文章快速检索     高级检索
  中国石油勘探  2020, Vol. 25 Issue (3): 66-82  DOI:10.3969/j.issn.1672-7703.2020.03.007
0

引用本文 

李明隆, 谭秀成, 罗冰, 张亚, 张本健, 芦飞凡, 苏成鹏, 肖笛, 钟原. 四川盆地西北部中二叠统栖霞组相控早期高频暴露岩溶特征及启示[J]. 中国石油勘探, 2020, 25(3): 66-82. DOI: 10.3969/j.issn.1672-7703.2020.03.007.
Li Minglong, Tan Xiucheng, Luo Bing, Zhang Ya, Zhang Benjian, Lu Feifan, Su Chengpeng, Xiao Di, Zhong Yuan. Characteristics of facies-controlled and early high-frequency exposed karstificationin the Qixia Formation of Middle Permian in the northwest of Sichuan Basin and its significance[J]. China Petroleum Exploration, 2020, 25(3): 66-82. DOI: 10.3969/j.issn.1672-7703.2020.03.007.

基金项目

国家自然科学基金项目“四川盆地栖霞组非均质砂糖状白云岩交织共生与储层形成机理”(41802147)

第一作者简介

李明隆(1995-),男,四川成都人,在读硕士,现主要从事储层地质学方面的研究工作。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail:lmllml264@126.com

通信作者简介

谭秀成(1970-),男,四川武胜人,博士,2007年毕业于成都理工大学古生物学与地层学专业,教授,博士生导师,主要从事储层地质学研究工作。地址:四川省成都市新都区西南石油大学,邮政编码:610500。E-mail:tanxiucheng70@163.com

文章历史

收稿日期:2020-03-25
修改日期:2020-04-03
四川盆地西北部中二叠统栖霞组相控早期高频暴露岩溶特征及启示
李明隆1,2, 谭秀成1,2, 罗冰3, 张亚3, 张本健4, 芦飞凡1,2, 苏成鹏1,2, 肖笛1,5, 钟原3     
1. 油气藏地质及开发工程国家重点实验室;
2. 中国石油集团碳酸盐岩储层重点实验室西南石油大学分室;
3. 中国石油西南油气田公司勘探开发研究院;
4. 中国石油西南油气田公司川西北气矿;
5. 表生地球化学教育部重点实验室
摘要: 文章介绍了一类准同生期云化叠合早期暴露岩溶成因的深层—超深层孔洞型碳酸盐岩储层。基于区内露头与钻井资料,开展了岩石学、储层地质学及地球化学研究,发现四川盆地中二叠统栖霞组发育泥晶灰岩—生屑泥晶灰岩—泥亮晶颗粒灰岩的向上变粗型和亮晶颗粒云岩—中晶云岩—细粉晶藻云岩的向上变细型两类向上变浅序列。两类序列早期高频暴露岩溶具有如下特征:①旋回顶部存在暴露不整合面,并见下一旋回初始海泛沉积物充填于先期岩溶系统和向微地貌高地超覆现象。②旋回上部的多孔基岩受优势岩溶通道切割形成近原地角砾。③部分旋回顶部发育斑块状岩溶系统,其内为陆源黏土、粉屑和少量角砾充填。④少数旋回内部发育岩溶洞穴角砾岩,角砾间多为碳酸盐岩渗流粉砂充填。⑤暴露面之下稳定碳、氧同位素存在一定负偏现象。进一步开展储层物性分析发现,岩溶作用强度较强时,优质储层主要发育于旋回的下部,储层储集空间主要为基岩保留的粒间孔经过云化与溶扩而形成的小型孔洞;岩溶作用强度较弱时,优质储层主要发育于旋回的中上部,储层储集空间为基岩保留的粒间孔经过云化与溶扩而形成的小型孔洞;岩溶作用强度适中时,优质储层主要发育于旋回的中部,储层储集空间主要为洞穴垮塌角砾间的残余孔洞。这些叠合准同生期云化作用的白云岩为基岩的早期暴露岩溶作用形成的孔洞至今仍然被保留下来,并作为有效储集空间。因此认为不同强度的早期高频暴露岩溶作用是栖霞组储层储集空间形成的主要因素。
关键词: 早期高频暴露岩溶    深层—超深层    孔洞成因    四川盆地西北部    中二叠统    栖霞组    
Characteristics of facies-controlled and early high-frequency exposed karstificationin the Qixia Formation of Middle Permian in the northwest of Sichuan Basin and its significance
Li Minglong1,2 , Tan Xiucheng1,2 , Luo Bing3 , Zhang Ya3 , Zhang Benjian4 , Lu Feifan1,2 , Su Chengpeng1,2 , Xiao Di1,5 , Zhong Yuan3     
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University;
2. Southwest Petroleum University Division of CNPC Key Laboratory of Carbonate Reservoirs;
3. Research Institute of Exploration and Development, PetroChina Southwest Oil and Gasfield Company;
4. Branch of Chuanxibei Gas Field, PetroChina Southwest Oil and Gasfield Company;
5. Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing University
Abstract: The paper presents a set of deep to ultra-deep vuggy carbonate reservoirs with genesis of penecontemporaneous dolomitization superposing with early-stage exposed karstification. Based on outcrops and drilling data in the study area, researches have been carried out on petrology, reservoir geology and geochemistry. And 2 types of shallowing-upward sequence have been identified in the Qixia Formation of Middle Permian in the Sichuan Basin. The first is the coarsening-upward type from micrite to bioclastic micrite to micrite-sparry grain limestone. And the second is the fining-upward type from sparry grain dolomite to medium-crystalline dolomite to fine-powder crystalline dolomitized microbialite. The early high-frequency exposed karstification of both types has the following characteristics: (1) There are exposed unconformities at the top of the cycles. And the initial flooding sediment of the next cycle was filled in the earlier karst system and overlapping to the micro paleo-geomorphic highs. (2) The vuggy bedrocks in the upper part of the cycle were cut by the dominant karst channels and formed near in-situ breccias. (3) The patch-like karst systems are developed at the top of some cycles, which was filled with terrigenous clay, silty clasts and some breccias. (4) Karst cave breccias are developed in some cycles, and the inter-breccia caves were filled with carbonate vadose silts. (5) The stable carbon and oxygen isotopes are some certain of negative under the exposure surface. Further study on reservoir physical properties shows that, when karstification is relatively strong, high-quality reservoirs are mainly developed in the lower part of the cycle, and the reservoir space is mainly small vugs formed by dolomitization and dissolution expansion of the intergranular pores preserved in bedrocks. When the karstification is relatively weak, the high-quality reservoirs are mainly developed in the middle and upper part of the cycle, and the reservoir space is as the former. When the intensity of karstification is moderate, the high-quality reservoirs are mainly developed in the middle of the cycle, and the reservoir space is mainly the residual vugs inter-breccias by collapse of caves. The vugs formed by the early exposed karstification superimposed penecontemporaneous dolomitization of the dolomite bedrocks are preserved today as the effective reservoir space. Therefore, the early high-frequency exposed karstification with different intensities is considered as the main factor for the formation of reservoir space in the Qixia Formation.
Key words: early high-frequency exposed karstification    deep to ultra-deep    genesis of vugs    northwest Sichuan Basin    Middle Permian    Qixia Formation    
0 引言

随着中浅层油气资源逐渐消耗殆尽,油气勘探逐渐转向深层—超深层的含油气层系[1-3]。其中,深层—超深层碳酸盐岩油气藏逐渐成为目前勘探开发的热点领域[4],制约其效益勘探的核心问题之一是寻找深埋孔洞型规模优质储层[5],而厘清优质孔洞型碳酸盐岩储层成因机理是对该类储层进行预测的关键[6]。20世纪80年代以来,人们普遍认为埋藏溶蚀作用是该类年代较老、埋深较大的孔洞型储层形成的主要因素[7-9]。针对埋藏溶蚀的流体来源[10-11]与作用机理[12-13],学者们通过模拟实验与研究实例开展大量开拓性工作,提出诸如TSR作用与溶蚀[6, 12]、有机酸溶蚀[8]、深部岩浆热液溶蚀[14]等诸多观点,以解释古老深层孔洞型碳酸盐岩储层成因机理。实际上,勘探生产对储层成因机理的重大需求在于如何提供规模性储层分布预测的地质模型,因而优质储层成因机理研究的关键是明确储渗体形成的初始动力[15],而非不影响储渗体分布的后期叠合性改造成岩事件。按此观点,埋藏溶蚀论的预测模型将按流体直接通道体系予以建立,这显然与最终采纳的相控论预测相矛盾,如四川盆地三叠系飞仙关组鲕滩储层[16-17]

