植物营养与肥料学报   2017, Vol. 23  Issue (6): 1416-1432 
0
PDF 
当前我国农业生产中的养分需求分析
李书田1,2, 刘晓永1, 何萍1,2    
1. 中国农业科学院农业资源与农业区划研究所,北京 100081;
2. 国际植物营养研究所北京办事处,北京 100081
摘要: 【目的】 估算当前我国不同区域农业生产中的养分需求和化肥需求,对如何实现2020年化肥零增长以及零增长下如何进行养分资源的合理分配、科学管理和施用具有重要的指导意义和参考价值。【方法】 本研究依据国家统计最新数据、研究结果和文献资料,以省级为单元,系统估算了农作物、林地、草地、水产养殖全面实现平衡施肥条件下对氮磷钾养分的需求量。在考虑有机肥养分有效还田基础上,分析当前化肥消费量与化肥需求量的差异。【结果】 当前我国农业生产需要氮磷钾养分共8410万t,其中N 3746万t、P2O5 2024万t、K2O 2640万t,粮食作物、蔬菜/瓜果、果树和茶叶、油料作物、纤维作物、糖料作物、饲草/草地、水产养殖的养分需求分别占总需求的41.8%、20.8%、13.1%、5.1%、2.3%、2.1%、10.6%和2.2%。华北、长江中下游、西北、西南、东南、东北地区的养分需求分别占20.3%、23.2%、18.8%、16.8%、11.1%和9.8%,其中山东、河南和四川对养分的需求高于其他省份。当前全国化肥消费量为6023万t,其中N、P2O5、K2O分别为3001万t、1943万t和1079万t,东北、华北、长江中下游、东南、西南、西北地区的化肥消费量分别占全国化肥消费量的10.6%、27.7%、24.4%、11.5%、11.4%、14.2%。我国当前有机肥养分资源潜力为N 3200万t、P2O5 1440万t和K2O 3400万t,但还田的有效养分约为N 484万t、P2O5 411万t和K2O 1273万t。有机肥还田主要在河北、河南、山东、四川和湖南省,其次是广东、广西、云南,而西北、东北及东南沿海地区各省有机肥还田的有效养分量相对较少。化肥消费与需求差表明,全国氮肥和钾肥供应不足,分别亏缺约N 261万t和K2O 288万t,而磷肥投入过量约P2O5 330万t。但不同省份和区域间化肥供需具有较大差异,东北、华北、长江中下游或东南地区的一些省份如吉林、河北、河南、山东、安徽、江苏、湖北、广东省氮磷钾肥均过量,而西北和西南地区多数省份的化肥投入不足。【结论】 粮食作物是养分需求的主体,其次是蔬菜和果树。在全面实现平衡施肥的情况下,氮、钾肥投入不足,磷肥投入过量。养分需求地区间差异明显,东北、华北、长江中下游和东南沿海地区需适当减少肥料消费,而西北和西南地区需要依据需求适量增加肥料的投入。
关键词: 养分需求     化肥消费量     化肥需求量     有机肥养分     肥料差    
Analyses on nutrient requirements in current agriculture production in China
LI Shu-tian1,2, LIU Xiao-yong1, HE Ping1,2    
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
2. International Plant Nutrition Institute Beijing Office, Beijing 100081, China
Abstract: 【Objectives】 Analyses of the nutrient requirements in current agricultural production and estimation of the chemical fertilizer demand in China will provide theoretical reference for the reliance of zero growth of chemical fertilizers by 2020, and also provide practical guide for rationally distribute, scientifically manage and apply nutrient resources under the situation of zero growth of chemical fertilizers. 【Methods】 Based on latest national statistical data, research data and literature review, this study made systematic estimation on N, P and K requirements by crops, forest, grassland and aquiculture under balance fertilization at a provincial level. The fertilizer gaps among fertilizer need and current consumption were also estimated considering recycle of available nutrients from organic sources. 【Results】 The current N, P2O5, K2O requirements in China's agricultural production were 3746×104 t for N, 2024×104 t for P2O5 and 2640×104 t for K2O, respectively, with a total of 8410×104 t. Grain crops, vegetables/melons, fruits/tea, oil crops, fiber crops, sugar crops, forage/grassland and aquiculture were accounted for 41.8%, 20.8%, 13.1%, 5.1%, 2.3%, 2.1%, 10.6% and 2.2% of total nutrient requirements, respectively. Northcentral (NC), Middle and Lower Reaches of Yangzi River (MLRY), Northwest (NW), Southwest (SW), Southeast (SE) and Northeast (NE) region were accounted for 20.3%, 23.2%, 18.8%, 16.8%, 11.1% and 9.8%, respectively, while nutrient requirements in Shandong, Henan and Sichuan were more than other provinces. Among the total nutrient consumption in China, chemical fertilizer was 6023×104 t including 3001×104 t N, 1943×104 t P2O5 and 1079×104t K2O; the consumption distribution in NE, NC, MLRY, SE, SW and NW was accounted for 10.6%, 27.7%, 24.4%, 11.5%, 11.4% and 14.2%, respectively. The organic nutrient capacity was 3200×104 t N, 1440×104 t P2O5 and 3400×104 t K2O, but the available nutrient returned to cropland was estimated to be 484×104 t N, 411×104 t P2O5, 1273×104 t K2O. Organic nutrient return was mainly distributed in Hebei, Henan, Shandong, Sichuan and Hunan provinces, followed by Guangdong, Guangxi and Yunnan provinces, while relative small amount in NW, NE and SE regions. Gaps between fertilizer consumption and fertilizer demand indicated that N and K inputs were not enough as a whole in China, N and K2O inputs were respectively in deficit of 261×104 t and 288×104 t, while P inputs were overused with 330×104 t P2O5 surplus. Great difference existed in fertilizer gaps among provinces and regions. In some provinces of NE, NC, MLRY or SE regions such as Jilin, Hebei, Henan, Shandong, Anhui, Jiangsu, Hubei and Guangdong provinces, N, P and K fertilizers were all overused, but fertilizer inputs in most provinces of NW and SW regions were insufficient. 【Conclusions】 Grain crops were the main nutrient demander, followed by vegetables and fruit trees. Under the hypothesis of balanced fertilization achieved in all crops and areas, nitrogen and potassium fertilizer inputs were insufficient, and phosphate fertilizer inputs were excessive. Great variations existed among regions in nutrient requirement. The NE, NC, MLRY and SE coastal areas need to appropriately reduce fertilizer consumption and the NW and SW regions need to appropriately increase fertilizer inputs based on nutrient requirements.
Key words: nutrient requirement     fertilizer consumption     fertilizer demand     organic nutrient     fertilizer gap    

建国以来我国人口不断增加,到2015年达13.75亿[1],因此需要在有限的耕地上生产越来越多的粮、棉、油、水果、蔬菜及其他农产品以满足人口不断增长的需求。而作物生产离不开植物营养,化肥是作物的粮食。国内外研究表明,化肥施用对粮食增产的贡献为40%~60%[23]。1978年到2015年,我国粮食总产从3.1亿t增加到6.57亿t,年均增长率为2.1%,近20年来水果和蔬菜产量年均增长率分别为 6.4%和9.8%,与此同时氮、磷、钾化肥消费量也从880万t增加到6023万t,年均增长率达到5.3%[1]。由此说明,化肥在我国粮食产量增加和保证粮食安全中起着不可替代的支撑作用,可以说没有化肥就没有中国农业的发展,也就不可能有粮食总产十连增。当前我国已成为世界化肥消费大国,消费量占世界化肥消费量的1/3以上,施用上存在一系列不合理现象,如,部分地区作物上施肥过量、化肥利用率低、环境污染风险等。因此,估算当前我国不同区域农业生产中的养分需求和化肥需求,对如何实现化肥零增长和零增长下如何进行养分的科学管理具有重要的意义和参考价值。许多研究者在不同阶段针对农业生产的特点和人口对粮食需求等对我国化肥的需求量进行一系列研究、分析与预测[48],对指导我国化肥的生产、分配和施用起到了重要的指导作用,但这些研究数据需要进一步更新与完善。随着种植业结构的改变、高产品种应用、果树蔬菜种植面积不断增加以及经济林、人工草地和水产养殖面积不断扩大等,使得农业生产对养分的需求将会进一步增加并发生很大变化[910]。再加上近期中国政府提出全面实现平衡施肥,到2020年实现化肥零增长目标,如何实现这一目标并利用现有肥料资源保持我国农业生产稳步增长,是植物营养学科面临的新任务和挑战。因此,弄清当前农业生产全面实现平衡施肥前提下对养分和化肥的需求,对如何实现化肥零增长目标非常必要。本研究依据统计数据、前期试验研究和文献资料在省级尺度上开展以下研究:1) 当前农业生产(包括农作物、林地、草地、水产养殖)对氮、磷、钾的需求;2) 畜禽粪肥和秸秆养分的有效还田量;3) 化肥需求与消费差异。

1 材料与方法 1.1 养分需求

基于农业生产中农作物、林地、草地和水产养殖面积和推荐施肥量计算。农作物种植面积参照2015年国家统计局数据[1];林地面积包括竹林、速生树种和育苗面积[11];草地面积是牧草种植面积,指年末保留种草面积[12];水产养殖面积指淡水养殖,包括池塘、河沟、湖泊和水库养鱼[13]。农作物推荐施肥量基于国际植物营养研究所 (IPNI) 前期多年试验数据和参考文献而得 (表1),林地、草地、水产养殖推荐施肥量依据参考文献的平均施肥量 (表2)。各地区养分 (N、P2O5、K2O) 需求计算如下:

$\begin{split}{\text{养分需求}}\left( {{\text{万}}\;{\rm{t}}} \right)\!\!\! &= \mathop \sum \limits_{{\rm{i}} = 1}^{\rm{n}} \frac{{{\rm{Aci}} \times {\rm{Fci}}}}{{1000}} +\\ &\frac{{\left( {{\rm{Fa}} \times {\rm{Ff}} + {\rm{Ga}} \times {\rm{Gf}} + {\rm{Aqa}} \times {\rm{Aqf}}} \right)}}{{1000}}\end{split}$

式中:i表示第i种作物;Aci表示第i作物种植面积 (万hm2);Fci表示第i种作物推荐施肥量 (kg/hm2);Fa、Ga、Aqa分别表示林地、草地和水产养殖面积 (万hm2);Ff、Gf、Aqf分别表示林地、草地和水产养殖推荐施肥量 (kg/hm2)。

表1 各种作物的养分推荐施用量 Table 1 Nutrient recommendation for various crops
表2 经济林、草地和水产养殖的养分推荐施用量 (kg/hm2) Table 2 Nutrient recommendations for economic forest, grassland and aquaculture
1.2 化肥消费量

