植物营养与肥料学报   2017, Vol. 23  Issue (6): 1433-1440 
0
PDF 
氮肥高效施用在低碳农业中的关键作用
熊正琴, 张晓旭    
南京农业大学资源与环境科学学院,江苏南京 210095
摘要: 低碳农业是我国集约化农业发展的必然趋势。深入理解氮肥高效施用是实现低碳农业的关键,可以更加明确如何集成优化农业管理措施增加产量、减少农田生态系统碳排放、提高土壤固碳效应,综合实现固碳、减排、增产的低碳农业发展目标。本文概述了低碳农业评价指标的三个阶段性研究特点,从田间温室气体排放的综合温室效应拓展为涵盖固碳效应的净温室效应,再拓展为涵盖生命周期评价碳排放的综合净温室效应以及兼顾作物产量的温室气体强度。提出了如何利用当季作物试验来估算农田生态系统净碳收支、结合生命周期评价当季作物综合净温室效应和单位产品温室气体强度的方法。按照现阶段低碳农业的评价指标,以我国稻–麦轮作生态系统集约化生产的低碳农业模式为案例,解析氮肥施用在低碳农业各组成包括作物产量、固碳效应、CH4和N2O排放、农业措施碳排放中的重要作用,明确氮肥高效施用在农田生态系统综合净温室效应和温室气体强度中的关键作用,从而实现低碳农业可持续发展。
关键词: 低碳农业     生态系统净碳收支     土壤固碳效应     生命周期评价     净温室效应    
Key role of efficient nitrogen application in low carbon agriculture
XIONG Zheng-qin, ZHANG Xiao-xu    
College of Resources of Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
Abstract: Low carbon agriculture is an inevitable trend for sustainable intensive agriculture in China. Efficient nitrogen fertilization is the key driving factor for achieving low carbon agriculture, understanding that will help the integration and optimization of agricultural management measures, achieving the goals of soil carbon sequestration, greenhouse gas mitigations and yield improvement, and thus to sustain intensive low carbon agriculture. Low carbon agriculture has experienced three development stages from the points of connotation and research methods. The initial stage was developed from total global warming potentials of greenhouse gas emissions from croplands, then the concept was changed to net global warming potentials covering greenhouse gas emissions and soil carbon sequestration, now is focused on the net total global warming potentials with additional carbon emissions derived from field management and chemical inputs and then to yield scaled greenhouse gas intensity associated with life cycle assessment. Moreover, net ecosystem carbon budget and soil carbon sequestration were developed from conventional long term field experiment to the current crop seasonal scale short term field experiment. Based on the crop seasonal scale soil carbon sequestration and life cycle assessment, the net total global warming potential and yield-scaled greenhouse gas intensity were fully developed as well. As a case study of life cycle assessment and net ecosystem carbon budget, we analyzed the contributions of nitrogen fertilization to grain yield, soil carbon sequestration, methane (CH4) and nitrous oxide (N2O) emissions and agricultural managements associated carbon emissions under intensive rice-wheat annual rotation system with different scenarios, and thus highlighted the key driving role of efficient nitrogen fertilization in sustainably achieving low carbon agriculture in terms of net total global warming potential and yield scaled greenhouse gas intensity.
Key words: low carbon agriculture     net ecosystem carbon budget     soil carbon sequestration     life cycle assessment     net global warming potential    
联合国政府间气候变化专门委员会 (IPCC) 第五次评估报告指出,大气二氧化碳 (CO2)、甲烷 (CH4) 和氧化亚氮 (N2O) 等温室气体浓度增加导致全球气候变暖已经成为无可争议的事实[1]。如何缓减气候变化对人类社会发展的影响受到世界各国政府和人民的高度重视。 1 低碳农业评价指标内涵不断扩展的三个发展阶段 1.1 低碳农业第一阶段评价指标通常仅考虑田间温室气体直接排放的综合温室效应

