸酶活性的影响[J]. 环境科学, 2009, 30(3): 693–699.
Zhao Y F, Yu Z M, Song X X, et al. Effects of different phosphorus substrates on the growth and phosphatase activity of Skeletonema costatum and Prorocentrum donghaiense [J]. Environmental Science, 2009, 30(3): 693–699.
[29] 乔云发, 韩晓增, 苗淑杰. 大豆利用难溶磷源基因型差异[J]. 大豆科学, 2007, 26(4): 571–277.
Qiao Y F, Han X Z, Miao S J. Genotypic variation in P utilization of soybean (Glycine max L.) grown in various insoluble P sources [J]. Soybean Science, 2007, 26(4): 571–277.
[30] Erro J, Zamarreño A M, García-Mina J M. Ability of various water-insoluble fertilizers to supply available phosphorus in hydroponics to plant species with diverse phosphorus-acquisition efficiency: Involvement of organic acid accumulation in plant tissues and root exudates[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(5): 772–777.
[31] 侯焱焱, 展晓莹, 刘璇, 等. 不同形态无机磷对两种磷效率小麦根际特征的影响[J]. 中国土壤与肥料, 2011, (1): 30–43.
Hou Y Y, Zhan X Y, Liu X, et al. Effects of different forms of inorganic P on rhizosphere in different P–efficiency wheat[J]. Soil and Fertilizer Sciences in China, 2011, (1): 30–43.
[32] Li Y F, Luo A C, Wei X H, et al. Changes in phosphorus fractions, pH, and phosphatase activity in rhizosphere of two rice genotypes[J]. Pedosphere, 2008, 18(6): 785–794.
[33] Hayes J E, Simpson R J, Richardson A E. The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate[J]. Plant and Soil, 2000, 220(1-2): 165–174.
[34] Richardson A E, Hadobas P A, Hayes J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate [J]. Plant Journal, 2001, 25(6): 641–649.
[35] 孔凡利, 林文量, 严小龙, 等. 转枯草芽孢杆菌植酸酶基因烟草对不同介质中植酸磷的吸收利用[J]. 应用生态学报, 2005, 16(12): 2389–2393.
Kong F L, Lin W L, Yan X L, et al. Phytate-phosphorus uptake and utilization by transgenic tobacco carrying Bacillus subtilis phytase gene [J]. Chinese Journal of Applied Ecology, 2005, 16(12): 2389–2393.
[36] 李永夫, 罗安程, 吴良欢, 等. 两个基因型水稻利用有机磷的差异及其与根系分泌酸性磷酸酶活性的关系[J]. 应用生态学报, 2009, 20(5): 1072–1078.
Li Y F, Luo A C, Wu L H, et al. Difference in P utilization from organic phosphate between two rice genotypes and its relations with root-secreted acid phosphatase activity[J]. Chinese Journal of Applied Ecology, 2009, 20(5): 1072–1078.
[37] Xiao G L, Li T X, Zhang X Z, et al. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area[J]. Journal of Hazardous Materials, 2009, 171(1-3): 542–550.
[38] Huang X, Li T X, Zhang X Z, et al. Growth, P accumulation, and physiological characteristics of two ecotypes of Polygonum hydropiper as affected by excess P supply [J]. Journal of Plant Nutrition and Soil Science, 2012, 175(2): 290–302.
[39] Ye D H, Li T X, Liu D, et al. P accumulation and physiological responses to different high P regimes in Polygonum hydropiper for understanding a P-phytoremediation strategy [J]. Scientific Reports, 2015, 5: 17835.
[40] Zheng Z C, Li T X, Zhang X Z, et al. Phosphorous accumulation and distribution of two ecotypes of Pilea sinofasciata grown in phosphorous-enriched soils [J]. Applied Soil Ecology, 2014, 84: 54–61.
[41] 蔡秋燕, 张锡洲, 李廷轩, 等. 磷高效野生大麦拔节期对植酸态有机磷的利用[J]. 中国农业科学, 2015, 48(16): 3146–3155.
Cai Q Y, Zhang X Z, Li T X, et al. Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency[J]. Scientia Agricultura Sinica, 2015, 48(16): 3146–3155.
[42] Martínez A, Osburne M S, Sharma A K, et al. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301 [J]. Environmental Microbiology, 2012, 14(6): 1363–1377.
[43] Oh S J, Yamamoto T, Kataoka Y, et al. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae) [J]. Fisheries Science, 2002, 68(2): 416–424.
[44] 金杰, 刘素梅. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253–261.
Jin J, Liu S M. Advances in studies of phosphorus utilization by marine phytoplankton[J]. Advances in Earth Science, 2013, 28(2): 253–261.
[45] Ilikchyan I N, McKay R M L, Kutovaya O A, et al. Seasonal expression of the picocyanobacterial phosphonate transporter gene phnD in the Sargasso Sea[J]. Frontiers in Microbiology, 2010, 1(1): 135.