化肥消费量按照2015年统计的各省化肥消费量计算[1],氮、磷、钾化肥消费量包括单质化肥和复合肥,其中复合肥部分的氮、磷、钾比例不清楚,需进行估算。本研究中复合肥的氮、磷、钾比例按照《2015全国农产品成本收益资料汇编》[149]中各地区各种作物上磷酸一铵、磷酸二铵、复合 (混) 肥的施用量计算而得 (表3)。

表3 2015年各省化肥消费量中复合肥的氮、磷、钾比例 Table 3 The ratios of N, P2O5 and K2O in compound fertilizers consumed in various provinces in 2015
1.3 有机肥还田的有效养分量

通过畜禽粪肥、人粪尿和秸秆还田的养分量参照我们最近的研究数据[150]。通过人粪尿还田的数量按照每人每年带入农田N 1.0 kg、P2O50.57 kg、K2O 0.30 kg,分别相当于资源量的18.5%、28.1%和15.9%。畜禽粪肥和秸秆还田的养分以有机态养分为主,需经矿化释放出无机态养分才能被作物吸收利用。因此,通过畜禽粪便和秸秆还田的养分对当季作物并不都是有效的,只有当季释放出的养分才能供作物吸收利用。因此,畜禽粪肥和秸秆还田的有效养分量 = 养分还田量×当季养分释放率 (%)。其中,当季养分释放率是参考有关文献资料计算而得的平均释放率 (表4)

表4 畜禽粪肥和作物秸秆养分的当季释放率 Table 4 In-season nutrient release rate from manure and crop residues
1.4 肥料差

肥料差指化肥消费量与化肥需求量之差,计算如下:

肥料差 = 化肥消费量 – 化肥需求量

其中:化肥消费量为2015年国家统计局的化肥消费数据;化肥需求量 = 养分需求量 – 有机肥还田的有效养分量;肥料差为正值,说明化肥投入过量,肥料差为负值,说明化肥投入不足。

2 结果与分析 2.1 养分需求

通过作物的播种面积和养分推荐施用量计算出作物对N、P2O5、K2O的需求分别为3746万t、2024万t和2640万t,共约8410万t。其中,粮食作物包括谷类、豆类和薯类的养分需求约占总需求的41.8%,蔬菜/瓜果占20.6%,果树和茶叶占13.1%,油料、纤维和糖料分别占5.1%、2.3%和2.1%,草地约占10.6%,水产养殖占2.2% (表5)。

本研究按照中国粮食主产区划分区域[172]进行分析和讨论 (下同)。不同地区作物不同,因此养分需求也存在差异 (图1)。农作物主要种植区如华北地区和长江中下游地区则需要的养分较多,两个地区养分需求分别占全国总需求的20.3%和23.2%。其次是西北地区和西南地区,分别占18.8%和16.8%,东北地区和东南地区分别占9.8% 和11.1%。山东、河南和四川省对养分的需求高于其他省份。

表5 农作物、草地、林木和水产养殖的养分需求量 (×104 t) Table 5 Nutrient requirements by field crops, grassland, forest and aquiculture
2.2 当前化肥的消费及分布状况

化肥是农田养分投入的主要来源,2015年全国化肥消费量达6023万t,其中N、P2O5、K2O分别为3001万t、1943万t和1079万t。东北、华北、长江中下游、东南、西南、西北地区的化肥消费量分别占全国化肥消费量的10.6%、27.7%、24.4%、11.5%、11.4%、14.2% (图1)。山东、河南是化肥主要消费省份。华北地区化肥消费占全国的比例高于该区域养分需求占全国的比例,而西南和西北地区化肥消费占全国的比例则低于这两个地区养分需求所占的比例。然而养分投入过量与否不仅取决于化肥投入的多少,还受其他养分来源尤其是有机肥养分投入的影响。

2.3 有机肥养分还田量

近期研究表明[150],中国有机肥资源(包括粪肥和农作物秸秆)养分资源潜力为N 3200万t、P2O5 1440万t和K2O 3400万t。这些有机肥养分可替代或补充部分化肥以满足作物对养分的需求,有助于实现2020年化肥零增长目标。当前畜禽粪肥的氮、磷、钾养分还田比例约为32%、57%和52%,秸秆的氮、磷、钾养分还田比例约为34%、49%和50%。然而,这些还田的有机肥养分当季不能全部释放为有效养分供作物吸收利用。由此,按有机肥回田量和当季养分释放率估算出通过畜禽粪肥、秸秆和人粪尿投入的氮、磷、钾有效养分量约为2168万t,包括N 484万t、P2O5 411万t和K2O 1273万t,其中磷主要来源于畜禽粪肥,而钾主要来源于畜禽粪肥和作物秸秆 (表6)。有机肥有效养分还田主要在河北、河南、山东、四川和湖南省,其次是广东、广西、云南,而西北、东北及东南沿海各省通过有机肥还田的有效养分相对较少 (图1)。

表6 有机肥资源还田的有效养分量 (×104 t) Table 6 The amount of returned available nutrients through organic sources
2.4 化肥消费量与化肥需求量差异分析

通过计算,氮磷钾养分总需求量减去有机肥还田的氮磷钾有效养分量即为所需要的氮磷钾化肥养分量,即为6243万t,包括N 3262万t、P2O5 1613 t和K2O 1367万t。化肥需求量与2015年化肥消费量比较便得出当前化肥消费量与化肥需求量的差值 (表7图1)。从全国范围来看氮肥和钾肥投入不足,分别亏缺N 261万t和K2O 288万t,而磷肥的投入过量约P2O5 330万t。这些数据是在假设作物、经济林、人工草地和水产养殖全面实现平衡施肥的情况下估算而得。

不同省份化肥供需差具有很大差异,东北地区、华北地区、长江中下游地区或东南地区的一些省份如吉林、河北、河南、山东、安徽、江苏、湖北、广东省的氮、磷、钾肥消费全部过量,需要降低投入量,而西北和西南地区的多数省份的肥料消费不足,需要增加化肥的投入量 (图1)。

表7 2015年化肥消费量与化肥需求量差 (×104 t) Table 7 Gaps between fertilizer supply and demand in 2015
图1 不同省份农业生产养分需求量、肥料消费量、有机肥回田有效养分量和肥料消费与肥料需求差 Fig. 1 Nutrient requirement, fertilizer consumption, available nutrient returned from organic sources and fertilizer gaps in agricultural production by province
3 讨论 3.1 养分需求量估算

由于受土壤、气候、作物种类等多种因素影响,至今尚无可靠、准确的养分需求量估算方法。对农作物养分需求量的估算可根据作物产量和单位产量所需养分吸收量计算,但采用这种方法需要了解土壤肥力参数、作物养分吸收参数和养分利用率等,尤其需要了解作物吸收的养分有多少来源于土壤,多少来源于施肥,至今还没有足够的调查与研究数据可以建立这些参数。因此,采用田间肥效试验法得出的适宜养分推荐量结合种植面积计算养分需求量更实用和可行[56] ,可全面了解不同地区、不同作物对养分需求的差异,指导肥料的生产、分配和施用。本研究利用农作物、林地、草地、水产养殖面积和适宜的养分推荐量对农业生产养分需求进行估算,不同作物适宜养分推荐量是基于多年研究数据和相关文献而得的养分平均推荐量。各种作物的试验研究和文献资料基本能反映作物主产区的土壤肥力、作物品种、灌溉条件、气象条件等,所得出的养分推荐量具有代表性。另外,鉴于目前没有各种作物上的施肥面积的比例数据,本研究在国家倡导全面实现平衡施肥前提下,假设各种作物全面平衡施肥基础上进行的估算,代表最高养分需求量,也为实现平衡施肥全面普及下的养分需求提供依据和参考。

3.2 化肥消费量中复合肥的氮、磷、钾估算方法

自1980年以来,氮磷钾化肥消费量迅速增加,由1980年的1285万t增加到2015年的6023万t,增加近3.7倍,而其中复合肥所占的比例由1980年的2.1%增加到2015年36.1%,增加了16倍多。统计数据中复合肥的氮、磷、钾养分比例一直不明确,因此,准确估算复合肥中的氮、磷、钾比例和数量对全面了解不同地区化肥的供给与需求十分重要。李家康等[5]曾按照进口和国产复合肥如一铵、二铵的实际养分量计算,复合 (混) 肥中的N、P2O5、K2O按1∶0.8∶0.8比计算。李书田和金继运[172]计算消费量中复合肥的N、P2O5、K2O是按照东北地区1∶2.0∶2.0,华北、西北地区1∶1.5∶0.4,长江中下游、西南、东南各省1∶1∶0.8计算。本研究根据发改委2015年的《全国农产品成本收益资料汇编》[149]中不同省份每种作物上一铵、二铵、三元素复合肥、混配肥的施用量以及各自的养分含量估算各省通过复合肥施用的氮、磷、钾用量和比例 (表3),其中三元复合 (混) 肥的N、P2O5、K2O按1∶1∶1计算。按照这种方法计算的复合肥氮、磷、钾养分加上单质氮、磷、钾肥消费量,全国N、P2O5、K2O总消费量分别为3001万t、1943万t和1079万t,与利用2015年各种复合肥资源量 (即国产 + 进口 – 出口)[173]中N、P2O5、K2O比例1∶1.70∶0.73计算后得出的全国N、P2O5、K2O总消费量2996万t、1921万t和1105万t相比基本一致,但有些省份两种计算方法的氮、磷、钾消费量有一定差异,可能与按资源量中复合肥氮磷钾比例计算时各省使用同一比例有关。因此,本研究根据各省复合肥的实际施用情况估算氮、磷、钾比例更能反映各省的实际情况。

3.3 有机肥在化肥零增长中的地位

我国有机肥资源可提供8000多万t的氮磷钾养分,是作物营养的主要来源之一,科学施用有机肥不仅为植物提供养分,还能培肥土壤、增加土壤肥力。畜禽粪肥和作物秸秆是有机肥资源的主要组成部分,目前只有1/3左右的氮和50%左右的磷、钾能有效还田[150],其余养分尤其是氮素有相当部分在收集、处理和保存中损失或废弃,并对环境造成一定污染。因此,充分利用有机肥资源,减少养分损失,增加有效还田比例,是实现2020年化肥零增长目标的可靠保障。从前面分析可知,在全面平衡施肥情况下目前还分别有261万t化肥氮和 288万t化肥K2O投入不足,有机肥替代就是很好的补充方法。根据1980~2015年每5年化肥消费年均增长率变化趋势分析 (图2),2015~2020化肥消费年均增长率不会超过2010~2015的年均增长率1.6%,按照这一增长率,到2020年化肥消费量将不会超过6520万t,比2015年增加约500万t。增加有机肥的养分投入就可降低化肥消费增长率,降低2020年化肥消费峰值。