近年来,中国深层—超深层油气勘探获得重大突破,在四川盆地和塔里木盆地7000~8000m以深相继发现了大量规模性的相控孔洞型碳酸盐岩储层[18-20],激发学者们对深埋优质储层成因机理和碳酸盐岩储层是否存在孔隙消亡带等基础性问题产生研究兴趣。诸多学者开始认识到埋藏条件下由于环境封闭,以及受地层中释放出的酸性流体总量限制,很难形成如此大规模的孔洞空间[21-24]。因此有人提出开放体系的暴露溶蚀也可能是这类优质孔洞型碳酸盐岩储层形成的主要原因[25-26],这使早、晚表生期暴露溶蚀对深层碳酸盐岩储层形成的意义得到重视。尤其是早成岩期相控岩溶理论日趋完善及其对生产的重要支撑作用[27-32],初步揭示了早期相控岩溶型储层可以长期保持并形成深埋优质储层[33],暗示了深层—超深层碳酸盐岩储层可能并不存在孔洞消亡带,这为深层—超深层油气勘探提供了重要的理论支撑。

四川盆地西北部地区7000m以深的中二叠统栖霞组存在优质的孔洞型白云岩储层[34-35],为深埋优质储层成因研究提供了佐证。目前,一些学者认为埋藏及热液溶蚀作用为储层贡献了最主要的储集空间[36-38];也有观点认为研究区在栖霞组沉积末期存在不同程度暴露,暴露期间的淡水岩溶作用是孔洞型储层形成的关键[28, 30, 34]。而近来基于双探9井、何家梁、大木垭剖面等新资料研究发现,栖霞组内幕还可能存在高频海平面下降导致的暴露溶蚀。鉴于此,本文以四川盆地西北部地区中二叠统栖霞组为例,通过钻井取心和露头及分析化验资料,在识别栖霞组多级海平面变化控制的暴露岩溶的基础上,分析这类白云岩高频暴露岩溶及岩溶强度与孔洞型碳酸盐岩储层的相互关系,研究结果将为相似油气藏的勘探与开发提供依据,也将为完善深埋优质储层成因和白云岩型早期岩溶地质理论提供新的材料。

1 区域地质背景

研究区位于四川盆地的西北部(图 1a),构造位置处于川西凹陷带、龙门山断褶带及米仓山隆起带的过渡区。下—中二叠统自下而上依次发育梁山组、栖霞组和茅口组(图 1b),其中,栖霞组厚度约为100~140m,持续约5Ma[39]。梁山组为滨岸—沼泽相砂泥岩夹煤层沉积,其后随着栖霞组沉积早期海侵,演变为碳酸盐台地体系。栖霞组下部主要发育泥晶灰岩、粒泥灰岩,局地可见斑状云岩、纹层状云岩、云质灰岩,中上部为中二叠统最重要滩(丘)建造期(图 1b),以泥晶颗粒灰岩、含亮晶胶结的颗粒灰岩和微生物岩等相对高能沉积物为主。栖霞组沉积之后,被上覆茅口组所覆盖(图 1b)。

图 1 研究区区域地质背景 Fig. 1 Regional geological background of study area (a)栖一段沉积相平面图;(b)大木垭剖面栖霞组地层综合柱状图

二叠纪发生了一系列导致全球重大环境剧变的事件[39-40],包括从晚泥盆世开始一直持续到二叠纪空谷期的晚古生代大冰期,以及中国南方大范围的火山活动[41-43]。栖霞组沉积于空谷期中期至晚期[39],显然该期处在一个冰期和间冰期之间的气候波动时期。此外,由于海底扩张等原因,该期全球均发生大规模海退,海平面降至地质历史时期低值[44]。栖霞期沉积构造古地理、古气候背景使同期沉积存在高频暴露的可能,高频海退不仅使滩(丘)叠置迁移形成相对受限的环境,也使微地貌高地或浅滩部位极有可能发生暴露并接受淡水淋滤。

2 暴露岩溶特征

已有的研究揭示,栖霞组顶部受到大气淡水淋滤而形成大量岩溶系统,常发育有角砾、溶孔、溶洞、渗流充填物等大量典型的岩溶识别标志[34]。随着双探9井钻井系统取心和露头工作的深入,开始揭示栖霞组内部可能存在高频海平面升降驱动的暴露岩溶,其具有如下的特征和识别标志。

2.1 岩石学特征 2.1.1 多期叠置的暴露面与地层超覆

钻井取心和露头剖面揭示,栖霞组内幕地层常发育多旋回的岩性突变面(图 2),体现为深灰色泥晶灰岩/浅灰色颗粒云岩(图 2a)、灰黑色碳质灰岩/浅灰色颗粒灰岩(图 2b)、灰绿色泥质灰质粉—细晶云岩/暗紫色粉—细晶云岩(图 2c)和灰绿色粉—细晶云岩/褐灰色角砾云岩(图 2f)等岩性突变构成的不平整界面,并可在垂向上频繁叠置出现(图 2e)。岩性突变面之下常出现溶沟、溶缝、小型溶洞等岩溶组构,并混合充填突变面之上岩性(图 2cdf);此外,突变面之上地层充填具有典型的微超覆特征(图 2f)。上述岩相学证据表明,该类岩性突变面即为高频暴露面。

图 2 研究区栖霞组栖一段高频暴露面与地层超覆特征 Fig. 2 Characteristics of high-frequency exposed surface and stratigraphic overlap in the 1st Member of Qixia Formation in study area (a)岩性岩相突变面,下为颗粒云岩,上为泥晶灰岩,双探9井,7758.41~7758.54m;(b)岩性突变面,下为颗粒灰岩,上为碳质灰岩,双探9井,7754.37~7754.48m;(c)岩性突变面,下为潮坪顶部的暗紫色粉—细晶云岩,上为灰绿色泥质灰质粉—细晶云岩,并充填于溶沟之中,双探9井,7745.6m;(d)图a岩心底面,见溶沟充填暴露面之上的泥晶灰岩,双探9井,7758.41~7758.54m;(e)多期叠置暴露面特征,何家梁剖面;(f)暴露面之上的地层微超覆特征,下为褐灰色角砾云岩,上为灰绿色粉—细晶云岩,何家梁剖面
2.1.2 风化层特征

何家梁剖面栖霞组内部发育多期高频旋回,在旋回的顶部发育风化层。风化层的光面上呈纹层状,颜色呈褐色,并有大量铁质残积物充填在纹层之间。风化层厚度约为2~3cm,向下逐渐过渡为半风化层,颜色呈浅褐色,铁质残积物含量减少,厚度约为2~5cm。半风化层之下为基岩部分,可见溶洞等岩溶组构(图 3ab)。顶部的纹层状结构与钙结壳[45]和泉华[46]的特征也存在相似性。无论是风化层、钙结壳还是泉华,均表明栖霞组内幕存在高频暴露。

图 3 研究区栖霞组暴露岩溶特征 Fig. 3 Exposed karstification characteristics in Qixia Formation in study area (a)风化层,何家梁剖面,栖一段;(b)图a解译图,何家梁剖面,栖一段;(c)斑块状云质灰岩,云化斑块呈深灰色,大木垭剖面,栖一段;(d)斑块状岩溶系统特征,斑块已云化,上寺剖面,栖一段;(e)斑块状岩溶系统特征,斑块未云化,上寺剖面,栖一段;(f)斑块状岩溶系统特征,发育近原地角砾,车架坝剖面,栖二段;(g)图d微观特征,云化斑块呈过渡状,上寺剖面,栖一段;(h)图e微观特征,斑块内充填大量生屑颗粒与不溶残余物,上寺剖面,栖一段;(i)斑块云岩,斑块较为疏松,发育近原地角砾,矿2井,2414.50~2414.76m,栖二段
2.1.3 斑块状岩溶系统

栖霞组普遍存在两套斑块状云质灰岩或晶粒云岩,集中发育于栖一段和栖二段中上部。其具有如下几点特征:①斑块大小不一,颜色比围岩石灰岩深,呈灰色—深灰色,整体具有垂直于层面的特征,且在三维空间中斑块之间相互连通(图 3ce);②斑块常常发育于高频旋回的中上部,并切割围岩使之角砾化,且规模由旋回顶面向下逐渐减小(图 3f);③宏观上,云化斑块界线较为清晰,而未云化斑块则较为模糊,边界不规则,多呈港湾状(图 3cfi);④微观下,云化斑块与石灰岩围岩边界呈过渡状,云化程度由斑块向外逐渐降低,而未云化斑块可见其被碳酸盐岩砂级碎屑与泥质混合充填(图 3gh)。

