岩性油气藏  2025, Vol. 37 Issue (2): 166-177       PDF    
×
东营凹陷梁东地区古近系沙三中亚段层序地层划分及石油地质意义
曲星宇    
安徽理工大学 地球与环境学院, 安徽 淮南 232001
摘要: 利用三维地震和测录井资料,对东营凹陷梁东地区古近系沙三中亚段的层序地层特征开展了研究,并对层序内部体系域组成、结构、沉积特征以及空间变化规律进行了分析。研究结果表明:①东营凹陷梁东地区古近系沙三中亚段内部可划分出高位体系域(HST)、下降体系域(FSST)、低位体系域(LST)和湖侵体系域(TST),反映其经历了一次完整的基准面变化旋回。受沉积物供给和可容纳空间的侧向变化,供源主体位置沙三中亚段发育完整的层序序列。在沉积主体两侧,各体系域的地层厚度逐渐减薄,岸线迁移特征不明显。②研究区FSST沉积相以三角洲前缘为主体,可划分为水下分流河道、河口坝等微相,也可见少量重力流沉积微相,LST在演化序列上继承了FSST的沉积特征,以三角洲—重力流体系为主,但进一步向盆地方向推进。LST的沉积中心相较FSST西移,显示了LST中沉积体系的远距离推进特征。③研究区F1生长断裂的强烈活动控制了砂体分布,断层上、下盘产生的沉降差异使沉积物供给和可容纳空间均产生了变化,导致各体系域几何形态特征和地层叠置关系沿物源方向发生了变化,断层上盘高沉降、高可容纳空间区域的体系域发育完整,砂地比最大;断层下盘高地势、低沉降、低可容纳空间区域,HST和LST的厚度显著减小,砂地比也相对较小。④研究区HST由厚层暗色泥岩和油页岩构成,可作为良好的烃源岩;LST和FSST的三角洲和重力流砂体是主要储集层;TST形成了广泛的暗色泥岩可作为盖层。沙三中亚段各体系域在垂向上构成了良好的生储盖配置关系。
关键词: 层序地层学    四分体系域    水下分流河道    河口坝等微相    重力流    可容纳空间    沙河街组三段    古近系    梁东地区    东营凹陷    
Sequence stratigraphy division and petroleum geological significance in the middle submember of the third member of Shahejie Formation in Liangdong area, Dongying Sag
QU Xingyu    
School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Abstract: Using three-dimension seismic and well-logging data, a study was conducted on the sequence stratigraphic characteristics of the middle sub-member of the third member of Paleogene Shahejie Formation in the Liangdong area of the Dongying Sag. The internal systems tracts, composition, structure, sedimentary characteristics, and spatial variation patterns of the sequences were analyzed. The results show that: (1) The middle submember of the third member of Shahejie Formation in the Liangdong area of the Dongying Sag can be divided into highstand systems tract (HST), falling stage systems tract (FSST), lowstand systems tract (LST), and transgressive systems tract (TST), reflecting a complete base-level change cycle. Due to the lateral variations in sediment supply and accommodation space, the main source area in the middle sub-member of Shahejie Formation developed a complete sequence. In contrast, on both sides of the main sedimentary area, the thickness of the systems tracts gradually thins, and shoreline migration characteristics are not obvious. (2) The FSST facies in the study area are dominated by delta front deposits, which can be further subdivided into microfacies such as underwater distributary channels and mouth bars, with some occurrences of gravity flow microfacies. The LST inherits the sedimentary characteristics of the FSST in its evolutionary sequence, mainly represented by a deltagravity flow system, but further extending towards the basin. The sedimentary center of the LST shifted westward compared to the FSST, indicating the long-distance progradation characteristic of the sedimentary system in the LST. (3) The strong activity of growth fault F1 in the study area controlled the distribution of sand bodies. The differential subsidence between the hanging wall and footwall of the fault caused changes in sediment supply and accommodation space, leading to variations in the geometric characteristics of the systems tracts and stratigraphic stacking patterns along the sediment source direction. In the hanging wall of the fault, where there is higher subsidence and greater accommodation space, the systems tracts are fully developed, and the sand-toshale ratio is the highest. In the footwall, with higher elevation, lower subsidence, and smaller accommodation space, the thickness of the HST and LST decreases significantly, and the sand-to-shale ratio is also relatively smaller. (4) The HST in the study area is composed of thick layers of dark mudstone and oil shale, which can serve as excellent source rocks. The deltaic and gravity flow sand bodies in the LST and FSST are the main reservoirs. The TST is characterized by widespread dark mudstone, which can act as a cap rock. The vertical arrangement of the systems tracts in the middle sub-member of the third member of Shahejie Formation forms a favorable source-reservoir-seal configuration.
Key words: sequence stratigraphy    fourth-order systems tract    underwater distributary channels    mouth bars and other microfacies    gravity flows    accommodation space    third member of Shahejie Formation    Paleogene    Liangdong area    Dongying Sag    
0 引言