农田生态系统以光合作用生产农作物为主要目的,是一种特殊的CO2交换系统,通常其净碳交换可以近似为零,将CH4和N2O两种温室气体的排放作为农田生态系统的综合温室效应,是低碳农业研究第一阶段的评价指标。综合温室效应GWP (global warming potential) 指在特定时间尺度 (通常以100年时间尺度计) 内,单位质量的某一种温室气体相对于单位质量CO2的辐射潜力;作为一种相对指标,可以全面评价农田生态系统排放的温室气体对全球变暖温室效应的贡献[2]。在100年时间尺度上,单位质量的CH4和N2O的全球增温潜势分别为单位质量CO2的28倍和265倍[1] ${\rm{GWP = GW}}{{\rm{P}}_{{{\rm{N}}_{\rm{2}}}{\rm{O}}}}{\rm{ + GW}}{{\rm{P}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}{\rm{ = }}$ ${{\rm{R}}_{{{\rm{N}}_{\rm{2}}}{\rm{O}}}} \times {\rm{265 + }}{{\rm{R}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}} \times {\rm{28}}$ ,其中, ${{\rm{R}}_{{{\rm{N}}_{\rm{2}}}{\rm{O}}}}$ ${{\rm{R}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}$ 分别表示作物生长周期内计算的季节累积排放量,根据单位质量增温潜势换算为CO2当量排放量。

1.2 低碳农业第二阶段评价指标拓展为涵盖固碳效应的净温室效应

农田生态系统固碳是当前国际社会公认的减缓大气CO2浓度升高的重要途径之一,如何提高农田生态系统碳储量和固碳速率,是当前国际社会广泛关注的焦点[3]。因此,考虑农田生态系统固碳效应,低碳农业研究第二阶段的评价指标拓展为农田生态系统净温室效应 ${\rm{net GWP = GW}}{{\rm{P}}_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}{\rm{ + GW}}{{\rm{P}}_{{{\rm{N}}_{\rm{2}}}{\rm{O}}}}{\rm{ + }}$ ${\rm{GW}}{{\rm{P}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}{\rm{ = }}{{\rm{R}}_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}} \!\times\! {\rm{1 + }}{{\rm{R}}_{{{\rm{N}}_{\rm{2}}}{\rm{O}}}} \!\times\! 265 \!+\! {{\rm{R}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}} \times {\rm{28}}$ [1]。其中, ${{\rm{R}}_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}$ 以多种不同途径估算农田固碳效应,均存在较大的系统误差。目前,很多研究以测定土壤呼吸的不同比例直接表征农田生态系统CO2净交换[4],不仅误差较大,也没有考虑作物系统生产力对CO2的固定,不能真实表征土壤的固碳效应。利用气象资料、土壤基本理化性质、农业管理措施等作为基本参数的模型预测也是目前区域固碳效应的研究方法,应用比较广泛的有DNDC[5]、DAYCENT[6]以及CENTURY[7]。估算农田固碳效应的主要方法是测量土壤有机碳 (SOC) 的变化[8]。目前比较普遍的方法是基于长期定位试验,测定SOC含量的年际变化,再外推演绎估算土壤固碳效应[9]。通过土壤调查基础数据库[10]或前人研究汇总估算大尺度范围农田有机碳变化[11]

1.3 土壤固碳效应由依赖长期试验尺度发展到当季作物尺度

对于非长期定位试验,很难检测农田有机碳的变化[4],尤其是当时间尺度缩短为一年或当季作物时,估算土壤有机碳变化的方法较少[12]。为了及时评价新研发的农田管理措施或种植技术等对农田生态系统固碳效应的潜力,本文作者提出了当季作物时间尺度上估算农田生态系统净碳收支 (NECB) 的方法,且得到了长期定位测量土壤有机碳变化方法的有效验证,为基于作物生长季节时间尺度的短期试验提供了土壤固碳效应的研究方法。该方法通过测定农田异养呼吸 (Rh) 和作物生态系统净初级生产力 (NPP) 或生态系统呼吸 (Re) 和总初级生产力 (GPP) 两种途径来计算生态系统净生产力 (NEP),即NEP = NPP – Rh = GPP – Re;然后,根据NECB = NEP – H – CH 4 + M计算农田生态系统净碳收支;再根据生态系统净碳收支与土壤有机碳之间的内在关系估算土壤有机碳 (SOC) 的变化速率[13]。上述公式中Rh与Re为静态暗箱法测得的CO2累积排放碳量;H (Harvest) 表示因农田收获物移出农田生态系统的总碳量,包括秸秆和籽粒碳量;CH4代表作物全生长周期内CH4累积排放碳量;M (Manure) 表示农田施入外源有机肥碳量;NPP代表作物全生长周期内作物地上、地下部分增加的总碳量[13]