针对斑状构造、豹斑状组构的研究由来已久,并有生物扰动[47]、古岩溶[48]、微生物作用[49]以及埋藏成岩作用[50]等多种成因解释。而对栖霞组目前豹斑成因研究也较为丰富,学者们提出了热液白云石化作用[51]、淡水溶蚀[28, 52]等成因模式。此次研究发现的斑块特征表明,豹斑其实是早期淡水暴露的产物,淡水在先期具有非均质性的孔渗层中逐渐作用形成优势岩溶通道,溶蚀作用和离散充填近同期,并叠合早期云化,进而形成斑块状岩溶系统。这种特征的岩溶系统是早期孔渗层岩溶的典型产物。

2.1.4 溶沟、溶缝、溶洞与异源混合充填物

栖霞组内幕的高频暴露面之下发育溶沟、溶缝与溶洞等组构。溶沟整体上垂直于层面,边缘呈不规则状(图 2cd);溶缝相对溶沟尺寸较小,为裂缝溶扩形成(图 2b);溶洞大小不一,常常发育于高频旋回的中上部,被碳酸盐岩砂级碎屑与泥质等异源物质混合充填,残余溶洞可被白云石、石英半充填(图 2af)。位于旋回顶部的溶沟、溶缝可被下一旋回的海侵沉积物与少量碳酸盐岩砂级碎屑混合充填(图 2d)。

溶沟、溶缝及溶洞的出现代表着栖霞组遭受过溶蚀作用,溶沟垂直于层面的现象表明该溶蚀作用受到重力控制,其内部被混合充填的现象被认为是早期淡水溶蚀的标志之一[31, 53]。因此这些溶蚀组构均是早期暴露岩溶的产物。

2.1.5 示顶底构造

在何家梁剖面栖一段上部白云岩中,溶蚀孔洞下部为具溶蚀边的白云石粉屑充填(图 4ab),上部则被中粗晶白云石或方解石胶结(图 4a)或未充填(图 4b),形成示顶底构造。

图 4 研究区栖霞组示顶底构造与角砾特征 Fig. 4 Characteristics of geopetal structures and breccias in Qixia Formation in study area (a)角砾云岩,发育示顶底构造,被粗晶方解石全充填,栖一段,何家梁剖面;(b)中—细晶云岩,溶蚀孔洞底部充填渗流粉砂,栖一段,何家梁剖面;(c)角砾云岩,发育洞穴垮塌角砾,双探9井,7748.52~7748.67m,栖一段;(d)角砾云岩,发育近原地角砾,双探9井,7736.18~7736.43m,栖二段;(e)角砾云岩,角砾间充填泥质,双探9井,7745.81m,栖二段;(f)角砾云岩,溶沟发育形成假角砾或近原地角砾,双探9井,7746.98m,栖二段

示顶底构造指的是可以指示岩层顶底方向的构造及组构,常被广泛用于判断岩层的界面、沉积及成岩环境等[54]。栖霞组示顶底构造底部的白云石粉屑具明显的被溶蚀的特征,表明其来源于周围碳酸盐岩组构的离解。粉屑之间具有少量泥质充填,这种特征被认为是渗流粉砂[55]。而这种类型的示顶底构造被认为是早期岩溶的典型标志之一[31-32]

2.1.6 近原地角砾与洞穴充填角砾

区内栖霞组角砾类型多样(表 1),从发育位置来分,角砾可以存在高频旋回的上部和中下部(图 5图 6);从角砾特征和成因来分,可以分为近原地角砾(图 3fi图 4df)和洞穴、溶沟充填角砾(图 4c)。

表 1 栖霞组岩溶角砾类型表 Table 1 Types of karst breccias in Qixia Formation
图 5 研究区栖霞组下部露头剖面单旋回特征 Fig. 5 Characteristics of single cycle of the lower part of Qixia Formation in outcrop profile in study area (a)潮坪序列单旋回特征,何家梁剖面;(b)颗粒滩序列单旋回特征,大木垭剖面
图 6 研究区栖霞组下部岩溶的垂向变浅序列 Fig. 6 Vertical shallowing-upward sequence of karst in the lower part of Qixia Formation in study area (a)潮坪的暴露序列,双探9井,栖一段;(b)颗粒滩的暴露序列,双探9井,栖一段。B1—近原地角砾,B2—洞穴垮塌角砾

洞穴充填角砾可分为暗河角砾与垮塌角砾两种。前者具有搬运磨圆的特征,其角砾岩性与洞穴围岩岩性具有明显的差异;后者是由于洞壁在溶蚀过程中失稳而在洞穴底部堆积形成的角砾,该类型角砾棱角状较为明显。近原地角砾形态特征各异,有的呈塑性特征、边界可能模糊,角砾可拼合,角砾间可被渗流粉砂、异源物质充填或混合充填,其产状视岩溶作用强度的不同较为多变,主要出现在近地表附近,在旋回中下部也可出现。

栖霞组内幕的洞穴充填角砾常发育于高频旋回的中部,角砾可拼接性较差,角砾间可被碳酸盐岩砂、泥质充填或混合充填,也可见亮晶胶结物充填—半充填而形成残余孔洞,这是典型的洞穴垮塌角砾特征。而近原地角砾常被认为是埋藏成岩作用的产物[50],也有人认为是层间岩溶形成的岩溶角砾[56]。研究区内近原地角砾是孔渗具非均质性的岩石,受淡水渗流作用的影响,被岩溶优势通道切割形成的。岩溶优势通道因渗流粉砂、下一次海侵物质灌入及混合等,颜色和成分发生变化,从而把基岩凸显出角砾化的特征。近原地角砾主要发育于旋回近顶部,中下部若存在,则主要是水平溶洞发育的前期过渡阶段(在低渗层之上,淡水近水平漫流,逐渐形成优势通道切割而角砾化;当岩溶强度增大时,逐渐溶蚀形成水平溶洞)。

2.2 垂向序列特征

由于频繁的海平面升降及相应水动力条件的周期性波动,研究区颗粒滩及潮坪沉积常在纵向上呈旋回性发育,构成多个完整或不完整的向上变浅沉积旋回。而单一的变浅过程则往往以旋回顶部的暴露溶蚀、沉积间断及下一期海泛事件的来临而结束;旋回内部则发育不同类型的岩溶组构(图 5图 6)。

潮坪型向上变浅序列的顶部为凹凸不平的高频暴露面,其下常发育溶沟及溶缝等岩溶优势通道,并被下一期海侵沉积物、泥质与少量碳酸盐岩砂混合充填,溶沟多垂直于岩层面。在岩溶系统的切割之下,旋回中下部发育大量近原地角砾,角砾间以碳酸盐岩砂和泥质混合充填为主,其下存在少量溶蚀孔洞,发育示顶底构造(图 5a图 6a)。颗粒滩型向上变浅序列的顶部也发育凹凸不平的高频暴露面,之下发育由溶沟、溶缝等交织形成的斑块状岩溶系统,岩溶系统内充填下一期海侵沉积物、泥质与少量碳酸盐岩砂。由于斑块状岩溶系统的切割,旋回中上部发育大量近原地角砾,旋回中部则发育水平溶洞,充填各类型角砾、碳酸盐岩砂及泥质等,部分孔洞被粗晶碳酸盐胶结物所充填(图 5b图 6b)。岩溶组构的组合特征表明其为高频暴露岩溶的结果。