[46] Beversdorf L J, White A E, Björkman K M, et al. Phosphonate metabolism of Trichodesmium IMS101 and the production of greenhouse gases[J]. Limnology and Oceanography, 2010, 55(4): 1755–1767.
[47] 岳涛, 张德禄, 胡春香. 太湖3种优势微囊藻对不同形态磷的吸收利用[J]. 湖泊科学, 2014, 26(3): 379–384.
Yue T, Zhang D L, Hu C X. Utilization of phosphorus in four forms of the three dominant Microcystis morphospecies in Lake Taihu [J]. Journal of Lake Sciences, 2014, 26(3): 379–384.
[48] 庞勇, 聂瑞, 吕颂辉. 不同磷源对米氏凯伦藻生长和碱性磷酸酶活性的影响[J]. 海洋科学, 2016, 40(4): 59–64.
Pang Y, Nie R, Lü S H. Effects of the different kinds of phosphorus sources on growth and alkaline phosphatase activity (APA) of Karenia mikimotoi Hansen [J]. Marine Sciences, 2016, 40(4): 59–64.
[49] Wang Z H, Liang Y, Kang W. Utilization of dissolved organic phosphorus by different groups of phytoplankton taxa[J]. Harmful Algae, 2011, 12(4): 113–118.
[50] Lambers H, Raven J A, Shaver G R, et al. Plant nutrient-acquisition strategies change with soil age[J]. Trends in Ecology and Evolution, 2008, 23(2): 95–103.
[51] Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops[J]. Plant Physiology, 2011, 156(3): 1041–1049.
[52] 林雅茹, 唐宏亮, 申建波. 野生大豆根系形态对局部磷供应的响应及其对磷吸收的贡献[J]. 植物营养与肥料学报, 2013, 19(1): 162–169.
Lin Y R, Tang H L, Shen J B. Effect of localized phosphorus supply on root morphological traits and their contribution to phosphorus uptake in wild soybean[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(1): 162–169.
[53] Shah S R U, Agback P, Lundquist P O. Root morphology and cluster root formation by seabuckthorn (Hippophaë rhamnoides L.) in response to nitrogen, phosphorus and iron deficiency [J]. Plant and Soil, 2015, 397(1-2): 1–17.
[54] Jeffery R P, Simpson R J, Lambers H, et al. Root morphology acclimation to phosphorus supply by six cultivars of Trifolium subterraneum L [J]. Plant and Soil, 2017, 412(1-2): 21–34.
[55] Waddell H A, Simpson R J, Ryan M H, et al. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass) [J]. Plant and Soil, 2017, 412(1-2): 7–19.
[56] Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3): 997–1005.
[57] Shu L, Shen J, Rengel Z, et al. Formation of cluster roots and citrate exudation by Lupinus albus in response to localized application of different phosphorus sources [J]. Plant Science, 2007, 172(5): 1017–1024.
[58] 展晓莹, 候焱焱, 张淑香. 不同磷形态对两种磷效率小麦根系指标与根际特征差异的影响[J]. 核农学报, 2013, 27(7): 1012–1019.
Zhan X Y, Hou Y Y, Zhang S X. Response of rhizosphere characteristics of two different P-efficiency wheat genotypes (Tritium aestivum L.) to the inorganic and organic phosphorus sources [J]. Journal of Nuclear Agricultural Sciences, 2013, 27(7): 1012–1019.
[59] 谷思玉, 闫琰, 张彦丽. 难溶性无机磷酸盐对大豆苗期根系生长的影响[J]. 大豆科学, 2012, 31(1): 92–95.
Gu S Y, Yan Y, Zhang Y L. Effect of insoluble inorganic phosphate on root growth of soybean seedlings[J]. Soybean Science, 2012, 31(1): 92–95.
[60] 王金路, 陈永忠, 张党权, 等. 不同磷源对油茶幼苗生长的影响[J]. 中南林业科技大学学报, 2014, 34(5): 47–50.
Wang J L, Chen Y Z, Zhang D Q, et al. Effects of different phosphates on growth of Camellia olerifera seedling [J]. Journal of Central South University of Forestry Technology, 2014, 34(5): 47–50.
[61] 叶代桦. 有机磷源对水蓼磷吸收积累特性的影响[D]. 四川农业大学硕士学位论文, 2015.
Ye D H. Effect of organic P sources on characteristics of P assimilation and accumulation in Polygonum hydropiper [D]. MS Thesis of Sichuan Agricultural University, 2015.
[62] 刘涛, 蔡秋燕, 张锡洲, 等. 磷高效型野生大麦根系形态和根系分泌物对低水平植酸态有机磷的响应特征[J]. 植物营养与肥料学报, 2016, 22(6): 1538–1547.