1.4 低碳农业第三阶段即现阶段的评价指标拓展为涵盖生命周期评价碳排放的综合净温室效应以及兼顾作物产量的温室气体强度

除了农田生态系统直接排放的温室气体CH4和N2O引发温室效应外,在农业生产过程中化学品投入 (Ei) 和农事操作 (Eo) 也会直接或间接引起CO2排放,从而增加农田生态系统的温室效应[14]。因此,应用生命周期评价法LCA (life cycle assessment) 评估综合净温室效应时,除了前述农田生态系统CH4和N2O排放以及农田固碳效应外,还应当考虑农业措施导致的碳排放[1516] ,成为低碳农业研究第三阶段的评价指标。综合净温室效应计算公式为:net GWP = CH4 × 28 + N2O × 265 + Eo + Ei – δSOC × 44/12 (kg CO 2 eq./hm2)。农业措施碳排放一方面来自化学品投入 (Ei) 如肥料、农药等的生产、储存、运输、施用等过程;另一方面则来自农事操作 (Eo) 如灌溉、翻耕和收获等消耗燃料或其他形式能源的过程。沿用国际标准化组织ISO (international organization for standardization) 对产品碳足迹的定义,低碳农业则是基于生命周期评价方法,计算农产品生产系统内各种温室气体排放与消纳之和,并以CO2当量形式表示,评价对气候变化的单一影响[17]。单位产品的综合净温室效应即为温室气体强度GHGI [greenhouse gas intensity (CO2 eq. kg/kg, yield)],其计算公式为:GHGI = net GWP/作物产量 。由于温室气体强度兼顾作物产量和综合净温室效应,是现阶段低碳农业的评价指标。

2 高效施用氮肥是实现低碳农业的关键

粮食安全是目前世界各国面临的重大挑战之一[18]。据FAO预测,到2030年我国粮食总产必须在现有基础上提高40%以上、单产增加45%以上,以保障我国粮食安全[19]。目前化学氮肥利用率大多低于30%,我国氮肥用量在持续快速增长的同时,粮食产量增加缓慢[20]。如何同步提高作物产量与氮肥利用率是当前国际社会农业可持续发展的研究热点。Tilman[21]指出必须更有效地利用农田养分,以降低农业对环境的负效应;Swaminathan[22]提出“Evergreen Revolution”,适度增加外部投入,改善农田生产效率,增强农业可持续性,降低环境成本;Matson等[23]提出“集约化可持续农业”。本文设定的集约化栽培模式依托于稻–麦轮作体系土壤–作物综合管理系统ISSM (integrated soil-crop system management)[24],根据专家推荐结合当地实际情况进行氮肥水平、施用比例、种类、有机肥配施、种植密度以及土壤水分管理等措施的不同整合,旨在实现水稻高产、氮肥高效利用、同时降低环境影响的可持续农业发展模式,已成功运行[16, 2526]。因此本文解析上述集约化栽培模式中氮肥施用对发展低碳农业温室气体强度各组成要素的重要贡献。

2.1 氮肥施用直接决定作物产量和土壤固碳效应的增加

表1可见,氮肥施用对作物产量和生态系统净碳收支及固碳效应具有明显影响。因此,氮肥施用直接决定着低碳农业中单位农产品的综合净温室效应即温室气体强度。

表1 2011~2014年稻–麦轮作周期中氮肥用量、作物产量、生态系统净碳收支、固碳效应及温室气体强度 Table 1 Mean nitrogen fertilizer application rate, grain yield, net ecosystem carbon budget, SOC sequestration rate and greenhouse gas intensity over rice-wheat annual cycles from 2011 to 2014
2.2 氮肥施用影响稻田生态系统温室气体CH4和N2O的田间直接排放

氮肥对稻田生态系统CH4排放量的影响极其复杂,可能增加,可能减少,也可能没有影响,具体情况与土壤性质、水稻品种、肥料种类、施用时间、施用方式以及施用量有关[27]。施用氮肥促进植株生长,提高植株CH4传输速率,同时抑制土壤CH4氧化[28],从而促进CH4排放。然而,铵态氮和CH4的共同存在也可能促进甲烷氧化菌的生长、促进CH4氧化,从而降低CH4排放量。施用有机肥则是促进稻田生态系统CH4排放的重要因素[26, 2930],其促进程度取决于有机肥的成分、性质以及施用方法。有机肥和化肥结合施用或者避免在淹水条件下直接施用有机肥,均可有效减少稻田CH4排放。