2.3 碳、氧同位素特征

在蒸发过程中,由于较轻的16O优先进入大气循环当中,因而大气淡水中的δ18O存在明显偏轻的特征[57];而暴露环境中参与到地上旋回的淡水往往会溶解大量的腐殖质,继而造成有机碳和无机碳同时偏轻[58]。也就是说,δ13C、δ18O等指标在受到大气淡水淋滤作用过程中均会发生明显响应[59-60]。本次选取发育多期高频暴露面且溶蚀现象清晰的双探9井部分岩心进行等间距牙钻取样。在中国石油集团碳酸盐岩储层重点实验室西南石油大学分室的碳酸盐岩地球化学超净实验室进行碳、氧同位素分析。分析数据表明,潮坪序列的δ13C位于2.70‰到3.89‰之间,平均值为3.40‰;δ18O位于-1.01‰到-7.85‰之间,平均值为-3.46‰;颗粒滩序列的δ13C位于1.15‰到2.99‰之间,平均值为2.31‰;δ18O位于-8.21‰到-3.80‰之间,平均值为-6.34‰。上述测试结果整体上小于同时期海水的同位素值(空谷期海水的δ13C与δ18O分别为3.9‰~4.7‰及-3.6‰~ -1.7‰[61]),颗粒滩序列的δ13C与δ18O的均值相对潮坪序列更加偏负,这可能是由于岩溶作用强度与沉积水体盐度的综合影响。而纵向上碳、氧同位素剖面具有一定的旋回性,且单一旋回内自上而下随着离暴露面距离的增加,其负偏程度逐渐减弱(图 6),表明距暴露面越近,受淡水影响越大,这从另一方面证实了高频暴露与淡水岩溶的存在。

3 高频暴露岩溶与储层形成 3.1 储集空间特征及成因

研究区内栖霞组储层有效的储集空间主要分为残余溶洞与小型溶蚀孔洞两种类型,均发育于白云岩之中。残余溶洞的尺寸各异,直径相对较大的残余溶洞常被不同类型亮晶胶结物半充填,洞穴周围基岩较为破碎,多呈角砾状(图 7ab),其多分布于高频旋回的中部(图 6b)。直径相对较小的溶蚀孔洞则可分为两种,一种位于相对完整的基岩之中(图 7c),零星分布,直径为1~4mm,微观下为晶间溶孔(洞)(图 7d),主要发育于旋回中上部,下部发育频率较低。另一种小型溶蚀孔洞发育于斑块状岩溶系统之中(图 7e),密集分布,直径为1~2mm,微观下为晶间溶孔(图 7f)。

图 7 研究区栖霞组储层储集空间特征 Fig. 7 Reservoir space characteristics of Qixia Formation in study area (a)溶蚀孔洞云岩,溶洞被鞍形白云石半充填,矿2井,2423.19~2423.32m,栖二段;(b)角砾间残余溶洞,被鞍形白云石与石英半充填,双探9井,7751.87~7752.15m,栖一段;(c)粗晶云岩,发育基质溶蚀孔洞,双探9井,7702.23~7702.37m,栖二段;(d)图c红色方框微观特征,粗晶云岩,发育晶间溶孔,双探9井,7702.23~7702.37m,栖二段;(e)角砾云岩,斑块状岩溶系统充填碳酸盐岩砂,发育密集针孔,矿2井,2424.14~2424.31m,栖二段;(f)图e红色方框微观特征,发育晶间溶孔,矿2井,2424.14~2424.31m,栖二段

残余溶洞常发育于旋回中部,是多孔基岩充分受到水平漫流溶蚀改造而形成。多孔基岩发育的大量原生粒间孔为岩溶水提供了溶蚀通道,在叠合早期云化的基础上,溶扩形成零星分布于基岩之中的小型溶蚀孔洞。随着溶蚀作用的进一步进行,斑块状岩溶系统内被碳酸盐岩砂与泥质混合充填,并形成疏松多孔的云化充填物。由此可见,研究区栖霞组储层储集空间的形成与高频暴露岩溶及沉积相紧密相关。

3.2 不同强度高频暴露岩溶对储层改造

在单一的高频旋回中,不同程度的岩溶作用对储层储集空间的形成存在明显的控制(图 8)。若暴露岩溶作用较弱,则碳、氧同位素负偏程度较小,溶沟等岩溶系统欠发育,整体以基岩为主,其储集空间以零星分布在基岩中的小型溶蚀孔洞为主,优质储层分布于旋回的中上部。若暴露岩溶作用适中,则碳、氧同位素负偏程度一般,旋回上部被岩溶优势通道明显切割,形成近原地角砾,使得发育于基岩内的小型溶蚀孔洞相对较少,储层储集空间主要为发育于潜水面附近的水平溶洞,优质储层分布于旋回的中部。当暴露岩溶作用较强,则碳、氧同位素负偏程度较大,旋回中上部以各类溶沟为主,且均被混合充填,基岩占比较少;在旋回下部由于岩溶作用相对较弱,储层储集空间主要为基岩内的小型溶蚀孔洞,优质储层发育。

图 8 研究区栖霞组高频暴露岩溶作用强度与储层的关系 Fig. 8 Relationship between high-frequency exposed karstification intensity and reservoirs in Qixia Formation in study area
3.3 相控早期高频暴露岩溶型储层分布特征

研究区的相控早期高频暴露岩溶型储层单层厚度与旋回厚度关系密切,储层单层厚度一般为0.5~3m,累计厚度相对较大,为10~41m(表 2)。纵向上,储层主要分布在栖霞组中上部,局部地区在栖霞组下部也有分布(图 9);横向上,储层主要沿着上扬子西北缘及汉南水下古隆起前缘等微古地貌高地分布。这些地区均为有利沉积相带——滩(丘)体的主要分布区,为储层的形成提供了良好的物质基础,而丘滩体的迁移形成的局限环境为早期云化提供了流体来源。

表 2 研究区栖霞组高频暴露岩溶型储层厚度统计 Table 2 Thickness statistics of high-frequency exposed karst reservoirs in Qixia Formation in study area
图 9 研究区栖霞组高频暴露岩溶储层连井剖面图 Fig. 9 Well-correlation section of high-frequency exposed karst reservoirs of Qixia Formation in study area
4 启示 4.1 相控早期高频暴露岩溶型储层普遍发育

研究区栖霞组广泛发育一套叠合早期云化并为高频暴露成因的碳酸盐岩储层,在纵向上不仅仅局限在栖霞组中上部,在其中下部也有发育。这种储层的形成与沉积相密切相关,受控于海平面的高频变化,且不同的岩溶作用强度会形成不同类型的储集空间。后期成岩作用如热液改造等,多呈现出破坏性作用。深层—超深层孔洞型碳酸盐岩储层的主要驱动力为早期淡水溶蚀作用。该结果将为早期相控岩溶型碳酸盐岩储层研究提供实际材料,并对相似发育条件的储层(川西地区雷口坡组、川中地区灯影组、塔里木盆地震旦系—寒武系等)勘探具有借鉴意义。

4.2 白云岩型岩溶对规模性储层的控制

石灰岩与白云岩在暴露岩溶发育强度方面具有明显的差异[62]。模拟实验表明,在相同水文条件下,白云岩的溶蚀速率远远低于石灰岩[63],白云岩的比溶解度与比溶蚀度随着方解石含量的增加而降低[64]。虽然白云岩被溶蚀的能力相对石灰岩较弱,但是由于溶蚀作用常发生于白云岩内部广泛分布的晶间孔隙、晶内解理面及裂缝中,最终表现为较为均一的溶蚀[65]。研究区栖霞组高频暴露岩溶型储层均发育于白云岩中,表现出白云岩比石灰岩更易大面积溶蚀形成储层的现象。这表明只通过溶解度去判断石灰岩岩溶更发育可能存在一定的问题,白云岩型岩溶可形成非均质性较弱规模性储层。由于深层—超深层地层白云岩分布极为广泛,该结论无疑可极大拓展勘探空间,为白云岩型岩溶控储机理的深化研究提供基础材料。

4.3 深层—超深层碳酸盐岩储层成因地质模型的确立有待探讨

生产实践表明,合理的地质预测模型将为勘探开发提供强有力的依据。多种类型的埋藏溶蚀作用被认为是深层—超深层碳酸盐岩储层形成的初始动力[66],那么其地质模型应该以流体直接通道体系来建立,这显然与最终采纳的相控论预测是相互矛盾的。川西北地区栖霞组的热液活动最终表现为胶结充填而非溶蚀作用,有机酸溶蚀由于体系封闭而规模较小,更不存在TSR(硫酸盐热化学还原反应)的前提,所以埋藏溶蚀对储层建设性影响有限。此次研究发现,栖霞组储层中各类型储集空间的形成均与高频暴露岩溶作用直接相关,那么根据相控早期岩溶成因建立地质预测模型似乎更加合理,针对这一问题还有待深入探讨。