当然,有机肥不是施用越多越好,有机肥尤其畜禽粪肥中含有有害物质如重金属等,存在造成土壤和作物产品某些重金属超标的风险[174177]。至于施用多少有机肥合适需要综合考虑有机肥种类、重金属含量、土壤酸碱度和重金属本底值以及作物种类等,有待深入研究制定有机肥施用限量标准。但值得强调的是,用有机肥养分替代化肥养分需要考虑有机肥当季可供作物吸收的部分,不是简单的总量替代,否则可能导致养分供应不足,影响作物产量。

图2 1980~2015年每5年化肥消费年均增长率变化 Fig. 2 Evolution of annual average increase rate of chemical fertilizer consumption in every 5 years from 1980 to 2015
4 结论

粮食作物是养分需求的主体,其次是蔬菜和果树。在农作物、林地、草地、水产养殖全面实现平衡施肥情况下,目前氮、钾肥投入不足,磷肥投入过量。不同省份和区域养分需求、化肥消费量、有机肥还田的有效养分以及化肥消费与化肥需求差都存在着明显差异。东北、华北、长江中下游和东南沿海地区一些省份需适当减少肥料投入,而西北和西南地区多数省份可依据养分需求适量增加肥料投入。因此,要根据养分和肥料需求的地区差异,合理分配肥料资源,提高肥料利用效率。