氮肥施用也直接影响稻田生态系统N2O的排放量。施用化学氮肥能够显著增加土壤中NH4+-N与NO3-N的含量,继而增强硝化作用和反硝化作用的强度,从而促进土壤N2O的产生与排放。通常认为,随着化学氮肥用量增加,土壤N2O排放量呈线性增加[1]。减少氮肥施用量或应用硝化抑制剂均可减少土壤硝化和反硝化过程产生的N2O[31]。当作物地上部氮盈余量等于或小于作物最佳需氮量时,土壤N2O排放变化较小;当施氮量超出作物地上部最大需求量时,N2O排放量急剧增加。因此,越来越多的研究表明,N2O排放与施氮量之间呈指数关系[3233]。依据作物需肥特征优化施肥时间与方式,调整氮、磷、钾施用比例,选用长效缓释氮肥[34],提高氮肥利用率,可有效减少N2O排放[35]。有机肥施用对土壤N2O是正效应还是负效应影响比较复杂[36],主要取决于不同种类有机肥的C/N[37]及施用方法。

2.3 氮肥施用对于农业措施引起的碳排放贡献突出

本文系统边界为水稻和小麦田间生产阶段,从播种到作物收获生命周期全过程,包括农用化学品投入 (Ei) 和农事操作 (Eo) 等农业措施引起的碳排放;各不同栽培模式化学品投入与农事操作通过生命周期评价方法估算结果见表2[16]。农用化学品投入 (Ei) 包括水稻和小麦种植过程中施用的肥料包括氮肥、磷肥和钾肥和农药 (除草剂、杀虫剂与杀菌剂) 在生产、储存和运输过程中产生的碳排放;农事操作 (Eo) 主要包括灌溉、翻耕与收获等过程中农业机械消耗燃料或其他形式能源所引起的碳排放。在稻−麦轮作生态系统中,来自化学品投入 (Ei) 引起的GWP变化范围为CO2 eq.734~4362 kg/hm2;来自农事操作 (Eo) 引起的GWP变化范围为CO2 eq.1296~1708 kg/hm2

表2 2011~2014年稻–麦轮作生态系统农业化学品投入和管理措施 (Eo、Ei) 碳排放 [CO2 eq. kg/(hm2·a)] Table 2 Agricultural management practices for chemical input and farm operation and contributions to carbon dioxide equivalents in the annual rice-wheat rotations from 2011 to 2014
图1 不同集约化栽培模式下稻麦轮作生态系统CH4、N2O与农业措施碳排放 (Ei 和Eo) 温室效应百分比 Fig. 1 Contribution percentages of CH4, N2O emissions, Ei and Eo from farm management among different intensively managed cultivation patterns of rice-wheat annual rotations [注(Note):NN—不施氮模式 No N application; FP—常规栽培模式,水稻季、小麦季氮肥用量分别为 N 300、180 kg/hm2 Farmers’ practice with N 300 kg/hm2 for rice and 180 kg/hm2 for wheat; ISSM—集约化栽培模式,各集约化栽培模式的具体管理措施参见已发表文章[13] The four integrated soil-crop system management, detailed field management practices of the four different treatments are provided in published article[13]; N1、N2、N3、N4—集约化栽培下氮肥用量与 FP 相比, 减量 25%、10%、0% 和增加 25% Represent the nitrogen fertilizer input of 25%, 10%, 0% reduction and 25% increase compared with FP; Ei和Eo指整个稻麦轮作周期中的化学品投入和农事操作碳排放Ei and Eo refer to the agrochemical input and farm operation of carbon emissions during the whole rice-wheat rotations.]

各施氮模式中氮肥施用对Ei的贡献率高达66%~75%,是Ei中最主要的碳排放来源 (图1)。一方面是因为氮肥本身在生产和运输过程中需要消耗大量的化石燃料,导致氮肥施用引起的碳排放高;另一方面,集约化农业生产中粮食产量的增加主要依靠氮肥的投入。氮肥不仅是Ei的主要组成部分,也是农业措施碳排放Ei+Eo的主要组成部分[16]。如图1所示,与CH4与N2O排放引起的温室效应相比,农业措施引起的碳排放对温室效应的贡献不容忽视。农业措施碳排放在CH4、N2O排放与农业措施碳排放引起的总温室效应中占25%~38%。各模式中Ei引起的温室效应占总温室效应的10%~25%;Eo则为6%~24%[38]。申建波等[39]研究发现,常规管理措施中农业管理的潜在温室效应占总温室效应的29%。梁龙等[40]研究表明,河北平原推荐管理措施中农业管理的潜在温室效应在总温室效应中的比重为31%。因此,合理施用氮肥,提高氮肥利用率,不仅可以降低氮肥施用后流失到环境中造成的环境污染,减缓稻田生态系统CH4和N2O的直接排放,还可以降低因氮肥施用造成的间接碳排放,同时增加作物产量和土壤固碳效应,降低单位产品的综合净温室效应,实现集约化生产下的低碳农业目标。