4.4 高频暴露成因的深层—超深层碳酸盐岩储层不存在孔隙消亡带

传统观点认为碳酸盐岩受复杂成岩作用的影响,埋深越深,储集性能越差,油气勘探潜力越低[67-68]。近年来随着勘探领域的进一步扩大,大量深层—超深层油气藏被揭开了神秘的面纱[69-74]。包括栖霞组在内,越来越多的研究实例表明,受相控高频暴露岩溶所控制的碳酸盐岩孔洞型储层可以长期保持并形成深埋优质储层,暗示了该成因控制下的深层—超深层碳酸盐岩储层似乎不存在孔隙消亡带,为进一步的深层—超深层油气勘探提供重要的理论支撑。

4.5 高频暴露是古气候波动研究的潜在指标

沉积物中会包含大量有关气候变化与构造活动等方面的信息[75-76],两者的相互关系一直存在争议[77]。最新研究强调了气候变化在移除和产生构造导致的沉积信号方面起着关键作用[78]。晚古生代大冰期结束后,全球在空谷期早期进入冰室—温室效应转换期[39],转换期内存在多幕短暂冰期[79-80]图 10a)。这样短期波动的古气候特征,为研究区高频旋回的发育提供了动力。其次,上扬子北侧的勉略洋盆自西向东逐渐打开[81-82],并在二叠纪达到最大宽度,为上扬子地区提供了较低的海平面背景(图 10bc)。在此背景之下,研究区栖霞组发育多期叠置高频暴露岩溶。因此,高频海平面震荡与其形成的暴露岩溶可能预示着一系列潜在的温暖与寒冷气候的高频转换,相似的控制关系与沉积记录在奥陶纪末期冰期后亦有报道[32, 83-85]。因此,碳酸盐岩的高频暴露可能是记录低海平面背景之下海平面升降变化和古气候变化的另一个潜在指标。

图 10 研究区栖霞组年代地层、海平面变化以及古地理背景图 Fig. 10 Chronostratigraphy, sea level change and paleogeographic settings of Qixia Formation in study area (a)年代地层简表,川西北栖霞组沉积时限为空谷期中后期,属于高频旋回集中发育的时期(修改自文献[44]);(b)二叠纪古地理图(修改自文献[86]);(c)二叠纪古地理背景,勉略洋盆自西向东打开(修改自文献[81, 87]
5 结论

四川盆地西北部地区中二叠统栖霞组发育早期高频暴露岩溶作用,并发育地层超覆、近原地角砾化、斑状岩溶系统等多种典型的早期暴露岩溶特征,旋回顶部常因大气淡水淋滤作用而使得碳、氧同位素具有负偏的特征。

栖霞组储层储集空间主要为角砾间残余孔洞与小型溶蚀孔洞,前者形成于溶洞之中,后者既可发育于基岩之内,也可发育于斑块状岩溶系统之中,两者均受到早期高频暴露岩溶作用控制,且不同强度的大气淡水淋滤作用使得优质储层在高频旋回各个部分均可发育。

早期高频暴露岩溶作用是川西北地区栖霞组深层—超深层优质孔洞型碳酸盐岩储层形成的关键。该类研究实例表明,相控早期高频暴露岩溶型储层是普遍发育的,且可以长期保持形成深埋优质储层,深层—超深层碳酸盐岩储层似乎不存在孔隙消亡带。加强早期高频暴露岩溶相关研究,有利于为进一步深层—超深层油气勘探提供新的思路。

高频暴露岩溶作用可能记录了大量该时期古气候波动的相关信息,可作为研究稳定构造背景下海平面升降以及古气候变化的潜在指标,加强相关研究将进一步丰富早期相控岩溶理论基础,促进岩溶地质学发展。