参考文献
[1] 中华人民共和国国家统计局. 中国统计年鉴(2015) [M]. 北京: 中国统计出版社, 2016.
People's Republic of China National Bureau of Statistics. China statistical yearbook(2015) [M]. Beijing: China Statistical Press, 2016.
[2] Stewart W M, Dibb D W, Johnston A E, Smyth T J. The contribution of commercial fertilizer nutrients to food production[J]. Agronomy Journal, 2005, 97(1): 1–6.
[3] 王祖力, 肖海峰. 化肥施用对粮食产量增长的作用分析[J]. 农业经济问题, 2008, (8): 65–68.
Wang Z L, Xiao H F. Analysis on the role of fertilization on grain yield growth[J]. Issues in Agricultural Economy, 2008, (8): 65–68.
[4] 陈同斌, 陈世庆, 徐鸿涛, 等. 中国农用化肥氮磷钾需求比例的研究[J]. 地理学报, 1998, 53(1): 32–41.
Chen T B, Chen S Q, Xu H T, et al. Simulation study on ratios of nitrogen, phosphorus and potassium fertilizers required in the crop production in China[J]. Acta Geographica Sinica, 1998, 53(1): 32–41.
[5] 李家康, 林葆, 梁国庆, 沈桂芹. 对我国化肥使用前景的剖析[J]. 植物营养与肥料学报, 2001, 16(1): 1–10.
Li J K, Lin B, Liang G Q, Shen G Q. Dissecting the perspectives of fertilizer application in China[J]. Plant Nutrition and Fertilizer Science, 2001, 16(1): 1–10.
[6] 李家康, 林葆, 梁国庆, 沈桂芹. 对我国化肥使用前景的剖析(续)[J]. 磷肥与复肥, 2001, 16(3): 4–8.
Li J K, Lin B, Liang G Q, Shen G Q. Dissecting the perspective of fertilizer application in China (cont'd)[J]. Phosphate & Compound Fertilizer, 2001, 16(3): 4–8.
[7] 金继运, 李家康, 李书田. 粮食作物对化肥的需求分析[J]. 磷肥与复肥, 2006, 21(3): 1–6.
Jin J Y, Li J K, Li S T. Chemical fertilizer and food safety—the demand of chemical fertilizer for cereal crops[J]. Phosphate & Compound Fertilizer, 2006, 21(3): 1–6.
[8] 张卫峰, 马文奇, 王雁峰, 张福锁. 基于CBEM模型的2010年农田化肥需求预测[J]. 植物营养与肥料学报, 2008, 14(3): 407–416.
Zhang W F, Ma W Q, Wang Y F, Zhang F S. Forecasting fertilizer demand of China in 2010 using CEBM model[J]. Plant Nutrition and Fertilizer Science, 2008, 14(3): 407–416.
[9] 张卫峰, 季玥秀, 马骥, 等. 中国化肥消费需求影响因素及走势分析Ⅱ种植结构[J]. 资源科学, 2008, 30(1): 31–36.
Zhang W F, Ji Y X, Ma J, et al. Driving forces of fertilizer consumption in China Ⅱ planting structure[J]. Resources Science, 2008, 30(1): 31–36.
[10] 张卫峰, 季玥秀, 马骥, 等. 中国化肥消费需求影响因素及走势分析Ⅲ人口、经济、技术、政策[J]. 资源科学, 2008, 30(2): 213–220.
Zhang W F, Ji Y X, Ma J, et al. An analysis on driving force of fertilizer demand of China, Ⅲ population, economy, technology and policy[J]. Resources Science, 2008, 30(2): 213–220.
[11] 国家林业局主编. 中国林业统计年鉴[M]. 北京: 中国林业出版社, 2014.
State Forestry Administration of P. R. China. China forestry statistical yearbook [M]. Beijing: China Forestry Publishing House, 2014.
[12] 全国畜牧总站. 中国草业统计[M]. 北京: 中国农业出版社, 2014.
National Animal Husbandry Station. China grassland statistics [M]. Beijing: China Agriculture Press, 2014.
[13] 中华人民共和国农业部. 中国农业统计资料[M]. 北京: 中国农业出版社, 2015.
Ministry of Agriculture, P. R. China agriculture statistical report [M]. Beijing: China Agriculture Press, 2015.
[14] 董二伟, 王劲松, 韩鹏远, 等. 施肥对高粱生长、干物质积累与养分吸收分配的影响[J]. 山西农业科学, 2012, 40(6): 645–650.
Dong E W, Wang J S, Han P Y, et al. Effect of fertilization on growth, dry matter accumulation, nutrient uptake and distribution in sorghum[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(6): 645–650.
[15] 肖继兵, 刘志, 崔丽华, 等. 辽西土壤养分供应能力与高粱施肥推荐[J]. 中国土壤与肥料, 2016, (6): 81–85.
Xiao J B, Liu Z, Cui L H, et al. Soil nutrients supply capacity and recommended fertilization for sorghum in Liaoxi area[J]. Soils and Fertilizers Sciences in China, 2016, (6): 81–85.
[16] 韦伟, 陈思哲, 王仕玥, 等. 肥料效应函数在酒用高粱施肥技术中的应用[J]. 山地农业生物学报, 2010, 29(3): 209–214.
Wei W, Chen S Z, Wang S Y, et al. Application of fertilizer effect function in the wine sorghum fertilization technique[J]. Journal of Mountain Agriculture and Biology, 2010, 29(3): 209–214.
[17] 张生瑞, 孙学保. 不同施肥量对醇用型和饲用型甜高粱产质量的影响[J]. 中国糖料, 2015, 37(2): 41–42.
Zhang S R, Sun X B. Effect of different fertilizer rates on yield and quality of wine and silage sorghum[J]. Sugar Crops of China, 2015, 37(2): 41–42.
[18] 苏富源, 郝明德, 张晓娟, 等. 施肥对甜高粱产量、养分吸收及品质的影响[J]. 西北农业学报, 2016, 25(3): 396–405.
Su F Y, Hao D M, Zhang X J, et al. Effect of fertilization on yield, nutrient uptake and quality of sweet sorghum[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(3): 396–405.
[19] 钱晓刚, 陆引罡, 魏成熙, 周炎. 贵州酒用高粱合理施肥的研究–高粱对氮磷钾养分的吸收规律[J]. 中国农学通报, 1995, 11(6): 12–15.
Qian X G, Lu Y G, Wei C X, Zhou Y. Study on rational fertilization in wine sorghum in Guizhou–Law of N, P and K uptake by sorghum[J]. Chinese Agricultural Science Bulletin, 1995, 11(6): 12–15.
[20] 陈富忠, 吴永红, 郑邦元. 氮磷钾肥对高粱产量和效益的影响试验初报[J]. 南方农业, 2014, 8(31): 18–19.
Chen F Z, Wu Y H, Zheng B Y. Preliminary report on effect of nitrogen, phosphorus and potassium fertilizer on yield and benefit of sorghum[J]. South China Agriculture, 2014, 8(31): 18–19.
[21] 王劲松, 焦晓燕, 丁玉川, 等. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应[J]. 作物学报, 2015, 41(8): 1269–1278.
Wang J S, Jiao X Y, Ding Y C, et al. Response of nutrient uptake, yield and quality of grain sorghum to nutrition of nitrogen, phosphorus and potassium[J]. Acta Agronomica Sinica, 2015, 41(8): 1269–1278.
[22] 张绪成, 汤瑛芳. 陇中旱地地膜谷子施肥量及密度对产量的影响[J]. 甘肃农业科技, 2001, 1: 21–23.
Zhang X C, Tang Y F. Effect of amount of fertilizer applied and density of film-mulching unhusked rice on yield in dryland of mid-Gansu[J]. Gansu Agricultural Science and Technology, 2001, 1: 21–23.
[23] 张亚琦, 李淑文, 杜雄, 文宏达. 施钾对杂交谷子水分利用效率和产量的影响[J]. 河北农业大学学报, 2014, 37(6): 1–6.
Zhang Y Q, Li S W, Du X, Wen H D. Effect of potassium application on water use efficiency and yield of hybrid millet[J]. Journal of Agricultural University of Hebei, 2014, 37(6): 1–6.
[24] 何继红, 李沣, 董孔军, 等. 施肥对旱地地膜覆盖栽培谷子产量的影响[J]. 河北农业科学, 2010, 14(11): 59–61.
He J H, Li F, Dong K J, et al. Study on the effects of fertilization on the yield of millet cultivated in plastic film on dry land[J]. Journal of Hebei Agricultural Sciences, 2010, 14(11): 59–61.
[25] 李志军, 贺丽瑜, 梁鸡保, 张霞. 不同氮磷钾配比对黄土丘陵沟壑区谷子产量及肥料利用率的影响[J]. 陕西农业科学, 2013, 59(5): 107–109.
Li Z J, He L Y, Liang J B, Zhang X. Effects of different ratios of N, P and K on yield and fertilizer use efficiency of millet in hilly and gully region of Loess Plateau[J]. Journal of Shaanxi Agricultural Science, 2013, 59(5): 107–109.
[26] 陈二影, 秦岭, 程炳文, 等. 夏谷氮、磷、钾肥的效应研究[J]. 山东农业科学, 2015, (1): 61–65.
Chen E Y, Qin L, Cheng B W, et al. Application effect of N, P, K fertilizers on summer foxtail millet[J]. Shandong Agricultural Sciences, 2015, (1): 61–65.
[27] 韩芳, 韩浩坤, 王海龙, 等. 施肥对旱薄地谷子农艺性状及产量的影响[J]. 山西农业科学, 2015, 43(6): 718–722.
Han F, Han H K, Wang H L, et al. Effect of fertilization on the agronomic traits and yield of dryland millet[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(6): 718–722.
[28] 韩芳, 韩浩坤, 郭玮, 等. 密度与施肥水平对谷子长生07农艺性状及产量的影响[J]. 河北农业科学, 2015, 5: 4–8.
Han F, Han H K, Guo W, et al. Effects of density and fertilization on agronomic traits and yield in millet variety Changsheng 07[J]. Journal of Hebei Agricultural Sciences, 2015, 5: 4–8.
[29] 罗世武, 王勇, 杨军学, 等. 宁南干旱区谷子肥料试验研究[J]. 陕西农业科学, 2013, 59(4): 88–91.
Luo S W, Wang Y, Yang J X, et al. Experimental study on millet fertilization in arid area of South Ningxia[J]. Journal of Shaanxi Agricultural Sciences, 2013, 59(4): 88–91.
[30] 刘永, 迟金和, 梁春玲, 吴洪生. 配方施肥对滨海盐土啤酒大麦产量和品质的影响[J]. 中国土壤与肥料, 2014, (4): 53–56.
Liu Y, Chi J H, Liang C L, Wu H S. Effect of soil testing and formula fertilizing technology on the yield and quality in malting barley crop at coastal saline soil in Jiangsu[J]. Soil and Fertilizer Sciences in China, 2014, (4): 53–56.
[31] 苏志富, 罗来君. 啤酒大麦肥料运筹及精确施肥技术探讨[J]. 大麦与谷类科学, 2014, (1): 31–32.
Su Z F, Luo L J. Discussion on fertilizer application and precision fertilization techniques in cultivation of malting barley[J]. Barley and Cereal Sciences, 2014, (1): 31–32.
[32] 唐旭, 陈义, 吴春艳, 等. 大麦长期肥料效率和土壤养分平衡[J]. 作物学报, 2013, 39(4): 665–672.
Tang X, Chen Y, Wu C Y, et al. Fertilizer efficiency and soil apparent nutrient balance for barley under long-term fertilization[J]. Acta Agronomica Sinica, 2013, 39(4): 665–672.
[33] 李利新. 河谷区大麦测土配方施肥3414 试验[J]. 云南农业, 2013, (2): 40–41.
Li L X. Soil testing and fertilizer recommendation 3414 trials in barley in Hegu District[J]. Journal of Agriculture in Yunnan, 2013, (2): 40–41.
[34] 吴桂芳. 啤大麦测土配方施肥3414试验[J]. 云南农业, 2011, (11): 25–26.
Wu G F. Soil testing and fertilizer recommendation 3414 trials in malting barley[J]. Journal of Agriculture in Yunnan, 2011, (11): 25–26.
[35] 范宏伟, 巴兰清, 宋雄儒. 民乐县啤酒大麦配方施肥试验初报[J]. 甘肃农业科技, 2010, (12): 22–24.
Fan H W, Ba L Q, Song X R. A preliminary report of formula fertilization of malting barley in Minle County[J]. Gansu Agricultural Science and Technology, 2010, (12): 22–24.
[36] 何玉龙, 周青平, 纪亚君, 等. 施肥对青引1号燕麦产量及构成性状的影响[J]. 草业科学, 2012, 29(6): 968–972.
He Y L, Zhou Q P, Ji Y J, et al. Effect of fertilizing rate on yield and its components of Qingyin No. 1 oat[J]. Pratacultural Science, 2012, 29(6): 968–972.
[37] 黄桂莲, 王雁丽, 田宏先. 不同施肥量对裸燕麦丰产效果的影响[J]. 山西农业科学, 2012, 40(2): 120–122.