3 低碳农业研究展望 3.1 低碳农业旨在实现集约化农业生产方式下的低碳目标

随着农业现代化与集约化的进展,碳耗总量增加是必然的。农业提倡“低碳”不等于减少碳耗总量的所谓“低碳农业”,而是要努力追求以较低的单位产品耗碳率换取较高的固碳率。为此,需要集成优化农业管理措施、提高氮肥利用率,兼顾实现固碳、减排、增产的低碳农业发展目标,提高单位产品的碳效率、促进农业可持续发展[41]。虽然作物生产与温室效应之间存在复杂的交互作用和区域特征[4243],但随着国内外对资源利用效率和环境保护意识的逐渐增强和管理水平的逐步提高,我国农业集约化生产中单位产品的温室效应体现出逐渐减缓的趋势[4445]。还应该在追求实现单位产品低碳农业的同时,获取更高的单位产品经济效益[44, 4647]。综合考虑低碳农业发展的评价指标和驱动因素,增强科普宣传,影响政府决策,已成为国内外低碳农业的研究趋势[46, 4849]

3.2 氮肥高效施用是实现低碳农业的关键

我国农田总施氮量世界第一,氮肥生产工艺比较落后,为了降低氮肥生产过程引起的间接碳排放,升级改造我国氮肥生产工艺势在必行[50]。据IPCC统计,农业措施所引起的CO2排放占全球CO2总排放量的20%[1]。随着农业现代化过程中化肥、农药的投入以及大型机械的运用,农业措施引起的碳排放对生态系统净温室效应的贡献将会越来越大。近来不同研究者针对我国主要农作物[42, 45]、蔬菜[5152]种植等开展的碳足迹研究,都体现出氮肥施用这一单因子在农业碳排放中的重要地位;即使不考虑田间N2O排放的温室效应,仅肥料施用占农业碳排放的比例就高达48%[53]。氮肥高效施用直接决定着作物产量、生态系统净碳收支、土壤固碳效应以及CH4和N2O排放,是农业措施碳排放的首要贡献者,也是实现集约化生产方式下低碳农业的关键驱动因子。

3.3 低碳农业需要从根本上注重提高农田土壤固碳效应、提高土壤生产力

近些年来,越来越多的研究开始考虑农田固碳效应[4, 54],许多研究表明稻田具有很强的固碳效应[5556]。土壤有机碳含量的高低是农作物高产稳产的基础。国内外研究一致表明,农业管理措施如施肥、种植制度、灌溉、耕作等直接影响土壤有机碳的变化[57];肥料、氮沉降和气候变化等也间接影响土壤有机碳库的变化[54, 58]。据报道,近20年来我国大陆53%~59%的农田SOC含量呈增长趋势,30%~31%下降,4%~6%基本持平[56]。我国大陆农田表土有机碳贮量总体增加311.3~401.4 Tg,这主要归因于秸秆还田、有机肥施用和化肥投入的增加,合理的养分配比以及少 (免) 耕技术的推广。通过合理有效的农田管理措施,例如有机肥与化肥的合理配施[57],可以调节农田土壤由碳源转变为碳汇,增强土壤固碳效应,同时提高土壤生产力[59]。然而,土壤固碳效应与氮肥施用之间的关系还存在很大的不确定性,需要针对特定的生态系统和生态环境开展长期研究[60]。生物质炭与氮肥的配合应用[6162]则是提高农田土壤固碳效应、实现低碳农业的新趋势。