参考文献
[1]
张水昌, 梁狄刚, 朱光有, 张兴阳, 张宝民, 陈建平, 等. 中国海相油气田形成的地质基础[J]. 科学通报, 2007, 52(增刊1): 19-37.
Zhang Shuichang, Liang Digang, Zhu Guangyou, Zhang Xingyang, Zhang Baomin, Chen Jianping, et al. Fundamental geological elements for the occurrence of Chinese marine oil and gas accumulations[J]. Chinese Science Bulletin, 2007, 52(S1): 19-37.
[2]
朱光有, 张水昌. 中国深层油气成藏条件与勘探潜力[J]. 石油学报, 2009, 30(6): 793-800.
Zhu Guangyou, Zhang Shuichang. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China[J]. Acta Petrolei Sinica, 2009, 30(6): 793-800.
[3]
胡见义, 吴因业, 张静. 高海拔与超深地层石油地质若干问题[J]. 石油学报, 2009, 30(2): 159-167.
Hu Jianyi, Wu Yinye, Zhang Jing. Discussion on petroleum geology theory for high-elevation and ultra-deep formations[J]. Acta Petrolei Sinica, 2009, 30(2): 159-167.
[4]
赵文智, 胡素云, 刘伟, 王铜山, 李永新. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景[J]. 天然气工业, 2014, 34(4): 1-9.
Zhao Wenzhi, Hu Suyun, Liu Wei, Wang Tongshan, Li Yongxin. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: a further discussion[J]. Natural Gas Industry, 2014, 34(4): 1-9.
[5]
何治亮, 张军涛, 丁茜, 尤东华, 彭守涛, 朱东亚, 等. 深层—超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38(4): 633-644.
He Zhiliang, Zhang Juntao, Ding Qian, You Donghua, Peng Shoutao, Zhu Dongya, et al. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2017, 38(4): 633-644.
[6]
朱光有, 张水昌, 梁英波, 马永生, 戴金星, 周国源. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22(8): 2182-2194.
Zhu Guangyou, Zhang Shuichang, Liang Yingbo, Ma Yongsheng, Dai Jinxing, Zhou Guoyuan. Dissolution and alteration of the deep carbonate reservoirs by TSR: an important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2182-2194.
[7]
Moore C H, Druckman Y. Burial diagenesis and porosity evolution, Upper Jurassic Smackover, Arkansas and Louisiana[J]. AAPG Bulltin, 1981, 65: 597-628.
[8]
蔡春芳, 梅博文, 马亭, 赵红静, 方孝林. 塔里木盆地有机酸来源、分布及对成岩作用的影响[J]. 沉积学报, 1997, 15(2): 105-111.
Cai Chunfang, Mei Bowen, Ma Ting, Zhao Hongjing, Fang Xiaolin. The source, distribution of organic acids in oilfield waters and their effects on mineral diagenesis in Tarim Basin[J]. Acta Sedimentologica Sinica, 1997, 15(2): 105-111.
[9]
Wierzbicki Rick, Dravis Jeffrey J, Al-Aasm Ihsan, Harland Nancy. Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada[J]. AAPG Bulletin, 2006, 90(11): 1843-1861.
[10]
Bildstein R H, Worden E B. Assessment of anhydrite dissolution as the rate-limiting step during thermochemical sulfate reduction[J]. Chemical Geology, 2001, 176: 173-189.
[11]
Cross M M, Manning D A C, Bottrell S H, Worden R H. Thermochemical sulphate reduction(TSR): Experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs[J]. Organic Geochemistry, 2004, 35: 393-404.
[12]
张水昌, 朱光有, 何坤. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报, 2011, 27(3): 809-826.
Zhang Shuichang, Zhu Guangyou, He Kun. The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta Petrologica Sinica, 2011, 27(3): 809-826.
[13]
Bjørlykke Knut. Bjørlykke Knut. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301: 1-14.
[14]
金之钧, 朱东亚, 胡文瑄, 张学丰, 王毅, 闫相宾. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 2006, 80(2): 245-253.
Jin Zhijun, Zhu Dongya, Hu Wenxuan, Zhang Xuefeng, Wang Yi, Yan Xiangbin. Geological and Geochemical Signatures of Hydrothermal Activity and Their Influence on Carbonate Reservoir Beds in the Tarim Basin[J]. Acta Geologica Sinica, 2006, 80(2): 245-253.
[15]
谭秀成.多旋回复杂碳酸盐岩储层地质模型——以川中磨溪构造嘉二气藏为例[D].成都: 成都理工大学, 2007.
Tan Xiucheng. Geological model of complicated carbonate reservoir with multi-cycle-exampled by Jia2 gas pool of Moxi structure of middle Sichuan[D]. Chengdu: Chengdu University of Technology, 2007.
[16]
刘建强, 罗冰, 谭秀成, 江兴福, 李宗银, 乔琳, 等. 川东北地区飞仙关组台缘带鲕滩分布规律[J]. 地球科学——中国地质大学学报, 2012, 37(4): 183-192.
Liu Jianqiang, Luo Bing, Tan Xiucheng, Jiang Xingfu, Li Zongyin, Qiao Lin, et al. Distribution of marginal-platform oolitic shoal in Feixianguan Formation, northeast Sichuan, China[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(4): 183-192.
[17]
谢圣阳, 王兴志, 梅秋勇, 霍飞, 李勇, 陈玉巧. 宣汉—达县地区飞仙关组层序地层与颗粒滩特征[J]. 断块油气田, 2018, 25(3): 310-315.
Xie Shengyang, Wang Xingzhi, Mei Qiuyong, Huo Fei, Li Yong, Chen Yuqiao. Sequence stratigraphy and grain shoal characteristics of Feixianguan Formation in Xuanhan-Daxian zone[J]. Fault-Block Oil & Gas Field, 2018, 25(3): 310-315.
[18]
Xiao Di, Zhang Benjian, Tan Xiucheng, Liu Hong, Xie Jirong, Wang Lichao, et al. Discovery of a shoal-controlled karst dolomite reservoir in the Middle Permian Qixia Formation, northwestern Sichuan Basin, Southwest China[J]. Energy Exploration & Exploitation, 2018(2): 686-704.
[19]
杨海军, 陈永权, 田军, 杜金虎, 朱永峰, 李洪辉, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72.
Yang Haijun, Chen Yongquan, Tian Jun, Du Jinhu, Zhu Yongfeng, Li Honghui, et al. Great discovery and its signifi cance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72.
[20]
沈安江, 陈娅娜, 蒙绍兴, 郑剑锋, 乔占峰, 倪新锋, 等. 中国海相碳酸盐岩储层研究进展及油气勘探意义[J]. 海相油气地质, 2019, 24(4): 1-14.
Shen Anjiang, Chen Yana, Meng Shaoxing, Zheng Jianfeng, Qiao Zhanfeng, Ni Xinfeng, et al. The research progress of marine carbonate resevoirs in China and its significance for oil and gas exploration[J]. Marine Origin Petroleum Geology, 2019, 24(4): 1-14.
[21]
Lowe David, Waltham Tony. Dictionary of Karst and Caves [M]. London: British Cave Research Association, 2002: 1-39.
[22]
Lundegard P D, Land L S, Galloway W E. Problem of secondary porosity: Frio Formation (Oligocene), Texas Gulf Coast[J]. Geology, 1984, 12: 399-402.
[23]
张单明, 秦善, 刘波, 巫翔, 张学丰, 刘建强, 等. 碳酸盐岩—H2S平衡体系原位溶蚀模拟实验及其地质意义[J]. 北京大学学报:自然科学版, 2015, 51(4): 745-754.
Zhang Danming, Qin Shan, Liu Bo, Wu Xiang, Zhang Xuefeng, Liu Jianqiang, et al. In-situ simulation experiment of Carbonate-Hydrogen sulfide equilibrium system and its geological significance[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(4): 745-754.
[24]
陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展[J]. 地球科学进展, 2018, 33(11): 1112-1129.
Chen Qilin, Huang Chenggang. Research progress of modification of reservoirs by dissolution in sedimentary rock[J]. Advances in Earth Science, 2018, 33(11): 1112-1129.
[25]
朱东亚, 孟庆强, 胡文瑄, 金之钧. 塔里木盆地深层寒武系地表岩溶型白云岩储层及后期流体改造作用[J]. 地质论评, 2012, 58(4): 691-701.
Zhu Dongya, Meng Qinqiang, Hu Wenxuan, Jin Zhijun. Deep Cambrian surface karst dolomite reservoir and its alteration by later fluid in Tarim Basin[J]. Geological Review, 2012, 58(4): 691-701.
[26]
沈安江, 赵文智, 胡安平, 佘敏, 陈娅娜, 王小芳. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5): 545-554.
Shen Anjiang, Zhao Wenzhi, Hu Anping, She Min, Chen Yana, Wang Xiaofang. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554.
[27]
Tang Hao, Tan Xiucheng, Liu Hong, Zhou Yan, Li Ling, Ding Xiong, Tang Qingsong, et al. Genesis and dolomitization of "Khali" powder crystal dolomite in Triassic Jialingjiang Formation, Moxi gas field, central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(4): 553-562.
[28]
谭秀成, 肖笛, 陈景山, 李凌, 刘宏. 早成岩期喀斯特化研究新进展及意义[J]. 古地理学报, 2015, 17(4): 441-456.
Tan Xiucheng, Xiao Di, Chen Jingshan, Li Ling, Liu Hong. New advance and enlightenment of eogenetic karstification[J]. Journal of Palaeogeography, 2015, 17(4): 441-456.
[29]
Xiao Di, Tan Xiucheng, Xi Aihua, Liu Hong, Shan Shujiao, Xia Jiwen, et al. An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou Formation, southern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2016, 72: 218-233.