Huang G L, Wang Y L, Tian H X. Effect of different fertilization rates on oat fertility[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(2): 120–122.
[38] 李威, 王朋. 配方施肥对皮燕麦地上生物量和种子产量的影响[J]. 青海畜牧兽医杂志, 2014, 44(2): 4–5.
Li W, Wang P. Effect of formula fertilizer on aboveground biomass and seed yield of hull oat[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2014, 44(2): 4–5.
[39] 张昆, 刘小三, 郑伟, 雷礼文. 播种量和施肥对丘陵红壤区裸燕麦产量和主要性状的影响[J]. 江西农业学报, 2012, 24(12): 15–17.
Zhang K, Liu X S, Zheng W, Lei L W. Effects of seeding rate and fertilization on yield and main traits of naked oat in hilly red soil area[J]. Acta Agriculturae Jiangxi, 2012, 24(12): 15–17.
[40] 葛军勇, 臧华栋, 钱欣, 等. 白城地区皮燕麦肥料效应与推荐施肥研究[J]. 作物杂志, 2015, (3): 98–103.
Ge J Y, Zang H D, Qian X, et al. Fertilization effects and optimum fertilizer rate of oats in Baicheng[J]. Crops, 2015, (3): 98–103.
[41] 高卿, 张永伟, 赵培军, 等. 乌兰察布市燕麦" 3414”肥料效应及推荐用量研究[J]. 内蒙古农业科技, 2014, (2): 47–48.
Gao Q, Zhang Y W, Zhao P J, et al. Effect and recommended dosage of " 3414” fertilization for oats in Ulanqab[J]. Inner Mongolia Agricultural Science and Technology, 2014, (2): 47–48.
[42] 赵世锋, 曹丽霞, 王俊英, 等. 冀北燕麦产区土壤肥力水平及高产创建实践分析[J]. 河北农业科学, 2013, 17(5): 47–51, 62.
Zhao S F, Cao L X, Wang J Y, et al. Analysis on soil fertility and practice of obtaining high yield in oat producing areas of north of Hebei province[J]. Journal of Hebei Agricultural Sciences, 2013, 17(5): 47–51, 62.
[43] 赵永峰, 穆兰海, 常克勤, 等. 不同栽培密度与N、P、K 配比精确施肥对荞麦产量的影响[J]. 内蒙古农业科技, 2010, (4): 61–62.
Zhao Y F, Mu L H, Chang K Q, et al. Effect of precise fertilization by combination various planting density with fertilizer N, P and K rates on buckwheat yield[J]. Inner Mongolia Agricultural Science and Technology, 2010, (4): 61–62.
[44] 马宁, 刘杰英, 贾瑞琳, 等. 甘肃中部半干旱雨养生态区甜荞麦施肥优化数学模型研究[J]. 干旱地区农业研究, 2010, 28(6): 108–111.
Ma N, Liu J Y, Jia R L, et al. Mathematical model of optimal fertilization for sweet buckwheat in semiarid rain-fed region in central Gansu[J]. Agricultural Research in the Arid Areas, 2010, 28(6): 108–111.
[45] 罗中旺, 金晓蕾, 辛万和, 朱雪峰. 不同栽培措施对荞麦结实率及产量的影响[J]. 内蒙古农业科技, 2014, (5): 5–8.
Luo Z W, Jin X L, Xin W H, Zhu X F. Effects of different cultivation ways on seed setting rate and yield of buckwheat[J]. Inner Mongolia Agricultural Science and Technology, 2014, (5): 5–8.
[46] 李红梅, 陕方, 边俊生, 等. 品种与肥料对苦荞麦产量及水肥利用的影响研究[J]. 中国生态农业学报, 2006, 14(4): 253–255.
Li H M, Shan F, Bian J S, et al. Effects of variety and fertilizer on the yield and the utilization of water and fertilizer of tartary buckwheat[J]. Chinese Journal of Eco-Agriculture, 2006, 14(4): 253–255.
[47] 付雪娇. 不同施肥量对芝麻产量和器官营养的影响[D]. 北京: 中国农业科学院硕士学位论文, 2011.
Fu X J. Effect of different fertilizer application rate on yield and organ nutrition of sesame [D]. MS Thesis of Chinese Academy of Agricultural Sciences, 2011.
[48] 卫双玲, 李春明, 高桐梅, 等. 芝麻氮、磷、钾肥的效应研究[J]. 植物营养与肥料学报, 2013, 19(3): 644–649.
Wei S L, Li C M, Gao T M, et al. Study on the effects of N, P, K fertilizer in sesame[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 644–649.
[49] 余常兵, 谢立华, 李银水, 等. 氮钾肥施用技术对芝麻养分积累、产量和品质的影响[J]. 湖北农业科学, 2012, 51(3): 469–472.
Yu C B, Xie L H, Li Y S, et al. Effect of N and K fertilizer application techniques on nutrient accumulation, yield and quality of sesame[J]. Hubei Agricultural Sciences, 2012, 51(3): 469–472.
[50] 赵莉, 汪强, 田东丰, 等. " 3414”肥效对江淮黄褐土芝麻产量和经济效益的影响[J]. 中国农学通报, 2012, (33): 161–165.
Zhao L, Wang Q, Tian D F, et al. The effect of "3414" fertilizer on yield and economic benefits for sesame grown in Jianghuai Yellow-brown soil[J]. Chinese Agricultural Science Bulletin, 2012, (33): 161–165.
[51] 曲文章, 高妙真. 施肥量对甜菜产量和生理指标的影响[J]. 中国糖料, 1993, (2): 25–29.
Qu W Z, Gao M Z. Effect of amount of fertilizer application on yield and physiological indices in sugar beet[J]. Sugar Crops of China, 1993, (2): 25–29.
[52] 郑毅, 李庆会, 范富, 刘景辉. 糖用甜菜氮磷钾配方施肥效益分析[J]. 中国土壤与肥料, 2016, (1): 77–82.
Zheng Y, Li Q H, Fan F, Liu J H. Effect of N, P, K formula fertilization on the sugar beet[J]. Soil and Fertilizer Sciences in China, 2016, (1): 77–82.
[53] 刘蒙. 旱作甜菜密度与施肥优化栽培技术研究[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2015.
Liu M. Study on cultivation techniques optimizing density and fertilization in dry land beet [D]. Huhehot: MS Thesis of Inner Mongolia Agricultural University, 2015.
[54] 张春梅, 闫治斌, 秦嘉海, 等. 甘肃河西内陆灌区主要土类供钾能力及经济作物钾素最佳施用量的研究[J]. 土壤通报, 2014, 45(2): 402–406.
Zhang C M, Yan Zhi B, Qin J H, et al. Potassium supplying capacities of the main soil types and optimum application rates of potassium of economic crops in Hexi inland irrigation areas of Gansu province[J]. Chinese Journal of Soil Science, 2014, 45(2): 402–406.
[55] 盖志佳. 定量施肥对黑龙江省红兴隆地区甜菜产质量的影响[D]. 哈尔滨: 东北农业大学硕士学位论文, 2012.
Gai Z J. Effect of fertilization on yield and quality of sugar beet in Hongxinglong region of Heilongjiang Province [D]. Harbin: MS Thesis of Northeast Agricultural University, 2012.
[56] 范文婷. 氮磷钾肥施用量对黑龙江省不同生态区甜菜产质量的影响[D]. 哈尔滨: 东北农业大学硕士学位论文, 2012.
Fan W T. Effects of N, P and K fertilizer rates on yield and quality of sugar beet in different ecological areas of Heilongjiang Province [D]. Harbin: MS Thesis of Northeast Agricultural University, 2012.
[57] 王玉波, 马凤鸣, 王庆祥. 施肥量对甜菜产量和质量的影响[J]. 作物杂志, 2011, (4): 78–81.
Wang Y B, Ma F M, Wang Q X. Effect of fertilization on yield and quality of sugar beet[J]. Crops, 2011, (4): 78–81.
[58] 郑根昌, 王芳, 邢彭龄, 刘海臣. 甜菜平衡施肥技术研究[J]. 中国糖料, 2001, (3): 24–27.
Zheng G C, Wang F, Xing P L, Liu H C. Study on techniques of balanced fertilization in sugar beet[J]. Sugar Crops of China, 2001, (3): 24–27.
[59] 高妙真, 曲扬. 甜菜高产高糖施肥标准的研究[J]. 中国甜菜糖业, 2000, (4): 1–4.
Gao M Z, Qu Y. The study on fertilizing standard of sugar beet with high yield and sugar content[J]. China Beet and Sugar, 2000, (4): 1–4.
[60] 李文珍. 旱地胡麻配方施肥试验[J]. 甘肃农业科技, 2011, (2): 39–40.
Li W Z. Experiment on formula fertilization in upland flax[J]. Gansu Agricultural Science and Technology, 2011, (2): 39–40.
[61] 曹秀霞, 安维太, 钱爱萍, 杨崇庆. 密度和施肥量对旱地胡麻产量及农艺性状的影响[J]. 陕西农业科学, 2012, (1): 87–89.
Cao X X, An W T, Qian A P, Yang C Q. Effects of density and fertilizer rate on yield and agronomic characters of flax in dry land[J]. Journal of Shaanxi Agricultural Sciences, 2012, (1): 87–89.
[62] 魏景云, 高炳德, 索全义, 王春枝. 应用目标产量法对胡麻配方施肥的研究[J]. 内蒙古农业科技, 1998, (6): 4–7.
Wei J Y, Gao B D, Suo Q Y, Wang C Z. Application target yield method to study fertilizer recommendation in flax[J]. Inner Mongolia Agricultural Science and Technology, 1998, (6): 4–7.
[63] 宋景东. 临洮县东南部旱作梯田胡麻配方施肥试验[J]. 甘肃农业科技, 2011, (5): 42–44.
Song J D. A review of couple effect of water and fertilizer on crop development[J]. Gansu Agricultural Science and Technology, 2011, (5): 42–44.
[64] 罗世武, 王勇, 岳国强, 等. 不同施肥水平与方法对胡麻的增产效应[J]. 现代农业科技, 2009, (15): 10–11.
Luo S W, Wang Y, Yue G Q, et al. Effects of different fertilization levels and methods on yield increase of flax[J]. Modern Agricultural Science and Technology, 2009, (15): 10–11.
[65] 孙小花, 谢亚萍, 牛俊义, 等. 不同供钾水平对胡麻花后干物质转运分配及钾肥利用效率的影响[J]. 核农学报, 2015, (1): 192–201.
Sun X H, Xie Y P, Niu J Y, et al. Effect of different potassium supply levels on transportation, distribution of dry matter and K-fertilizer utilization efficiency after anthesis in oil flax[J]. Journal of Nuclear Agricultural Sciences, 2015, (1): 192–201.
[66] 李世金, 谢强, 刘国侠, 徐刚. 不同施肥水平对烟草生产的影响[J]. 安徽农学通报, 2016, 22(23): 65–67.
Li S J, Xie Q, Liu G X, Xu G. Effect of different fertilizer application rates on tobacco production[J]. Anhui Agricultural Science Bulletin, 2016, 22(23): 65–67.
[67] 马国雄. 攀枝花大龙潭基地单元植烟土壤养分特征与氮磷钾平衡施用技术研究[D]. 成都: 四川农业大学硕士学位论文, 2015.
Ma G X. Research on the features of soil nutrients and studying balanced fertilization technology in Dalongtan tobacco leaf production base [D]. Chendu: MS Thesis of Sichuan Agricultural University, 2015.
[68] 李静, 张锡洲, 李廷轩, 等. 钾肥运筹对烤烟钾吸收利用的影响[J]. 植物营养与肥料学报, 2015, 21(4): 969–978.
Li J, Zhang X Z, Li T X, et al. Effect of potash management on potassium absorption and utilization of flue-cured tobacco[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 969–978.
[69] 刘小芳, 李万源, 成红云, 郭华新. 不同施肥量对烟草生长发育及经济产量的影响[J]. 湖南农业科学, 2014, (10): 36–39.
Liu X F, Li W Y, Cheng H Y, Guo H X. Effect of different fertilizer rates on growth and economic yield of tobacco[J]. Hunan Agricultural Sciences, 2014, (10): 36–39.
[70] 邢云霞. 施氮量和氮钾肥施用方法对土壤无机氮含量、烤烟生长及品质的影响[D]. 郑州: 河南农业大学硕士学位论文, 2014.
Xing Y X. Effect of nitrogen application rates and N and K fertilizer applied methods on soil inorganic nitrogen content, flue-cured tobacco growth and quality [D]. Zhengzhou: MS Thesis of Henan Agricultural University, 2014.
[71] 赵卫星, 常高正, 徐小利, 等. 测土配方施肥在西瓜上的应用效果[J]. 果树学, 2010, 27(5): 828–832.
Zhao W X, Chang G Z, Xu X L, et al. Effect of formula fertilization by soil testing on watermelon[J]. Journal of Fruit Science, 2010, 27(5): 828–832.