层序地层格架的建立是划分地层单元的重要基础。自层序地层学发展以来,出现了经典沉积层序、成因层序和海侵—海退层序等多种层序理论模型[1-3]。然而,众多模型的提出导致了层序术语的混乱[4-6]。为解决该问题,Catuneanu等[7-8]提出层序地层学标准化理论,旨在统一层序术语并回归“界面性和旋回性”这2个核心要素[9]。层序地层学标准化理论对以往的层序模型进行了总结,其核心内容是将以不整合面为边界的三级层序单元划分为4个体系域:低位体系域(LST)、湖(海)侵体系域(TST)、高位体系域(HST)和下降体系域(FSST)[10]。与以往依赖模型的层序理论不同,标准化理论更强调根据地层叠置样式、岸线迁移轨迹等特征来识别各体系域,如进积、加积和退积,以及钻测井显示的旋回规律,使得体系域的识别更加灵活和实用[10-11]。以往分析地层叠置样式主要依赖顺物源方向的钻井或地震测线,建立的层序地层格架往往受限于区域和规模,忽视了垂直物源方向(侧物源方向)地层叠置样式的变化,不利于地层对比和层序格架的统一[12-14]

渤海湾盆地梁家楼地区沙三中亚段顶、底界面由地震反射界面(T4和T6)所限定(时间跨度为1.5 Ma)[15-16]。以往针对沙三中亚段采用不同的层序模式进行了研究,形成了多种层序地层划分方案。有学者应用Vail层序模式,将沙三中亚段划分为2个三级层序,在其内部又进一步细分为6个体系域[17];有学者分析牛庄洼陷地震反射终止关系,并结合测井曲线特征,将沙三中亚段分为一个海侵—海退层序[18-19];有学者认为沙三中亚段可以视为一个完整的三级层序,内部划分为LST,TST和HST等3个体系域[20]。尽管基于不同模式的层序解释在指导油气勘探实践过程中均发挥了重要作用,然而这些不同的层序方案划分的结果所反映的沙三中亚段地层演化过程却存在明显差异。目前,这种差异主要体现在东营凹陷沙河街组沙三中亚段的层序地层格架及其内部体系域的组成和结构变化等方面,反映出学者们对层序划分方案的选择和内部体系域组成的认识不统一。以渤海湾盆地梁东地区沙三中亚段为例,采用层序地层学标准化理论中的体系域四分方案对其进行层序划分。通过分析和刻画地层叠置样式,建立层序地层格架,并关注侧向上体系域的变化规律。重点研究FSST和LST内部的沉积相,以揭示体系域尺度上的沉积演化规律。

1 地质概况

东营凹陷位于渤海湾盆地济阳坳陷的南部,是一个典型的中—新生代断陷盆地。凹陷南邻鲁西隆起,西北与埕宁隆起接壤,内部划分为利津、牛庄、博兴和民丰4个洼陷及北部陡坡带、南部斜坡带和中央隆起带[21-23]图 1a)。梁家楼地区位于草桥—纯化镇鼻状构造带向西北倾没与中央隆起带向西南倾没的交界处,其东部以构造脊线与牛庄洼陷相邻,南部通过纯北断层与纯化古隆起相接,北部接中央隆起带,西北部与利津洼陷相对,西南部与博兴洼陷毗邻[24-25]图 1a)。研究区位于梁家楼东部,整体呈“南高北低”的构造格局,南东部为陈官庄断裂带,北西部为纯化断裂带西翼。该区发育大量E—W走向、NEE—SWW走向的北倾正断层,这些断层组成由南向北呈逐级下降的断阶(图 1b)。

下载原图 图 1 东营凹陷构造单元划分简图(a)、梁东地区沙三中亚段地层厚度时间域等值线图(b)和岩性地层综合柱状图(c) Fig. 1 Structural units division map of the Dongying Sag (a), isochronal thickness map (b), and stratigraphic column (c) in the middle sub-member of the third member of the Shahejie Formation in the Liangdong area

东营凹陷古近系自下而上包括孔店组、沙河街组和东营组[15, 26]。沙河街组由老到新划分为沙四段—沙一段。沙三段进一步划分为沙三下亚段(Es3l)、沙三中亚段(Es3m)和沙三上亚段(Es3u)(图 1c)。Es3m沉积时期,盆地处于强烈伸展阶段,受东部物源供给形成了大规模分布的轴向河控三角洲沉积(即东营三角洲)。该三角洲推进至研究区,形成了三角洲—重力流—深湖沉积体系[17]