[30]
肖笛.海相碳酸盐岩早成岩期岩溶及其储层特征研究——以中国西部三大盆地为例[D].成都: 西南石油大学, 2017.
Xiao Di. Research on eogenetic karst of marine carbonate and its reservoir in the three major basins, western China[D]. Chengdu: Southwest Petroleum University, 2017.
[31]
Xiao Di, Tan Xiucheng, Zhang Daofeng, He Wei, Li Ling, Shi Yunhe, et al. Discovery of syngenetic and eogenetic karsts in the Middle Ordovician gypsum-bearing dolomites of the eastern Ordos Basin (central China) and their heterogeneous impact on reservoir quality[J]. Marine and Petroleum Geology, 2019, 99: 190-207.
[32]
Xiong Ying, Tan Xiucheng, Zuo Zhifeng, Zou Guoliang, Liu Mingjie, Liu Yun, et al. Middle Ordovician multi-stage penecontemporaneous karstification in North China: Implications for reservoir genesis and sea level fluctuations[J]. Journal of Asian Earth Sciences, 2019, 183: 1-14.
[33]
Li Ling, Tan Xiucheng, Zeng Wei, Zhou Tao, Yang Yu, Hong Haitao, et al. Development and reservoir significance of mud mounds in Sinian Dengying Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2013, 40(6): 714-721.
[34]
王海真, 池英柳, 赵宗举, 江青春, 鲁卫华. 四川盆地栖霞组岩溶储层及勘探选区[J]. 石油学报, 2013, 34(5): 833-842.
Wang Haizhen, Chi Yingliu, Zhao Zongju, Jiang Qingchun, Lu Weihua. Karst reservoirs developed in the Middle Permian Qixia Formation of Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2013, 34(5): 833-842.
[35]
胡安平, 潘立银, 郝毅, 沈安江, 谷明峰. 四川盆地二叠系栖霞组、茅口组白云岩储层特征、成因和分布[J]. 海相油气地质, 2018, 23(2): 39-52.
Hu Anping, Pan Liyin, Hao Yi, Shen Anjiang, Gu Mingfeng. Origin, characteristics and distribution of dolostone reservoir in Qixia Formation and Maokou Formation, Sichuan Basin, China[J]. Marine Origin Petroleum Geology, 2018, 23(2): 39-52.
[36]
冯明友, 张帆, 李跃纲, 张本健, 尹宏, 李波. 川西地区中二叠统栖霞组优质白云岩储层特征及形成机理[J]. 中国科技论文, 2015, 10(3): 280-286.
Feng Mingyou, Zhang Fan, Li Yuegang, Zhang Benjian, Yin Hong, Li Bo. Characteristics and formation mechanism of Qixia Formation (middle Permian) dolomite reservoirs in western Sichuan Basin[J]. China Sciencepaper, 2015, 10(3): 280-286.
[37]
白晓亮, 杨跃明, 杨雨, 文龙, 罗冰. 川西北栖霞组优质白云岩储层特征及主控因素[J]. 西南石油大学学报:自然科学版, 2018, 41(1): 48-56.
Bai Xiaoliang, Yang Yueming, Yang Yu, Wen Long, Luo Bing. Characteristics and controlling factors of high-quality dolomite reservoirs in the Permian Qixia Formation, Northwestern Sichuan[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2018, 41(1): 48-56.
[38]
杨雨然, 张亚, 谢忱, 陈聪, 张晓丽, 陈双玲, 等. 川西北地区中二叠统栖霞组热液作用及其对储层的影响[J]. 岩性油气藏, 2019, 31(6): 44-53.
Yang Yuran, Zhang Ya, Xie Chen, Chen Cong, Zhang Xiaoli, Chen Shuangling, et al. Hydrothermal action of Middle Permian Qixia Formation in northwestern Sichuan Basin and its effect on reservoirs[J]. Lithologic Reservoirs, 2019, 31(6): 44-53.
[39]
Shen Shuzhong, Zhang Hua, Zhang Yichun, Yuan Dongxun, Chen Bo, He Weidong, et al. Permian integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 62(1): 160-193.
[40]
Scotese, Christopher R. Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia[J]. Geological Society, London, Special Publications, 2009, 326(1): 67-83.
[41]
He Bin, Zhong Yuting, Xu Yigang, Li Xianhua. Triggers of Permo-Triassic boundary mass extinction in South China: The Siberian Traps or Paleo-Tethys ignimbrite flare-up?[J]. Lithos, 2014, 204: 258-267.
[42]
陈军, 徐义刚. 二叠纪大火成岩省的环境与生物效应:进展与前瞻[J]. 矿物岩石地球化学通报, 2017, 36(3): 374-393.
Chen Jun, Xu Yigang. Permian large igneous provinces and their impact on paleoenvironment and biodiversity: progresses and perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3): 374-393.
[43]
Zhu Bei, Guo Zhaojie, Zhang Shaonan, Ukstins Ingrid, Du Wei, Liu Runchao. What triggered the early-stage eruption of the Emeishan large igneous province?[J]. GSA Bulletin, 2019, 131(11-12): 1837-1856.
[44]
Haq Bilal U, Schutter Stephen R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[45]
Li Rong, Jones B. Calcareous crusts on exposed Pleistocene limestones: a case study from Grand Cayman, British West Indies[J]. Sedimentary geology, 2014, 299(15): 88-105.
[46]
文华国, 罗连超, 罗晓彤, 游雅贤, 杜磊. 陆地热泉钙华研究进展与展望[J]. 沉积学报, 2019, 37(6): 1162-1180.
Wen Huaguo, Luo Lianchao, Luo Xiaotong, You Yaxian, Du Lei. Advances and prospects of terrestrial thermal spring travertine research[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1162-1180.
[47]
王英华, 张秀莲, 张万中, 潘荣胜. 泥晶碳酸盐岩的超微结构分析及其成岩作用[J]. 北京大学学报:自然科学版, 1989, 25(2): 243-252.
Wang Yinghua, Zhang Xiulian, Zhang Wanzhong, Pan Rongsheng. Analysis of ultrastructure and diagenesis of micritic carbonate rocks[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 1989, 25(2): 243-252.
[48]
李定龙, 杨为民, 程学丰, 汪才会. 试论皖北奥陶纪豹皮灰岩的古岩溶成因[J]. 地质论评, 1999, 45(5): 463-469.
Li Dinglong, Yang Weimin, Cheng Xuefeng, Wang Caihui. A discussion on the genesis of the leopard fur limestone of Ordovician period in northern Anhui, China[J]. Geological Review, 1999, 45(5): 463-469.
[49]
Wacey D, Wright D T, Boyce A J. A stable isotope study of microbial dolomite formation in the Coorong region, South Australia[J]. Chemical Geology, 2007, 244(1): 155-174.
[50]
Fu Qilong. Characterization and discrimination of paleokarst breccias and pseudobreccias in carbonate rocks: insight from Ordovician strata in the northern Tarim Basin, China[J]. Sedimentary Geology, 2019, 382: 61-74.
[51]
黄思静, 潘小强, 吕杰, 齐世超, 黄可可, 兰叶芳, 等. 川西栖霞组的热液白云化作用及其后的倒退溶解——不彻底的回头白云化作用[J]. 成都理工大学学报:自然科学版, 2013, 40(3): 67-79.
Huang Sijing, Pan Xiaoqiang, lv Jie, Qi Shichao, Huang Keke, Lan Yefang, et al. Hydrothermal dolomitization and subsequent retrograde dissolution in Qixia Formation, West Sichuan: a case study of incomplete and halfway-back dolomitization[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2013, 40(3): 67-79.
[52]
郝毅, 林良彪, 周进高, 倪超, 张建勇, 陈薇. 川西北中二叠统栖霞组豹斑灰岩特征与成因[J]. 成都理工大学学报:自然科学版, 2012, 39(6): 651-656.
Hao Yi, Lin Liangbiao, Zhou Jingao, Ni Chao, Zhang Jianyong, Chen Wei. Characteristics and genesis of leopard limestone in Middle Permian Qixia Formation, Northwest Sichuan, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2012, 39(6): 651-656.
[53]
Grime K G. Syngenetic Karst in Australia: A review[J]. Helictite, 2006, 39(2): 27-38.
[54]
郭沫贞, 文川江, 苑国辉, 司学强, 朱国华, 王鑫. 三塘湖盆地牛东石炭系火山岩示顶底构造特征、成因及地质意义[J]. 海相油气地质, 2010, 15(3): 78-82.
Guo Mozhen, Wen Chuanjiang, Yuan Guohui, Si Xueqiang, Zhu Guohua, Wang Xin. Features, origin and geological significance of geopetal structures in carboniferous volcanic rocks in Niudong block, Santanghu Basin[J]. Marine Origin Petroleum Geology, 2010, 15(3): 78-82.
[55]
苏成鹏, 谭秀成, 刘宏, 唐浩, 黎虹玮, 王高峰, 等. 环开江—梁平海槽长兴组台缘礁滩相储层特征及成岩作用[J]. 中国地质, 2016, 43(6): 2046-2058.
Su Chengpeng, Tan Xiucheng, Liu Hong, Tang Hao, Li Hongwei, Wang Gaofeng, et al. Characteristics and diagenesis of platform margin reef-shoal reservoirs of Upper Permian Changxing Formation around Kaijiang-Liangping trough, eastern Sichuan Basin[J]. Geology in China, 2016, 43(6): 2046-2058.
[56]
廖涛, 侯加根, 陈利新, 马克, 杨文明, 董越, 等. 断裂对塔北地区哈拉哈塘油田奥陶系非暴露岩溶缝洞型储集层的控制作用[J]. 古地理学报, 2016, 18(2): 221-235.
Liao Tao, Hou Jiagen, Chen Lixin, Ma Ke, Yang Wenming, Dong Yue, et al. Fault controlling on non-exposed karst fracture-vug reservoirs of the Ordovician in Halahatang Oilfield, northern Tarim Basin[J]. Journal of Palaeogeography, 2016, 18(2): 221-235.
[57]
刘德良, 孙先如, 李振生, 唐南安, 谈迎, 刘波. 鄂尔多斯盆地奥陶系白云岩碳氧同位素分析[J]. 石油实验地质, 2006, 28(2): 156-161.