[72] 邓云, 孙德玺, 朱迎春, 刘君璞. " 3414”肥效试验对西瓜产量的影响及推荐施肥量分析[J]. 中国瓜菜, 2013, 26(3): 16–19.
Deng Y, Sun D X, Zhu Y C, Liu J P. The effect of fertilizer on watermelon yield and the optimal fertilization amounts using of " 3414” test[J]. China Cucurbits and Vegetables, 2013, 26(3): 16–19.
[73] 贾云鹤. 不同施肥处理对大棚西瓜产量和品质的影响[J]. 黑龙江农业科学, 2010, (5): 47–48.
Jia Y H. Effects of different fertilization treatments on yield and quality of watermelon in plastics greenhouse[J]. Heilongjiang Agricultural Sciences, 2010, (5): 47–48.
[74] 李云祥, 王光英, 万兵全, 刘谦. 甘肃中部地区砂田西瓜平衡施肥效应及效益研究[J]. 土壤通报, 2008, 39(2): 453–455.
Li Y X, Wang G Y, Wan B Q, Liu Q. The effect and benefit of balanced fertilization to watermelon in sand land in the middle area of Gansu province[J]. Chinese Journal of Soil Science, 2008, 39(2): 453–455.
[75] 杜少平, 马忠明, 薛亮. 氮磷钾配施对砂田西瓜产量和品质的影响[J]. 植物营养与肥料学报, 2016, 22(2): 468–475.
Du S P, Ma Z M, Xue L. Effects of combined application of N, P and K on yield and quality of watermelon in gravel-mulched fields[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 468–475.
[76] 马忠明, 杜少平, 薛亮. 磷钾配施对旱砂田西瓜产量、品质及养分利用率的影响[J]. 植物营养与肥料学报, 2014, 20(3): 687–695.
Ma Z M, Du S P, Xue L. Effects of combined application of P and K on the yield, quality and nutrient utilization of watermelon in gravel-mulched field[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 687–695.
[77] 杜少平, 马忠明, 薛亮. 密度、氮肥互作对旱砂田西瓜产量、品质及氮肥利用率的影响[J]. 植物营养与肥料学报, 2013, 19(1): 150–157.
Du S P, Ma Z M, Xue L. Effects of interaction between density and nitrogen on the yield, quality and nitrogen use efficiency of watermelon in gravel-mulched field[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(1): 150–157.
[78] 马忠明, 杜少平, 薛亮. 滴灌施肥条件下砂田设施甜瓜的水肥耦合效应[J]. 中国农业科学, 2016, 49(11): 2164–2173.
Ma Z M, Du S P, Xue L. Coupling effects of water and fertilizer on melon in plastic greenhouse of gravel ravel-mulched field under drip fertigation[J]. Scientia Agricultura Sinica, 2016, 49(11): 2164–2173.
[79] 范洁. 不同施肥量对温室甜瓜生长发育、品质及产量的影响[D]. 杨凌:西北农林科技大学硕士学位论文, 2015.
Fan J. Effect of different amount of fertilizer on growth, yield and quality of muskmelon[D]. Yangling: MS Thesis of Northwest A&F University, 2015.
[80] 原保忠, 张卿亚, 别之龙. 不同施肥量对大棚甜瓜产量和品质的影响[J]. 灌溉排水学报, 2015, 34(12): 32–37.
Yuan B Z, Zhang Q Y, Bie Z L. Effects of different fertilization amount on yield and quality of muskmelon in plastic greenhouse[J]. Journal of Irrigation and Drainage, 2015, 34(12): 32–37.
[81] 胡国智, 冯炯鑫, 张炎, 等. 施肥对甜瓜生长、养分吸收及产量品质的影响[J]. 新疆农业科学, 2014, 51(8): 1445–1450.
Hu G Z, Feng J X, Zhang Y, et al. Effect of fertilization on growth, nutrient uptake, yield and quality of melons[J]. Xinjiang Agricultural Sciences, 2014, 51(8): 1445–1450.
[82] 王连君, 蔡艳华, 王宇娟, 等. 氮磷钾配比施肥对草莓果实维生素C含量的影响[J]. 北方园艺, 2012, (23): 175–177.
Wang L J, Cai Y H, Wang Y J, et al. Effect of NPK ratio fertilization to the vitamin C content of strawberry fruit[J]. Northern Horticulture, 2012, (23): 175–177.
[83] 陈龙娟, 王坚. 草莓配方施肥试验研究初报[J]. 上海农业科技, 2011, (1): 95–96.
Chen L J, Wang J. Preliminary research report on experimental results of fertilizer recommendation in strawberry[J]. Shanghai Agricultural Science and Technology, 2011, (1): 95–96.
[84] 周祥, 陈爱晶, 张璇. 大棚草莓水肥一体化滴灌施肥试验[J]. 浙江农业科学, 2017, 58(1): 72–74.
Zhou X, Chen A J, Zhang X. Drip fertigation of strawberry with water and fertilizer in greenhouse[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(1): 72–74.
[85] 宋科, 薛永, 郑宪清, 等. 氮钾肥配施对草莓产量和品质的影响[J]. 上海农业学报, 2016, 32(5): 82–86.
Song K, Xue Y, Zheng X Q, et al. Effects of combined application of nitrogen and potassium fertilizer on the yield and quality of strawberry[J]. Acta Agriculturae Shanghai, 2016, 32(5): 82–86.
[86] 荆志宇. 蒙古黄芪适宜施肥量及种子采收期研究[D]. 兰州: 甘肃农业大学硕士学位论文, 2011.
Jing Z Y. Study of adapted fertilization and seed harvesting time of A. Membranaceus (Fisch.) Bge. Var. mongholicus (Bge.) Hsiao [D]. Lanzhou: MS Thesis of Gausu Agricultural University, 2011.
[87] 何军, 李小燕, 张晓虎. N、P、K 配方施肥对1 年生黄芩生长的影响[J]. 安徽农业科学, 2012, 40(2): 758–760.
He J, Li X Y, Zhang X H. Effects of formula fertilization of nitrogen, phosphorus and potassium on the growth of annual radix scutellariae [J]. Journal of Anhui Agricultural Sciences, 2012, 40(2): 758–760.
[88] 曹鲜艳, 徐福利, 王渭玲, 等. 黄芩产量和黄芩苷含量对氮磷钾肥料的响应[J]. 应用生态学报, 2012, 23(8): 2171–2177.
Cao X Y, Xu F L, Wang W L, et al. Responses of scutellaria baicalensis georgi yield and root baicalin content to the fertilization rates of nitrogen, phosphorus, and potassium [J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2171–2177.
[89] 张寿文, 钟伟光, 李风琴, 曹岚. 江西道地药材车前子规范化栽培的配方施肥优化[J]. 安徽农业科学, 2012, 40(21): 10842–10844.
Zhang S W, Zhong W G, Li F Q, Cao L. Study on optimal fertilizer techniques for standardized cultivation of plantago asiatica L. as a genuine Chinese medicinal material in Jiangxi province [J]. Journal of Anhui Agricultural Sciences, 2012, 40(21): 10842–10844.
[90] 韩梅, 杨利民, 韩大勇, 杨莉. 施肥对蒺藜药材产量的影响[J]. 吉林农业大学学报, 2009, 31(2): 178–180, 194.
Han M, Yang L M, Han D Y, Yang L. Effect of fertilization on medicinal material output of Tribulus Terrestris [J]. Journal of Jilin Agricultural University, 2009, 31(2): 178–180, 194.
[91] 邱黛玉, 彭宁刚, 陈小娜. 不同施肥量对黄芪生长发育、药材产量及种子产量和质量影响的研究[J]. 中国农学通报, 2016, 32(10): 75–101.
Qiu D Y, Peng N G, Chen X N. Effect of different fertilization amounts on growth, medicinal yield, seed yield and quality of Astragalus membranaceus (Fisch.) Bge [J]. Chinese Agricultural Science Bulletin, 2016, 32(10): 75–101.
[92] 张晓虎, 何军. 商洛连翘氮磷钾不同配比施肥效应研究[J]. 陕西农业科学, 2014, 60(12): 32–36, 121.
Zhang X H, He J. Effects of different ratios of nitrogen, phosphorus and potassium fertilizer on Forsythia in Shangluo[J]. Shaanxi Journal of Agricultural Sciences, 2014, 60(12): 32–36, 121.
[93] 蓝祖栽, 陈乾平, 凌征柱, 等. 氮、磷、钾配方施肥对萝芙木产量的影响[J]. 农业研究与应用, 2011, (5): 7–9.
Lan Z Z, Chen Q P, Ling Z Z, et al. Effect of formula fertilization of nitrogen, phosphorus and potassium on yield of Rauvolfia Verticillata [J]. Agricultural Research and Application, 2011, (5): 7–9.
[94] 李宝福, 俞元春, 卢健, 等. 桉树人工林中期施肥试验研究[J]. 林业调查规划, 2010, 35(6): 124–129.
Li B F, Yu Y C, Lu J, et al. Medium-term fertilization experiment of eucalyptus plantation [J]. Forest Inventory and Planning, 2010, 35(6): 124–129.
[95] 潘彪, 徐永吉, 李贻铨, 梁坤南. 施肥处理对尾叶桉无性系纸浆材生长和材性的影响[J]. 南京林业大学学报(自然科学版), 2004, 28(5): 11–14.
Pan B, Xu Y J, Li Y Q, Liang K N. Effects of fertilization on growth and traits of eucalyptus urophylla Clones [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2004, 28(5): 11–14.
[96] 杜阿朋, 陈少雄, 张婧, 张治军. 不同施肥水平下桉树林木碳贮量的研究[J]. 中南林业科技大学学报, 2012, 32(5): 97–101.
Du A P, Chen S X, Zhang J, Zhang Z J. Biomass carbon sequestration of individual eucalypt under different fertilization levels[J]. Journal of Central South University of Forestry & Technology, 2012, 32(5): 97–101.
[97] 梁坤南, 周文龙, 李贻铨. 尾叶桉实生林施肥6a试验研究[J]. 林业科学研究, 2002, 15(6): 644–653.
Liang K N, Zhou W L, Li Y Q. Research on young seedling plantation of fertilizer trial for eucalyptus urophylla at 6 year-old [J]. Forest Research, 2002, 15(6): 644–653.
[98] 陈勇梅. 连续施肥对杉木幼林生物量的影响[J]. 安徽农业科学, 2015, (19): 157–158.
Chen Y M. The Influence on the biomass of cunninghamia lanceolata by application of continuous fertilization for young forest [J]. Journal of Anhui Agricultural Sciences, 2015, (19): 157–158.
[99] 方金长. 12年生杉木施肥 3a 和 9a 后的肥效对比分析[J]. 安徽农学通报, 2016, 22(2): 82–84.
Fang J C. Comparative analysis on fertilizer efficiency of 12-year-old Chinese fir in 3a and 9a after fertilization[J]. Anhui Agricultural Science Bulletin, 2016, 22(2): 82–84.
[100] 卜旭凌, 黄金华, 叶代全, 林德喜. 施肥对杉木幼林生长效益和肥料释放特性的影响初步研究[J]. 广东农业科学, 2014, 41(16): 67–73.
Bu X L, Huang J H, Ye D Q, Lin D X. Preliminary study about the effects of fertilization on growth of young Chinese fir and release characteristics of fertilizer[J]. Guangdong Agricultural Sciences, 2014, 41(16): 67–73.
[101] 谢国阳, 林思祖, 张文富, 等. 连栽地4年生杉木幼林施肥效应研究[J]. 福建林学院学报, 1999, 19(3): 256–260.
Xie G Y, Lin S Z, Zhang W F, et al. Study on the effects of fertilization on 4-year-old young Chinese fir plantation under successive rotation[J]. Journal of Fujian College of Forestry, 1999, 19(3): 256–260.
[102] 谌红辉, 温恒辉. 马尾松人工中龄林施肥肥效与增益持续性研究[J]. 林业科学研究, 2001, 14(5): 533–539.
Chen H H, Wen H H. Fertilization effectiveness and gain sustainability of middle-aged pinus massoniana plantation [J]. Forest Research, 2001, 14(5): 533–539.
[103] 卢立华, 蔡道雄, 何日明. 马尾松幼林施肥效应综合分析[J]. 林业科学, 2004, 40(4): 99–105.
Lu L H, Cai D X, He R M. Synthetic analysis on the fertilization effects for young pinus massoniana plantation [J]. Scientia Silvae Sinicae, 2004, 40(4): 99–105.
[104] 洪永辉, 林文奖, 陈惠敏. 施肥管理对马尾松球果产量的影响[J]. 福建林业科技, 2005, 32(4): 14–16.