Liu T, Cai Q Y, Zhang X Z, et al. Response characteristics in root morphology and root excretion of P-efficient wild barley exposured to low level of phytate-phosphorus[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1538–1547.
[63] 张胜花, 常军军, 孙珮石. 水体藻类磷代谢及藻体磷矿化研究进展[J]. 生态环境学报, 2013, 22(7): 1250–1254.
Zhang S H, Chang J J, Sun P S. Phosphorus cycle of algae during its growth and death process: phosphorus uptake and release[J]. Ecology and Environmental Sciences, 2013, 22(7): 1250–1254.
[64] Huang B, Ou L, Hong H, et al. Bioavailability of dissolved organic phosphorus compounds to typical harmful dinoflagellate Prorocentrum donghaiense Lu [J]. Marine Pollution Bulletin, 2005, 51(8-12): 838–844.
[65] 王艳, 唐海溶. 不同形态的磷源对球形棕囊藻生长及碱性磷酸酶的影响[J]. 生态科学, 2006, 25(1): 38–40.
Wang Y, Tang H R. Effects of different phosphorus on the growth and alkaline phospohatase activity in Phaeocystis Globosa [J]. Ecologic Science, 2006, 25(1): 38–40.
[66] Hernández I, Niell F X, Whitton B A. Phosphatase activity of benthic marine algae. An overview[J]. Journal of Applied Phycology, 2002, 14(6): 475–487.
[67] Wu Z, Zeng B, Li R, et al. Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic phosphorus limitation [J]. Harmful Algae, 2012, 15: 53–58.
[68] Rengefors K, Pettersson K, Blenckner T, et al. Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method[J]. Journal of Plankton Research, 2001, 23(4): 435–443.
[69] Rengefors K, Ruttenberg K C, Haupert C L, et al. Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton[J]. Limnology and Oceanography, 2003, 48(3): 1167–1175.
[70] 孙海国, 张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究[J]. 应用生态学报, 2002, 13(3): 379–381.
Sun H G, Zhang F S. Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots[J]. Chinese Journal of Applied Ecology, 2002, 13(3): 379–381.
[71] 吴沂珀, 张锡洲, 李廷轩, 等. 小麦不同磷效率品种对不同磷源的利用差异及酸性磷酸酶的作用[J]. 核农学报, 2013, 27(3): 351–357.
Wu Y P, Zhang X Z, Li T X, et al. Difference in P utilization from organic phosphate between two wheat varieties and its relations with acid phosphatase activity[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 351–357.
[72] Adams M A, Pate J S. Availability of organic and inorganic forms of phosphorus to lupins (Lupinusspp.) [J]. Plant and Soil, 1992, 145(1): 107–113.
[73] Rao I M, Borrero V, Ricaurte J, et al. Adaptive attributes of tropical forage species to acid soils. V. Differences in phosphorus acquisition from less available inorganic and organic sources of phosphate[J]. Journal of Plant Nutrition, 1999, 22(7): 1175–1196.
[74] Richardson A E, Hadobas P A, Hayes J E. Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture [J]. Plant Cell and Environment, 2000, 23(4): 397–405.
[75] Tarafdar J C, Claassen N. Organic phosphorus utilization by wheat plants under sterile conditions[J]. Biology and Fertility of Soils, 2003, 39(1): 25–29.
[76] Yadav R S, Tarafdar J C. Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants[J]. Biology and Fertility of Soils, 2001, 34(3): 140–143.
[77] Sharma N C, Starnes D L, Sahi S V. Phytoextraction of excess soil phosphorus[J]. Environmental Pollution, 2007, 146(1): 120–127.
[78] Starnes D L, Padmanabhan P, Sahi S V. Effect of P sources on growth, P accumulation and activities of phytase and acid phosphatases in two cultivars of annual ryegrass (Lolium multiflorum L.) [J]. Plant Physiology and Biochemistry, 2008, 46(5-6): 580–589.
[79] 叶代桦, 李廷轩, 张锡洲, 等. 高磷对矿山生态型水蓼磷富集特性的影响[J]. 植物营养与肥料学报, 2014, 20(1): 186–194.
Ye D H, Li T X, Zhang X Z, et al. Effect of high phosphate supply on the P accumulation characteristics of the mining ecotype of Polygonum hydropiper [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 186–194.
[80] Ye D H, Li T X, Chen G D, et al. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper [J]. Chemosphere, 2015, 105(3): 139–145.
[81] Ye D, Li T, Huang X, et al. P accumulation potential of Polygonum hydropiper grown in high P media [J]. Clean–Soil Air Water, 2015, 43(2): 279–286.
[82] 周志高, 汪金舫, 周健民. 植物磷营养高效的分子生物学研究进展[J]. 植物学通报, 2005, 22(1): 82–91.