2 层序界面识别

基于地震和钻井资料,通过观测地震反射终止关系、坡折点的迁移变化以及地层的叠置关系,对Es3m层序地层格架进行了研究。Es3m内部划分为4个体系域单元,其中单元1在地震剖面上显示地层厚度一致,具有明显的垂向加积叠置的底积层和前积层,未见明显的岸线轨迹。此外,单元1下部的地震反射同相轴振幅强烈,指示了稳定的湖侵泥岩沉积。推断单元1的底界面为最大湖泛面(MFS),判断单元1为HST,其顶界面为BSFR(指FSST底界面)。单元2在地震剖面上表现为进积和退覆叠置特征,具有下降的岸线轨迹,可见高角度前积层,但缺乏顶积层。因此,判断单元2为FSST,其顶、底界面分别为不整合面(SU)和BSFR。单元3的坡折点向盆地方向推进,呈现上凹形态,单元3的内部地层表现为进积—加积(PA)趋势。由此判断,单元3为LST,其顶部以最大湖退面(MRS)为界,底部以SU为界;单元4在地震剖面上可见上超现象,且上超点呈向陆回退的趋势。因此,判断单元4为TST,其顶界面为MFS,底界面为MRS(图 2)。

下载原图 图 2 东营凹陷梁东地区沙三中亚段体系域叠置样式与各体系域识别标准 注:BSFR. 下降体系域底界面;MFS. 最大湖泛面;MRS. 最大湖退面;SU. 陆上不整合面。 Fig. 2 Superimposition patterns of the system tracts and the identification criteria for each system tract in the middle sub-member of the third member of the Shahejie Formation in the Liangdong area, Dongying Sag
2.1 顺物源方向层序结构

研究区的HST位于Es3m的底部,主要由多套近平行的垂向加积叠置的底积层与前积层构成(图 3a)。在研究区东部,HST显示出小规模的前积反射,且地层厚度增加,但未见明显的坡折点。钻井和测井数据显示,该套地层岩性整体由近130 m厚的泥岩、粉砂岩组成,垂向呈加积—进积(AP)地层叠置样式。FSST的底部下超于HST,内部呈切线斜交型前积反射,缺少顶积层和底积层,顶部有削截接触。坡折点持续向下迁移,反映了相对湖平面持续下降,且沉积物快速推进至湖盆中心,形成进积和连续退覆的叠置样式(图 3a)。G12井钻遇FSST的前积层远端,岩性变化表现为反旋回特征(图 3b)。在L57井附近,FSST的地层较薄,发育少量粉砂岩。LST覆盖于FSST之上,具有较大的地层厚度,整体表现为典型的“S”型前积反射,发育顶积层、前积层和底积层,三层结构完整(图 3a)。L57井因钻遇前积层的主体,显示出典型的反旋回特征,顶部地层砂岩较厚,粒度较粗。G12井则钻遇顶积层,岩性以中砂岩为主,测井曲线呈箱形,为一个典型的分流河道沉积。L47井钻遇LST底积,岩性以泥岩为主,内部夹少量的砂岩(图 3b)。TST发育在Es3m的顶部,表现为强振幅、连续性较好的地震相,内部可见明显的上超反射(图 3a)。L47井显示该阶段岩性主体为厚层泥岩,粒度向上变细,指示湖平面快速上升。

下载原图 图 3 东营凹陷梁东地区沙三中亚段层序地层划分及剖面相解释 注:MFS最大湖泛面;BSFR. 下降体系域底界面;MRS. 最大湖退面;SU. 陆上不整合面。 Fig. 3 The sequence stratigraphic division and facies interpretation of the cross-sections in the middle sub-member of the third member of the Shahejie Formation in the Liangdong area, Dongying Sag

总体而言,Es3m内部体系域的叠置反映了研究区经历一次完整的基准面旋回变化。HST形成于基准面上升阶段,此时可容纳空间小于(或等于)沉积物供给量;FSST则形成于基准面下降阶段;LST同样在可容纳空间小于(或等于)沉积物供给量时形成;LST沉积之后,基准面快速上升,沉积了TST。

2.2 垂直物源方向层序结构

近年来的研究表明,受沉积物供给的侧向差异控制,体系域的地层叠置样式和界面特征等会发生变化,其垂向叠置规律和地层结构并不是完全符合标准的层序模式[27-31]。尽管研究区Es3m层序演化特征在顺物源剖面上具有较好的规律性,但在侧物源方向,体系域特征存在明显的变化(图 4)。在地震剖面上,HST的同相轴较平缓,进积和加积特征不明显。HST的主体位于测线b处,地层厚度向南、北两侧逐渐减小(图 4)。FSST的地层厚度在测线a附近最大,具有高角度前积层且缺失顶积层,表明该区域为沉积的主要位置。南部测线显示,FSST厚度减小,前积层变得平缓,表明该区域远离沉积物供给主体(图 4)。LST在东部各测线均具有明显的顶积层和前积层。测线a的LST地层厚度最大,可见高角度的前积层(图 4a)。测线b的特征与测线a相似,但前积倾角略微减小(图 4b)。测线c的地层厚度最小,前积层的倾角最为平缓(图 4c)。这一现象表明,LST三角洲的沉积主体仍集中在测线a附近。TST发育于Es3m的顶部,测线a的TST向陆超覆范围最广,而在南部的超覆范围减小(图 4)。测井资料显示,测线a的TST对应SP测井曲线显示相对高值,含泥量较多;而在测线b,SP测井曲线相对较低,显示出较高的含砂量(图 4a4b)。以上现象指示TST的沉积主体位于测线a附近。