Hong Y H, Lin W J, Chen H M. Effects of the application management on pinus massoniana clone yield [J]. Journal of Fujian Forestry Science and Technology, 2005, 32(4): 14–16.
[105] 张荣健. 不同坡位和施肥量对马尾松幼林生长的影响[J]. 亚热带水土保持, 2014, (3): 12–13.
Zhang R J. Impact of different slope positions and the amount of fertilization on the pinus massoniana young forest growth [J]. Subtropical Soil and Water Conservation, 2014, (3): 12–13.
[106] 唐效蓉, 张翼, 杨骏, 夏合新. 马尾松不同密度中龄林施肥经济收益分析[J]. 湖南林业科技, 2015, (3): 20–23.
Tang X R, Zhang Y, Yang J, Xia H X. The economic benefits analysis of pinus massoniana middle age forest with different density fertilization [J]. Hunan Forestry Science & Technology, 2015, (3): 20–23.
[107] 徐有明, 林汉, 洪院生, 等. 施肥对湿地松幼林生长和木材物理力学性质的影响[J]. 林业科学, 2002, 38(4): 125–133.
Xu Y M, Lin H, Hong Y S, et al. Effect of fertilization on growth increments and wood physical-mechanical properties of young slash pine[J]. Scientia Silvae Sinicae, 2002, 38(4): 125–133.
[108] 肖兴翠, 李志辉, 张志兰, 等. 施肥对湿地松中龄林生长及土壤的影响[J]. 中国农学通报, 2015, 31(16): 2386–2393.
Xiao X C, Li Z H, Zhang Z L, et al. Effects of fertilization on the growth and soil of middle-aged slash pine forest[J]. Chinese Agricultural Science Bulletin, 2015, 31(16): 2386–2393.
[109] 姜岳忠, 吴晓星, 马玲. 毛白杨苗期生长特性及需肥量研究[J]. 甘肃农业大学学报, 2004, 39(4): 423–426.
Jiang Y Z, Wu X X, Ma L. Relationship of growth and nutrient requirement of Populus tomentosa seedlings [J]. Journal of Gansu Agricultural University, 2004, 39(4): 423–426.
[110] 黄波, 苏晓, 陈卫红, 王岩. 杨树人工林郁闭林分的施肥效应研究[J]. 山东林业科技, 2013, 43(3): 20–23.
Huang B, Su X, Chen W H, Wang Y. Effects of fertilization on closed canopy of poplar plantation[J]. Shandong Forestry Science and Technology, 2013, 43(3): 20–23.
[111] 赵好, 陈金林, 于彬, 等. 杨树速生丰产配方施肥试验[J]. 东北林业大学学报, 2009, 37(11): 26–28.
Zhao H, Chen J L, Yu B, et al. Formulated fertilization for fast-growing and high-yield poplar plantation[J]. Journal of Northeast Forestry University, 2009, 37(11): 26–28.
[112] 曾慧杰, 王晓明, 蔡能, 等. 测土配方施肥对杨树生长的影响[J]. 湖南林业科技, 2014, 41(4): 1–5.
Zeng H J, Wang X M, Cai N, et al. Influence on growth of poplar by soil testing and formulated fertilization[J]. Hunan Forestry Science & Technology, 2014, 41(4): 1–5.
[113] 王福森, 李晶, 李树森, 等. 杨树纤维用材林施肥试验研究[J]. 防护林科技, 2013, (3): 9–11.
Wang F S, Li J, Li S S, et al. Fertilization experiment of fiber timber for poplar[J]. Protection Forest Science and Technology, 2013, (3): 9–11.
[114] 邵蕾, 王丽霞. 控释肥在苹果苗圃上的应用[J]. 北方园艺, 2012, (2): 161–163.
Shao L, Wang L X. Effect of controlled-release fertilizers on annual apple rootstock[J]. Northern Horticulture, 2012, (2): 161–163.
[115] 秦淑琴, 姚青. 干旱区的红枣育苗技术[J]. 现代农业科技, 2006, (8): 26.
Qin S Q, Yao Q. Red jujube breeding techniques in arid areas[J]. Modern Agricultural Science and Technology, 2006, (8): 26.
[116] 顾小平, 吴晓丽, 汪阳东. 毛竹材用林高产优化施肥与结构模型的建立[J]. 林业科学, 2004, 40(3): 96–101.
Gu X P, Wu X L, Wang Y D. The optimal models of high-yields with fertilization and the structure of moso bamboo stands for culm-producing [J]. Scientia Silvae Sinicae, 2004, 40(3): 96–101.
[117] 刘顺, 李林海, 周桂香, 等. 毛竹林钾肥效应与平衡施肥研究[J]. 经济林研究, 2013, 31(3): 29–34.
Liu S, Li L H, Zhou G X, et al. Potassium efficiency and balanced fertilization at Phyllostachys edulis forest [J]. Nonwood Forest Research, 2013, 31(3): 29–34.
[118] 张学洲, 李学森, 兰吉勇, 等. 氮磷钾施肥量对混播草地产量、品质和经济效益的影响[J]. 草原与草坪, 2014, (4): 56–60.
Zhang X Z, Li X S, Lan J Y, et al. effect of nitrogen, phosphorus and potassium fertilizers on yield, quality and economic feature of mixture pasture[J]. Grassland and Turf, 2014, (4): 56–60.
[119] 贾倩民, 陈彦云, 韩润燕, 陈科元. 牧草品种及施肥对干旱区人工草地产量要素和产量的影响[J]. 吉林农业科学, 2014, 39(3): 51–55.
Jia Q M, Chen Y Y, Han R Y, Chen K Y. Effects of species and applied fertilizer on yield components and yield of artificial pasture in arid area[J]. Journal of Jilin Agricultural Sciences, 2014, 39(3): 51–55.
[120] 闵星星, 马玉寿, 李世雄, 王彦龙. 施肥对青海草地早熟禾草地生产力的影响[C]: 中国草学会2013学术年会论文集, 2013, 159–252.
Min X X, Ma Y S, Li S X, Wang Y L. Effect of fertilization on productivity of poa pratensis L. cv. Qinghai grassland [C]. Proceedings of the Annual Conference of China Grassland Society, 2013, 159–252.
[121] 张雁平. 施肥方式对高海拔地区混播草地鲜草产量的影响[J]. 青海大学学报, 2015, 33(5): 20–23.
Zhang Y P. Effects of fertilizing way on fresh grass yield in mixed sowing field of high altitude region[J]. Journal of Qinghai University, 2015, 33(5): 20–23.
[122] 郭慧慧, 郝明德, 蒙静, 等. 施肥对人工羊草地的产草量及养分吸收的影响[J]. 宁夏大学学报(自然科学版), 2016, 37(1): 118–124.
Guo H H, Hao M D, Meng J, et al. Fertilization effect on grass yield and nutrient uptake of leymus Chinensis in artificial grassland [J]. Journal of Ningxia University (Natural Science Edition), 2016, 37(1): 118–124.
[123] 万井尉. 紫花苜蓿人工草地施肥试验[J]. 现代畜牧兽医, 2015, (1): 10–14.
Wan J W. Effect on alfalfa artificial lawn fertilization test[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2015, (1): 10–14.
[124] 纪亚君, 汪新川. 平衡施肥对多年生禾本科牧草草产量及牧草性状的影响[J]. 黑龙江畜牧兽医, 2011, (23): 82–84.
Ji Y J, Wang X C. Effects of balanced fertilization on yield and herbage characters of perennial forage grasses[J]. Heilongjiang Animal Science and Veterinary Medicine, 2011, (23): 82–84.
[125] 韩德梁, 徐智明, 艾琳, 韩烈保. 磷肥和钾肥对老龄多叶老芒麦牧草生物量和品质的影响[J]. 植物营养与肥料学报, 2009, 15(6): 1486–1490.
Han D L, Xu Z M, Ai L, Han L B. Effect of fertilization on the forage biomass and quality of aged leafy Elymus sibiricus [J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1486–1490.
[126] 刘昊. 配方施肥技术在土默川平原地区苜蓿生产中的应用[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2016.
Liu H. The application of the formula fertilization on alfalfa production on Tumochuan plain [D]. Huhehot: MS Thesis of Inner Mongolia Agricultural University, 2016.
[127] 孟祥君, 韩天虎, 俞联平, 富新年. 播种量、行距和施肥对甘引1号黑麦地上生物量的影响[J]. 中国草食动物科学, 2016, 36(6): 34–36.
Meng X J, Han T H, Yu L P, Fu X N. Effects of seeding rate, row spacing and fertilization on the aboveground biomass of Secale cereale L. ‘Ganyin No.1’ [J]. China Herbivore Science, 2016, 36(6): 34–36.
[128] 陈科元, 贾倩民, 陈彦云. 施肥对宁夏干旱区弃耕地牧草叶片特征及产量的影响[J]. 北方园艺, 2015, (13): 70–75.
Chen K Y, Jia Q M, Chen Y Y. Effect of fertilization on leaf characteristics and yield of pastures on abandoned cultivated land in arid area of Ningxia[J]. Northern Horticulture, 2015, (13): 70–75.
[129] 杨文才, 拉巴, 魏巍. 氮磷配施对西藏河谷农区燕麦与箭筈豌豆混播产量及品质的影响[J]. 作物杂志, 2016, (5): 75–80.
Yang W C, La B, Wei W. Effects of combined application of N and P fertilizers on the yield and quality of oat-pea mixture in agricultural areas of river valleys in Tibet[J]. Crops, 2016, (5): 75–80.
[130] 魏巍, 拉巴, 杨文才, 等. 氮、磷肥配施对青引1号燕麦产量和品质的影响[J]. 作物杂志, 2016, (1): 120–124.
Wei W, La B, Yang W C, et al. Effects of combined application of N and P fertilizer on the yield and quality of Avena sativa cv. Qingyin No.1 [J]. Crops, 2016, (1): 120–124.
[131] 尚晨, 张月学, 李佶恺, 等. 施肥对紫花苜蓿产量和品质的影响[J]. 黑龙江农业科学, 2013, (6): 122–126.
Shang C, Zhang Y X, Li J K, et al. Effect of formula fertilizing on the yield and quality of alfalfa[J]. Heilongjiang Agricultural Sciences, 2013, (6): 122–126.
[132] 赵云. 不同施肥管理下苜蓿生产力响应及平衡施肥模型[D]. 北京: 中国农业科学院博士学位论文, 2013.
Zhao Y. Response of alfalfa productivity to different fertilization management and balanced fertilization models [D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2013.
[133] 张琳, 安沙舟, 贺军, 张维功. 施用氮素对高寒地区混播人工草地的影响[J]. 新疆农业科学, 2012, 49(10): 1926–1932.
Zhang L, An S Z, He J, Zhang W G. Effects of nitrogen on cultivated grassland in Alpine region[J]. Xinjiang Agricultural Sciences, 2012, 49(10): 1926–1932.
[134] 孙铁军, 韩建国, 赵守强, 岳薇. 施肥对新麦草种子产量及产量组分的影响[J]. 中国草地, 2005, 27(2): 16–21.
Sun T J, Han J G, Zhao S Q, Yue W. Effect of fertilizer on seed yield and yield components of Psathyrostachys juncea [J]. Grassland of China, 2005, 27(2): 16–21.
[135] 马维国. 氮磷肥对红豆草生产性能影响的研究[J]. 中国奶牛, 2010, (10): 21–23.
Ma W G. Effects of nitrogen and phosphorus fertilizer on the production performance of sainfoin[J]. China Dairy Cattle, 2010, (10): 21–23.
[136] 李青云, 施建军, 马玉寿, 董全民. 三江源区人工草地施肥效应研究[J]. 草业科学, 2004, 21(4): 35–38.
Li Q Y, Shi J J, Ma Y S, Dong Q M. Effects of fertilizer application on sown pasture in the fountainhead region of the Yangtze, Yellow and Meikong rivers[J]. Pratacultural Science, 2004, 21(4): 35–38.
[137] 邓蓉, 张定红, 陈武, 向清华. 施肥对黔中地区混播草地牧草生长性能的影响[J]. 畜牧与兽医, 2004, 36(3): 12–15.
Deng R, Zhang D H, Chen W, Xiang Q H. The effect of fertilizer on grass growth of the mixture grassland in the middle of Guizhou region[J]. Animal Husbandry & Veterinary Medicine, 2004, 36(3): 12–15.
[138] 潘黔生, 方之平, 祁志强, 等. 氯化铵施肥养鱼的增产效果[J]. 淡水渔业, 1992, (1): 17–19.
Pan Q S, Fang Z P, Qi Z Q, et al. The effect of rising yield of fertilization with ammonium chloride in fish culture[J]. Freshwater Fisheries, 1992, (1): 17–19.
[139] 喇忠孝. 高原池塘养鱼的施肥技术[J]. 科学养鱼, 2000, (3): 37.
La Z X. Fertilization techniques for fish culture in plateau ponds[J]. Scientific Fish Farming, 2000, (3): 37.