Zhou Z G, Wang J F, Zhou J M. Current advances in the molecular biology of high efficient phosphorus nutrition in plants[J]. Chinese Bulletin of Botany, 2005, 22(1): 82–91.
[83] 黄沆, 付崇允, 周德贵, 等. 植物磷吸收的分子机理研究进展[J]. 分子植物育种, 2008, 6(1): 117–122.
Huang H, Fu C Y, Zhou D G, et al. Progress in research of molecular mechanism of phosphorus absorption in plants[J]. Molecular Plant Breeding, 2008, 6(1): 117–122.
[84] Mitsukawa N, Okumura S, Shirano Y, et al. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 7098–7102.
[85] Seo H M, Jung Y, Song S. Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice [J]. Biotechnology Letters, 2008, 30(10): 1833–1838.
[86] 谷俊涛, 鲍金香, 王效颖, 等. 利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因[J]. 作物学报, 2009, 35(9): 1597–1605.
Gu J T, Bao J X, Wang X Y, et al. Investigation based on cDNA-AFLP approach for differential expressed genes responding to deficient-Pi in wheat[J]. Acta Agronomica Sinica, 2009, 35(9): 1597–1605.
[87] Anoop V M, Basu U, Mc Cammon M T, et al. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing amitochondrial citrate synthase[J]. Plant Physiology, 2003, 132(4): 2205–2217.
[88] Tesfaye M, Temple S J, Allan D L, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J]. Plant Physiology, 2001, 127(4): 1836–1844.
[89] Chen R, Xue G, Chen P, et al. Transgenic maize plants expressing a fungal phytase gene[J]. Transgenic Research, 2008, 17(4): 633–643.
[90] MtPAP1表达特性及异源表达对拟南芥有机态磷吸收的影响[J]. 植物生理与分子生物学学报, 2006, 32(1): 99–106.
Xiao K, Gu J T, Maria H, et al. Expression characteristics of MtPAP1 and its exotic expression in Arabidopsis affecting organic phosphorus absorption of plants [J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(1): 99–106.
[91] 孔佑宾, 李喜焕, 张彩英. 大豆紫色酸性磷酸酶基因GmPAP4启动子结构与活性分析 [J]. 中国农业科学, 2017, 50(3): 582–590.
Kong Y B, Li X H, Zhang C Y. Construction and activity analysis of the promoter of purple acid phosphatase gene GmPAP4 in soybean [J]. Scientia Agricultura Sinica, 2017, 50(3): 582–590.
[92] Xiao K, Katagi H, Harrison M, et al. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatases gene from M. truncatula [J]. Plant Science, 2006, 170(2): 191–202.
[93] Ma X F, Tudor S, Butler T, et al. Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils [J]. Molecular Breeding, 2012, 30(1): 377–391.
[94] Liang C, Tian J, Lam H M, et al. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization[J]. Plant Physiology, 2010, 152(2): 854–865.
[95] Venkatachalam P, Jain A, Sahi S, et al. Molecular cloning and characterization of phosphate (Pi) responsive genes in Gulf ryegrass (Lolium multiflorum L.): a Pi hyperaccumulator [J]. Plant Molecular Biology, 2009, 69(1-2): 1–21.
[96] Mudge S R, Smith F W, Richardson A E. Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source [J]. Plant Science, 2003, 165(4): 871–878.
[97] Xiao K, Harrison M J, Wang Z. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis [J]. Planta, 2005, 222(1): 27–36.
[98] 方小平, 王转, 陈茹梅, 等. 能以植酸磷为唯一磷源生长的转基因甘蓝型油菜[J]. 作物学报, 2010, 36(2): 228–232.
Fang X P, Wang Z, Chen R M, et al. Transgenic Brassica napus growing with phytate as a sole phosphorus source [J]. Acta Agronomica Sinica, 2010, 36(2): 228–232.
[99] Liu C, Muchhal U S, Uthappa M, et al. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus[J]. Plant Physiology, 1998, 116(1): 91–99.
[100] Burleigh S H, Harrison M J. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition [J]. Plant Molecular Biology, 1997, 34(2): 199–208.
[101] Burleigh S H, Harrison M J. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots [J]. Plant Physiology, 1999, 119(1): 241–248.
[102] Martín A C, del Pozo J C, Iglesias J, et al. Infuence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis [J]. Plant Journal, 2000, 24(5): 559–567.
[103] Wasaki J, Shinano T, Onishi K, et al. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves[J]. Journal of Experimental Botany, 2006, 57(9): 2049–2059.
[104] 李彦龙, 童依平, 李滨, 等. 氮磷亏缺对小麦TaIPS基因表达的影响 [J]. 西北植物学报, 2008, 28(7): 1303–1307.
Li Y L, Tong Y P, Li B, et al. Expression of TaIPS genes in wheat seedlings with nitrogen and phosphorus starvation [J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(7): 1303–1307.