参考文献
[1] IPCC. The Physical Science Basis: working group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Stockholm: Cambridge University Press, 2013.
[2] Robertson G P, Grace P R. Greenhouse gas fluxes in tropical and temperate agriculture: The need for a full-cost accounting of global warming potentials[J]. Environment, Development and Sustainability, 2004, 6(1): 51–63.
[3] Hu H, Wang S, Guo Z, et al. The stage-classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050[J]. Scientific Reports, 2015, 5: 11203.
[4] Mosier A R, Halvorson A D, Reule C A, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado[J]. Journal of Environmental Quality, 2006, 35(4): 1584–1598.
[5] Cai Y J, Ding W X, Luo J F. Nitrous oxide emissions from Chinese maize-wheat rotation systems: a 3-year field measurement[J]. Atmospheric Environment, 2013, 65: 112–122.
[6] Cheng K, Ogle S M, Parton W J, et al. Simulating greenhouse gas mitigation potentials for Chinese croplands using the DAYCENT ecosystem model[J]. Global Change Biology, 2014, 20(3): 948–962.
[7] Parton W J, Rasmussen P E. Long-term effects of crop management in wheat-fallow: II. CENTURY model simulations[J]. Soil Science Society of America Journal, 1994, 58(2): 530–536.
[8] Mosier A R, Halvorson A D, Peterson G A, et al. Measurement of net global warming potential in three agroecosystems[J]. Nutrient Cycling in Agroecosystems, 2005, 72(1): 67–76.
[9] Shang Q, Yang X, Gao C, et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments[J]. Global Change Biology, 2011, 17(6): 2196–2210.
[10] Xie Z, Zhu J, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s[J]. Global Change Biology, 2007, 13(9): 1989–2007.
[11] Sun W, Huang Y, Zhang W, et al. Estimating topsoil SOC sequestration in croplands of eastern China from 1980 to 2000[J]. Soil Research, 2009, 47(3): 261–272.
[12] Zheng X, Xie B, Liu C, et al. Quantifying net ecosystem carbon dioxide exchange of a short-plant cropland with intermittent chamber measurements[J]. Global Biogeochemical Cycles, 2008, 22(3).
[13] Zhang X, Fan C, Ma Y, et al. Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice-wheat rotation system in China[J]. Nutrient Cycling in Agro-ecosystems, 2014, 100(3): 301–313.
[14] Lal R. Carbon emissions from farm operations[J]. Environment International, 2004, 30: 981–990.
[15] 张丹, 张卫峰. 低碳农业与农作物碳足迹核算研究述评[J]. 资源科学, 2016, 38(7): 1395–1405.
Zhang D, Zhang W F. Low carbon agriculture and a review of calculation methods for crop production carbon footprint accounting[J]. Resources Science, 2016, 38(7): 1395–1405.
[16] Zhang X, Xu X, Liu Y, et al. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency[J]. Biogeosciences, 2016, 13(9): 2701–2714.
[17] International Organization for Standardization (ISO). ISO/TS14067: 2013 Greenhouse gases-carbon footprint of products-requirements and guidelines for quantification and communication[Z]. Switzerland, Geneva: 2013.
[18] Barrett C B. Measuring food insecurity[J]. Science, 2010, 327: 825–828.
[19] FAO. OECD-FAO agricultural outlook 2011–2030[R]. 2009.
[20] 张福锁, 王激清, 张卫峰. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915–924.
Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915–924.
[21] Tilman D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 5995–6000.
[22] Swaminathan M S. An evergreen revolution[J]. Biologist, 2000, 47(2): 85.
[23] Matson P A, Parton W J, Power A G, et al. Agricultural intensification and ecosystem properties[J]. Science, 1997, 277(5325): 504–508.
[24] Zhang F S, Cui Z, Fan M S, et al. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China[J]. Journal of Environmental Quality, 2011, 40: 1051–1057.
[25] Ma Y C, Kong X W, Yang B, et al. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management[J]. Agriculture, Ecosystems and Environment, 2013, 164: 209–219.