[140] 张清良. 池塘养鱼四季施肥技术措施[J]. 渔业致富指南, 2011, (16): 29–31.
Zhang Q L. Fertilization techniques for pond farming in four seasons[J]. Fishery Guide to be Rich, 2011, (16): 29–31.
[141] 曹金祥. 化肥养鱼技术的研究[J]. 淡水渔业, 1988, (6): 40–42.
Cao J X. Study on chemical fertilizer application technology in fish culture[J]. Freshwater Fisheries, 1988, (6): 40–42.
[142] 穆磊, 叶新太. 黄河沿岸盐碱地池塘施用氯化铵养鱼试验[J]. 淡水渔业, 1993, (3): 34–37.
Mu L, Ye X T. Trials on ammonium chloride application to culture fish in pond of saline alkali land along the Yellow River coast[J]. Freshwater Fisheries, 1993, (3): 34–37.
[143] 余新宇. 精养鱼塘套养高档优质鱼大有可为[J]. 科学养鱼, 1994, (9): 26.
Yu X Y. Good future of premium quality fish culture in intensive culture ponds[J]. Scientific Fish Farming, 1994, (9): 26.
[144] 史永华. 提高养鳖饲料利用率的几种方法[J]. 现代农业科技, 2005, (7): 54.
Shi Y H. Several methods for improving feed use efficiency of soft shelled turtle[J]. Modern Agricultural Science and Technology, 2005, (7): 54.
[145] 刘成斌, 蒋小平. 论水库施肥养鱼与鱼种投放[J]. 科学养鱼, 2001, (4): 13–14.
Liu C B, Jiang X P. Discussion on fish farming fertilization and fingerling delivery in reservoir[J]. Scientific Fish Farming, 2001, (4): 13–14.
[146] 余永生, 杨燕, 邵仁岳. 水库施肥养鱼水变实例[J]. 水生态学杂志, 2006, 26(5): 80.
Yu Y S, Yang Y, Shao R Y. A case of effects of manure application on reservoir water quality[J]. Journal of Hydroecology, 2006, 26(5): 80.
[147] 郝允碧, 于福永. 烟台市大中型水库施肥养鱼技术及效果[J]. 水利渔业, 1992, (5): 47–48.
Hao Y B, Yu F Y. Fertilization and fish farming techniques and their effects in large and medium reservoirs in Yantai[J]. Reservoir Fisheries, 1992, (5): 47–48.
[148] 高贵琴, 聂秀云, 王运斗, 等. 武昌南湖主施氯化铵养鱼综合技术的研究[J]. 水利渔业, 1995, (2): 32–34.
Gao G Q, Nie X Y, Wang Y D, et al. Study on integrated fish culture technology by mainly applying ammonium chloride in Nanhu Lake of Wuchang[J]. Reservioir Fisheries, 1995, (2): 32–34.
[149] 国家发展和改革委员会价格司.全国农产品成本收益资料汇编 [M]. 北京: 中国统计出版社, 2015.
National Development and Reform Commission Price Department. Compilation of cost and income of agricultural products in China [M]. Beijing: China Statistics Press, 2015.
[150] Li S, Liu X, Ding W. Estimation of organic nutrient sources and availability for land application[J]. Better Crops, 2016, 100(3): 4–6.
[151] Li L, Li S. Nitrogen mineralization from animal manures and its relation to organic N fractions[J]. Journal of Integrative Agriculture, 2014, 13(9): 2040–2048.
[152] 王岩, 山本克己. 畜禽粪便堆肥养分释放及其合理施用[J]. 土壤通报, 2003, 34(6): 521–524.
Wang Y, Shanben K J. Nutrient release from livestock waste compost and application of the compost in the field[J]. Chinese Journal of Soil Science, 2003, 34(6): 521–524.
[153] 赵明, 赵征宇, 蔡葵, 王玉洲. 畜禽有机肥料当季速效氮磷钾养分释放规律[J]. 山东农业科学, 2004, (5): 59–61.
Zhao M, Zhao Z Y, Cai K, Wang Y Z. The principals of available nitrogen, phosphorus and potassium in-season release from livestock and poultry manure[J]. Shandong Agricultural Sciences, 2004, (5): 59–61.
[154] Esse P C, Buerkert A, Hiernaux P, et al. Decomposition of and nutrient release from ruminant manure on acid sandy soils in the Sahelian zone of Niger, West Africa[J]. Agriculture Ecosystems & Environment, 2001, 83(1): 55–63.
[155] Abdou G, Ewusi-Mensah N, Nouri M, et al. Nutrient release patterns of compost and its implication on crop yield under Sahelian conditions of Niger[J]. Nutrient Cycling in Agroecosystems, 2016, 105(2): 117–128.
[156] 叶协锋, 李志鹏, 于晓娜, 等. 腐熟有机肥在烤烟生长期田间养分矿化释放特征的研究[J]. 中国烟草学报, 2017, 23(3): 80–86.
Ye X F, Li Z P, Yu X N, et al. Study on release of nutrients from mineralized organic fertilizer during flue-cured tobacco growth period[J]. Acta Tabacaria Sinica, 2017, 23(3): 80–86.
[157] 杨蕊. 畜禽有机肥氮磷在红壤中的矿化、利用和环境风险研究[D]. 西安: 西安建筑科技大学硕士学位论文, 2011.
Yang R. Study on mineralization, utilization and environmental risk of nitrogen and phosphorus from livestock and poultry manure in red soil [D]. Xi’An: MS Thesis of Xi’an University of Architecture and Technology, 2011.
[158] Kolahchi Z, Jalali M. Kinetics of nutrient release from different organic residues using a laboratory system[J]. Archives of Agronomy & Soil Science, 2012, 58(9): 1013–1031.
[159] 罗文丽, 周柳强, 谭宏伟, 李伏生. 水稻秸秆腐解规律及养分释放特征[J]. 南方农业学报, 2014, 45(5): 808–812.
Luo W L, Zhou L Q, Tan H W, Li F S. Decomposition patterns and nutrient release characteristics of rice straw[J]. Journal of Southern Agriculture, 2014, 45(5): 808–812.
[160] 孙哲, 毕军, 夏光利, 等. 2种耕作方式下玉米还田秸秆养分释放特征研究[J]. 中国农学通报, 2014, (9): 133–136.
Sun Z, Bi J, Xia G L, et al. Study of characteristic of nutrient releasing of maize straw with two tillage methods[J]. Chinese Agricultural Science Bulletin, 2014, (9): 133–136.
[161] 岳丹, 蔡立群, 齐鹏, 等. 小麦和玉米秸秆不同还田量下腐解特征及其养分释放规律[J]. 干旱区资源与环境, 2016, 30(3): 80–85.
Yue D, Cai L Q, Qi P, et al. The decomposition characteristics and nutrient release laws of wheat and corn straws under different straw-returned amount[J]. Journal of Arid Land Resources and Environment, 2016, 30(3): 80–85.
[162] 戴志刚, 鲁剑巍, 李小坤, 等. 不同作物还田秸秆的养分释放特征试验[J]. 农业工程学报, 2010, 26(6): 272–276.
Dai Z G, Lu J W, Li X K, et al. Nutrient release characteristic of different crop straws manure[J]. Transactions of the CSAE, 2010, 26(6): 272–276.
[163] 黄晶, 段转宁, 马鹏, 等. 油菜、小麦秸秆在稻田土壤中腐解及养分释放特征[J]. 安徽农业科学, 2016, 44(18): 139–141.
Huang J, Duan Z N, Ma P, et al. Decomposition and nutrient release characteristics of rapeseed and wheat straws incorporated into paddy soil[J]. Journal of Anhui Agricultural Sciences, 2016, 44(18): 139–141.
[164] 王允青, 郭熙盛. 不同还田方式作物秸秆腐解特征研究[J]. 中国生态农业学报, 2008, 16(3): 607–610.
Wang Y Q, Guo X S. Decomposition characteristics of crop-stalk under different incorporation methods[J]. Chinese Journal of Eco-Agriculture, 2008, 16(3): 607–610.
[165] 代文才, 高明, 兰木羚, 等. 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律[J]. 中国生态农业学报, 2017, 25(2): 188–199.
Dai W C, Gao M, Lan M L, et al. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 188–199.
[166] 郑丹. 不同条件下作物秸秆养分释放规律的研究[D]. 哈尔滨: 东北农业大学硕士学位论文, 2012.
Zheng D. The nutrient releasing regularity of crop stalks under different conditions [D]. Harbin: MS Thesis of Northeast Agricultural University, 2012.
[167] 牛怡. 两种耕作方式下黄土高原旱作农田还田玉米秸秆腐解特征与养分释放研究[D]. 兰州: 甘肃农业大学硕士学位论文, 2014.
Niu Y. Study on return-field corn straw decomposition and nutrient release characteristics under two tillage methods of rainfed farmland in the Loess Plateau [D]. Lanzhou: MS Thesis of Gansu Agricultural University, 2014.
[168] 宋莉, 韩上, 鲁剑巍, 等. 油菜秸秆、紫云英绿肥及其不同比例配施还田的腐解及养分释放规律研究[J]. 中国土壤与肥料, 2015, (3): 100–104.
Song L, Hang S, Lu J W, et al. Study on characteristics of decomposing and nutrients releasing of different proportional mixture of rape straw and Chinese milk vetch in rice field[J]. Soil and Fertilizer Sciences in China, 2015, (3): 100–104.
[169] 徐健程, 王晓维, 朱晓芳, 等. 不同绿肥种植模式下玉米秸秆腐解特征研究[J]. 植物营养与肥料学报, 2016, 22(1): 48–58.
Xu J C, Wang X W, Zhu X F, et al. Study on decomposition of maize straw under different green manure cropping patterns[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 48–58.
[170] Villegas-Pangga G, Blair G, Lefroy R. Measurement of decomposition and associated nutrient release from straw (Oryza sativa, L.) of different rice varieties using a perfusion system [J]. Plant and Soil, 2000, 223(1): 1–11.
[171] Li J, Lu J, Li X, et al. Dynamics of potassium release and adsorption on rice straw residue[J]. PLoS One, 2014, 9(2): e90440.
[172] 李书田, 金继运. 中国不同区域农田养分输入、输出与平衡[J]. 中国农业科学, 2011, 44(20): 4207–4229.
Li S, Jin J. Characteristics of nutrient input/output and nutrient balance in different regions of China[J]. Scientia Agricultura Sinica, 2011, 44(20): 4207–4229.
[173] 全国磷复肥与磷化工信息中心. 磷复肥与硫酸信息汇编[R]. 郑州: 2016. 1–2.
China Phosphate Compound Fertilizer and Phosphorus Chemical Industry Information Center. Compilation of phosphorus compound fertilizers and sulfuric acid[R]. Zhengzhou: 2016. 1–2.
[174] 刘荣乐, 李书田, 王秀斌, 王敏. 我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J]. 农业环境科学学报, 2005, 24(2): 392–397.
Liu R L, Li S T, Wang X B, Wang M. Contents of heavy metal in commercial organic fertilizers and organic wastes[J]. Journal of Agro-Environment Science, 2005, 24(2): 392–397.
[175] 黄绍文, 唐继伟, 李春花. 我国商品有机肥和有机废弃物中重金属、养分和盐分状况[J]. 植物营养与肥料学报, 2017, 23(1): 162–173.
Huang S W, Tang J W, Li C H. Status of heavy metals, nutrients, and total salts in commercial organic fertilizers and organic wastes in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 162–173.
[176] 王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J]. 植物营养与肥料学报, 2014, 20(2): 466–480.
Wang M, Li S T. Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 466–480.
[177] 王美, 李书田, 马义兵, 等. 长期不同施肥措施对土壤和作物重金属累积的影响[J]. 农业环境科学学报, 2014, 33(1): 63–74.
Wang M, Li S T, Ma Y B, et al. Effect of long-term fertilization on heavy metal accumulation in soils and crops[J]. Journal of Agro-Environment Science, 2014, 33(1): 63–74.