Liu Deliang, Sun Xianru, Li Zhensheng, Tang Nanan, Tan Ying, Liu Bo. Analysis of carbonate and oxygen isotope on the Ordovivian dolostones in the Ordos Basin[J]. Petroleum Geology & Experiment, 2006, 28(2): 156-161.
[58]
江青春, 胡素云, 姜华, 翟秀芬, 任梦怡, 陈晓月, 等. 四川盆地中二叠统茅口组地层缺失量计算及成因探讨[J]. 天然气工业, 2018, 38(1): 21-29.
Jiang Qingchun, Hu Suyun, Jiang Hua, Zhai Xiufen, Ren Mengyi, Chen Xiaoyue, et al. Calculation and inducement of lacuna in the Mid-Permian Maokou Fm of the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(1): 21-29.
[59]
Allan J R, Matthews R K. Isotope signatures associated with early meteoric diagenesis[J]. Sedimentology, 1982, 29(6): 797-817.
[60]
Christ Nicolas, Immenhauser Adrian, Amour Frédéric, Mutti Maria, Preston Rosalind, Whitaker Fiona F, et al. Triassic Latemar cycle tops - subaerial exposure of platform carbonates under tropical arid climate[J]. Sedimentary Geology, 2012, 265-266(6): 1-29.
[61]
Korte Christoph, Jasper Torsten, Kozur Heinz W, Veizer Ján. δ18O and δ13C of Permian brachiopods: a record of seawater evolution and continental claciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224(4): 333-351.
[62]
孟繁贺, 米德才, 陈云生. 石灰岩与白云岩岩溶发育特征浅析[J]. 西部交通科技, 2015(4): 43-45.
Meng Fanhe, Mi Decai, Chen Yunsheng. Discussions on karst development features of limestone and dolomite[J]. Western China Communications Science & Technology, 2015(4): 43-45.
[63]
刘再华. 外源水对灰岩和白云岩的寝室速率野外试验研究——以桂林尧山为例[J]. 中国岩溶, 2000, 19(1): 1-4.
Liu Zaihua. Field experimental research on the corrosion kinetics of limestone and dolomite in allogenic water: case from Yaoshan Mt. Guilin[J]. Carsologica Sinica, 2000, 19(1): 1-4.
[64]
朱真. 影响碳酸盐岩比溶蚀度、比溶解度因素探讨[J]. 广西地质, 1997, 10(3): 37-44, 48.
Zu Zhen. Discussion in influencing factors upon specific corrodibility and specific solubility of carbonate rock[J]. Guangxi Geology, 1997, 10(3): 37-44, 48.
[65]
王第连, 钱小鄂, 唐民一, 漆幼斌. 柳州白云岩微溶蚀特征[J]. 贵州科学, 1997, 10(2): 8-16.
Wang Dilian, Qian Xiaoe, Tang Minyi, Qi Youbin. The microcorrsion features of Liuzhou dolomites[J]. Guizhou Science, 1997, 10(2): 8-16.
[66]
马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192.
Ma Yongsheng, Cai Xunyu, Zhao Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.
[67]
张博全, 关振良, 潘琳. 鄂尔多斯盆地碳酸盐岩的压实作用[J]. 地球科学, 1995, 20(3): 299-305.
Zhang Boquan, Guan Zhenliang, Pan Lin. Compaction of carbonate rocks in Ordos Basin[J]. Journal of Earth Science, 1995, 20(3): 299-305.
[68]
Ehrenberg S N, Nadeau P H, Steen O. Petroleum reservoir porosity versus depth: influence of geological age[J]. AAPG Bulletin, 2009, 93(10): 1281-1296.
[69]
黎玉战, 徐传会. 塔里木盆地塔河油田发现历程及其意义[J]. 石油实验地质, 2004, 26(2): 180-186.
Li Yuzhan, Xu Chuanhui. Significance and discovery history of Tahe oilfield of the Tarim Basin[J]. Petroleum Geology & Experiment, 2004, 26(2): 180-186.
[70]
孙玮, 刘树根, 曹俊兴, 邓宾, 宋金民, 王国芝, 等. 四川叠合盆地西部中北段深层—超深层海相大型气田形成条件分析[J]. 岩石学报, 2017, 33(4): 1171-1188.
Sun Wei, Liu Shugen, Cao Junxing, Deng Bin, Song Jinmin, Wang Guozhi, et al. Analysis on the formation conditions of large-scale marine deep and super-deep strata gas fields in the middle-northern segments of western Sichuan Superimposed Basin, China[J]. Acta Petrologica Sinica, 2017, 33(4): 1171-1188.
[71]
郭旭升, 胡东风, 黄仁春, 段金宝, 季春辉. 元坝长兴组超深层生物礁大气田优质储层发育机理[J]. 岩石学报, 2017, 33(4): 1101-1114.
Guo Xusheng, Hu Dongfeng, Huang Renchun, Duan Jinbao, Ji Chunhui. Developing mechanism for high quality reef reservoir (Changxing Formation) buried in ultra-depth in the big Yuanba Gas Field[J]. Acta Petrologica Sinica, 2017, 33(4): 1101-1114.
[72]
张本健, 谢继容, 尹宏, 胡欣, 王宇峰, 杨迅, 等. 四川盆地西部龙门山地区中二叠统碳酸盐岩储层特征及勘探方向[J]. 天然气工业, 2018, 38(2): 33-42.
Zhang Benjian, Xie Jirong, Yin Hong, Hu Xin, Wang Yufeng, Yang Xun, et al. Characteristics and exploration direction of the Middle Permian carbonate reservoirs in the Longmenshan mountain areas, western Sichuan Basin[J]. Natural Gas Industry, 2018, 38(2): 33-42.
[73]
张本健, 方进, 尹宏, 杨华, 杨迅, 王宇峰, 等. 高产水平井的突破与四川盆地深层常规气藏巨大的勘探开发潜力[J]. 天然气工业, 2019, 39(12): 1-9.
Zhang Benjian, Fang Jin, Yin Hong, Yang Hua, Yang Xun, Wang Yufeng, et al. A breakthrough in high-yield horizontal gas wells and great exploration and development potential in deep conventional gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 1-9.
[74]
何治亮, 云露, 尤东华, 彭守涛, 张宏, 王康宁, 等. 塔里木盆地阿—满过渡带超深层碳酸盐岩储层成因与分布预测[J]. 地学前缘, 2019, 26(1): 13-21.
He Zhiliang, Yun Lu, You Donghua, Peng Shoutao, Zhang Hong, Wang Kangning, et al. Genesis and distribution prediction of the ultra-deep carbonate reservoirs in the transitional zone between the Awati and Manjiaer depressions, Tarim Basin[J]. Earth Science Frontiers, 2019, 26(1): 13-21.
[75]
Zhang Peizhen, Molnar Peter, Downs William R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831): 891-897.
[76]
Bao Rui, Strasser Michael, McNichol Ann P, Haghipour Negar, McIntyre Cameron, Wefer Gerold, et al. Tectonically-triggered sediment and carbon export to the Hadal zone[J]. Nature Comunication, 2018, 9(1): 121.
[77]
Raymo M, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122.
[78]
Zhang Fei, Jin Zhangdon, West A J, An Zhisheng, Hilton R G, Wang Jin, et al. Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake[J]. Science Advances, 2019, 5(6): 7110.
[79]
Frank T D, Shultis A I, Fielding C R. Acme and demise of the late Palaeozoic ice age: A view from the southeastern margin of Gondwana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 176-192.
[80]
Garbelli C, Shen Shuzhong, Immenhauser A, Brand U, Buhl D, Wang Wenqian, et al. Timing of Early and Middle Permian deglaciation of the southern hemisphere: Brachiopod-based 87Sr/86Sr calibration[J]. Earth & Planetary Science Letters, 2019, 516: 122-135.
[81]
李三忠, 张国伟, 李亚林, 赖绍聪, 李宗会. 秦岭造山带勉略缝合带构造变形与造山过程[J]. 地质学报, 2002, 76(4): 469-483.
Li Sanzhong, Zhang Guowei, Li Yalin, Lai Shaocong, Li Zonghui. Deformation and orogeny of the Mian-Lue suture zone in the Qinling orogenic belt[J]. Acta Geologica Sinica, 2002, 76(4): 469-483.
[82]
张玺华, 陈聪, 黄婕, 文龙, 谢忱, 徐诗薇, 等. 四川盆地中二叠世广元—巴中拉张槽的发现及油气地质意义[J]. 中国石油勘探, 2019, 24(4): 466-475.
Zhang Xihua, Chen Cong, Huang Jie, Wen Long, Xie Chen, Xu Shiwei, et al. The discovery of Middle Permian Guangyuan-Bazhong extensional trough in the Sichuan Basin and its petroleum geological significance[J]. China Petroleum Exploration, 2019, 24(4): 466-475.
[83]
陈景山, 李忠, 王振宇, 谭秀成, 李凌, 马青. 塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J]. 沉积学报, 2007, 25(6): 858-868.
Chen Jingshan, Li Zhong, Wang Zhenyu, Tan Xiucheng, Li Ling, Ma Qing. Paleokarstification and reservoir distribution of Ordovician carbonates in Tarim Basin[J]. Acta Sedimentologica Sinica, 2007, 25(6): 858-868.
[84]
Calner M, Lehnert O, Nolvak J. Palaeokarst evidence for widespread regression and subaerial exposure in the middle Katian (Upper Ordovician) of Baltoscandia: Significance for global climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(3-4): 235-247.
[85]
Zhang Baomin, Liu Jingjiang. Classification and characteristics of karst reservoirs in China and related theories[J]. Petroleum Exploration and Development, 2009, 36(1): 12-29.
[86]
李江海, 姜洪福. 全球古板块再造、岩相古地理及古环境图集 [M]. 北京: 地质出版社, 2013: 32-36.
Li Jianghai, Jiang Hongfu. Global paleoplate reconstruction, lithofacies paleogeography and paleo- environment Atlas [M]. Beijing: Geological Publishing House, 2013: 32-36.
[87]
Ding Lin, Yang Di, Cai Fulong, Pullen A, Kapp P, Gehrels G E, et al. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean[J]. Tectonics, 2013, 32(1): 34-48.