[26] Liu Y, Zhou Z, Zhang X, et al. Net global warming potential and greenhouse gas intensity from the double rice system with integrated soil-crop system management: A three-year field study[J]. Atmospheric Environment, 2015, 116: 92–101.
[27] Zou J, Huang Y, Jiang J, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application[J]. Global Biogeochemical Cycles, 2005, 19(2): 1–9.
[28] 许欣, 陈晨, 熊正琴. 生物炭与氮肥对稻田甲烷产生与氧化菌数量和潜在活性的影响[J]. 土壤学报, 2016, 53(6): 1517–1527.
Xu X, Chen C, Xiong Z Q. Effects of biochar and nitrogen fertilizer amendment on abundance and potential activity of methanotrophs and methanogens in paddy field[J]. Acta Pedologica Sinica, 2016, 53(6): 1517–1527.
[29] Yan X, Yagi K, Akiyama H, et al. Statistical analysis of the major variables controlling methane emission from rice fields[J]. Global Change Biolgy, 2005, 11: 1131–1141.
[30] Yang X, Shang Q, Wu P, et al. Methane emissions from double rice agriculture under long-term fertilizing systems in Hunan, China[J]. Agricuture Ecosystems and Environment, 2010, 137: 308–316.
[31] Ma Y, Sun L, Zhang X, et al. Mitigation of nitrous oxide emissions from paddy soil under conventional and no-till practices using nitrification inhibitors during the winter wheat-growing season[J]. Biology and Fertility of Soils, 2013, 49(6): 627–635.
[32] Grace P R, Robertson G P, Millar N, et al. The contribution of maize cropping in the Midwest USA to global warming: A regional estimate[J]. Agricultural Systems, 2011, 104(3): 292–296.
[33] Kim D G, Hernandez-Ramirez G, Giltrap D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis[J]. Agriculture, Ecosystems and Environment, 2013, 168: 53–65.
[34] 梁巍, 张颖, 岳进, 等. 长效氮肥施用对黑土水旱 CH4 和 N2O 排放的影响 [J]. 生态学杂志, 2004, 23(3): 44–48.
Liang W, Zhang Y, Yue J, et al. Effect of slow-releasing nitrogen fertilizers on CH4 and N2O emission in maize and rice ftelds in black earth soil [J]. Chinese Journal of Ecology, 2004, 23(3): 44–48.
[35] Di H J, Cameron K C, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience, 2009, 2(9): 621–624.
[36] Yao Z, Zhou Z, Zheng X, et al. Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China[J]. Plant and Soil, 2010, 327(1-2): 315–330.
[37] Millar N, Baggs E M. Relationships between N2O emissions and water-soluble C and N contents of agroforestry residues after their addition to soil [J]. Soil Biology and Biochemistry, 2005, 37(3): 605–608.
[38] 张晓旭. 不同集约化栽培模式稻麦轮作系统净碳收支、温室效应及碳足迹研究[D]. 南京: 南京农业大学博士学位论文, 2017.
Zhang XX. Study on net ecosystem carbon budget, global warming potential and carbon footprint in annual rice-wheat rotations under different intensified cultivation patterns [D]. Nanjing: PhD Dissertation of Nanjing Agricultural University, 2017.
[39] 申建波, 张福锁. 水稻养分资源综合管理理论与实践[M]. 北京: 中国农业大学出版社, 2006. 203–205.
Shen J B, Zhang F S. The theory and practice of integrated management of paddy nutrient resources [M]. Beijing: China Agricultural University Press, 2006. 203–205.
[40] 梁龙, 陈源泉, 高旺盛. 两种水稻生产方式的生命周期环境影响评价[J]. 农业环境科学学报, 2009, 28(9): 1992–1996.
Liang L, Chen Y Q, Gao W S. Assessment of the environmental impacts of two rice production patterns using life cycle assessment[J]. Journal of Agro-Environment Science, 2009, 28(9): 1992–1996.
[41] 段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(5): 203–208.
Duan H P, Zhang Y, Zhao J B, et al. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 2011, 25(5): 203–208.
[42] 刘宇峰, 原志华, 郭玲霞, 等. 中国农作物生产碳足迹及其空间分布特征[J]. 应用生态学报, 2017, 28(8): 2577–2587.
Liu Y F, Yuan Z H, Guo L X, et al. Carbon footprint of crop production in China from 1993 to 2013 and its spatial distribution[J]. Journal of Applied Ecology, 2017, 28(8): 2577–2587.
[43] Zhen W, Qin Q, Kuang Y, et al. Investigating low-carbon crop production in Guangdong Province, China (1993–2013): a decoupling and decomposition analysis[J]. Journal of Cleaner Production, 2017, 146: 63–70.
[44] 王占彪, 王猛, 陈阜. 华北平原作物生产碳足迹分析[J]. 中国农业科学, 2015, 48(1): 83–92.
Wang Z B, Wang M, Chen F, et al. Carbon footprint analysis of crop production in North China Plain[J]. Scientia Agricultura Sinica, 2015, 48(1): 83–92.
[45] Huang X, Chen C, Qian H, et al. Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978[J]. Journal of Cleaner Production, 2017, 142: 1629–1637.
[46] Norse D. Low carbon agriculture: Objectives and policy pathways[J]. Environmental Development, 2012, 1(1): 25–39.
[47] 段智源, 李玉娥, 万运帆, 等. 不同氮肥处理春玉米温室气体的排放[J]. 农业工程学报, 2014, 30(24): 216–224.
Duan Z Y, Li Y E, Wan Y F, et al. Emission of greenhouse gases for spring maize on different fertilizer treatments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 216–224.
[48] Bryngelsson D, Wirsenius S, Hedenus F, et al. How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture[J]. Food Policy, 2016, 59: 152–164.
[49] Uppala S, Chapala M M, Kumar K V K, et al. Climate change, carbon offsets and low carbon technologies in agriculture: A review[J]. International Journal of Horticulture and Agriculture, 2017, 2(1): 1–8.
[50] Zhang W, Dou Z, He P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8375–8380.
[51] Jia J X, Ma Y C, Xiong Z Q. Net ecosystem carbon budget, net global warming potential and greenhouse gas intensity in intensive vegetable ecosystems in China[J]. Agriculture, Ecosystems and Environment, 2012, 150: 27–37.
[52] 胡亮, 文礼章, 彭云鹏, 等. 减少蔬菜碳足迹的主要肥料合理用量分析—以浏阳蔬菜生产合作社为例[J]. 中国农学通报, 2015, 31(25): 41–47.
Hu L, Wen L Z, Peng Y P, et al. Main fertilizer application dose research based on reduction of carbon footprint—A case study of cooperatives of vegetable production in Liuyang[J]. Chinese Agricultural Science Bulletin, 2015, 31(25): 41–47.
[53] Wang Z B, Chen J, Mao S C, et al. Comparison of greenhouse gas emissions of chemical fertilizer types in China’s crop production[J]. Journal of Cleaner Production, 2017, 141: 1267–1274.
[54] Sá J C, Lal R, Cerri C C, et al. Low-carbon agriculture in South America to mitigate global climate change and advance food security[J]. Environment International, 2017, 98: 102–112.
[55] Pan G, Xu X, Smith P, et al. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring[J]. Agriculture, Ecosystems and Environment, 2010, 136(1): 133–138.
[56] 黄耀, 孙文娟. 近20年来中国大陆农田表土有机碳含量的变化趋势[J]. 科学通报, 2006, 51(7): 750–763.
Hang Y, Sun W J. Changes in topsoil organic carbon of croplands in mainland China over the last two decades[J]. Chinese Science Bulletin, 2006, 51(7): 750–763.
[57] Zhang S, Huang S, Li J, et al. Long-term manure amendments and chemical fertilizers enhanced soil organic carbon sequestration in a wheat (Triticum aestivum L.) rotation system [J]. Journal of the Science of Food and Agriculture, 2017, 97: 2575–2581.
[58] Yan X, Cai Z, Wang S, et al. Direct measurement of soil organic carbon content change in the croplands of China[J]. Global Change Biology, 2011, 17(3): 1487–1496.
[59] 尹钰莹, 郝晋珉, 牛灵安, 等. 河北省曲周县农田生态系统碳循环及碳效率研究[J]. 资源科学, 2016, 38(5): 918–928.
Yin Y Y, Hao J M, Niu L A, et al. Carbon cycle and carbon efficiency of farmland ecosystems in Quzhou, Hebei Province[J]. Resources Science, 2016, 38(5): 918–928.
[60] Valdez Z, Hockaday W, Masiello C, et al. Soil carbon and nitrogen responses to nitrogen fertilizer and harvesting rates in switchgrass cropping systems[J]. Bioenergy Research, 2017, 10(2): 456–464.
[61] 韩继明, 潘根兴, 刘志伟, 等. 减氮条件下秸秆炭化与直接还田对旱地作物产量及综合温室效应的影响[J]. 南京农业大学学报, 2016, 39(6): 986–995.
Han J M, Pan G X, Liu Z W, et al. Contrasting effect of straw return and its biochar on changes in crop yield and integrated global warming effects under different nitrogen levels[J]. Journal of Nanjing Agricultural University, 2016, 39(6): 986–995.
[62] Li B, Bi Z, Xiong Z. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China[J]. GCB Bioenergy, 2017, 9: 400–413.