下载原图 图 4 东营凹陷梁东地区沙三中亚段体系域侧向结构差异 注:MFS. 最大湖泛面;MRS. 最大湖退面;SU. 陆上不整合面;BSFR. 下降体系域底界面。 Fig. 4 The lateral structural differences of system tracts in the middle sub-member of the third member of the Shahejie Formation in the Liangdong area, Dongying Sag

总体来看,研究区内各地震剖面上,体系域的垂向叠置变化规律较为一致,但地层厚度、延伸范围、前积角度和砂泥含量等特征在研究区的不同位置存在差异,这些差异与沉积物供给和可容纳空间的变化关系密切。

3 沉积相展布特征 3.1 沉积相类型

通过分析测井和地震资料,结合以往岩心资料,认为研究区以三角洲相和湖泊相为主,并进一步识别出三角洲前缘亚相、半深湖—深湖亚相、湖底扇沉积。

(1)三角洲前缘亚相。三角洲前缘亚相主要发育水下分流河道、河口坝和席状砂微相(图 5)。水下分流河道砂体表现为正粒序,岩性以中砂岩、细砂岩为主。测井曲线呈钟形,岩心中可见明显的槽状交错层理。在靠陆的一侧,前积层在地震剖面上显示出连续性较差的下切特征。河口坝微相多为反粒序,岩性以细砂岩、粉砂岩为主。测井曲线呈齿化漏斗形,岩心中可见明显的块状层理(图 5)。席状砂岩性主要由粉砂岩、细砂岩和泥质粉砂岩组成。测井曲线呈指形或齿形,岩心中可见波状层理和平行层理,地震剖面上具有弱振幅、中—高连续性的特点。

下载原图 图 5 东营凹陷梁东地区沙三中亚段沉积相类型及其识别标志(岩心照片据文献[36-39]修改) Fig. 5 Sedimentary facies types and their identification markers in the middle sub-member of the third member of the Shahejie Formation in the Liangdong area, Dongying Sag

(2)半深湖—深湖亚相。半深湖—深湖亚相岩性以厚层泥岩为主,测井曲线接近泥岩基线,具细微齿化特征。地震剖面上表现为席状反射构型,具有弱振幅、连续性好的平行反射结构(图 5)。

(3)湖底扇。三角洲前缘砂体由于滑塌作用形成湖底扇沉积,这是三角洲远端破坏作用的结果[32-35]。结合以往研究成果[36-39],研究区发育滑塌、碎屑流和浊流3种类型的重力流沉积。测井曲线主要呈箱形、钟形和漏斗形等特征。滑塌沉积岩性以细—粉砂岩为主,厚度较小,岩心显示砂泥互层,含包卷层理和少量泥砾撕裂屑(图 5)。碎屑流沉积则以砂质碎屑流为主,岩性以深灰色和灰黑色的细砂岩为主,岩心中可见明显的泥岩撕裂屑,反映了来源于前三角洲的混杂成因(G11井,2 885.4 m)。浊流沉积岩性以泥岩和粉砂岩为主,具有正粒序特征,岩心内部可见冲刷面、槽模和沟模等侵蚀构造(G11井,2 887.65 m)。

3.2 沉积相平面展布

通过统计地层厚度和砂地比等数据,并提取Es3m体系域内部层间振幅属性切片,分析沉积物从FSST到LST的沉积演化过程。

在FSST沉积时期,G12井附近的地层厚度最大,G121井附近的砂地比最大,并向NW逐渐递减,表明物源由SE逐渐向NW推进。通过地震属性约束砂岩边界,强振幅属性圈定的区域通常代表砂岩更发育的区域。结合前期钻井和测井分析,FSST主要发育水下分流河道、河口坝和重力流沉积。其中,三角洲前缘位于G113井一带,呈NE—SW向展布,而重力流沉积位于G12—G117—L57井一带(图 6)。在LST沉积时期,地层厚度自东向西呈“薄—厚—薄”的分布规律,沉积中心位于G117—G11—L24井附近,该区域为前积反射的主体区。G121井、G113井附近的砂地比最大,并向NW向递减(图 7a7b)。LST沉积相仍以三角洲前缘的水下分流河道和河口坝为主,并发育少量的重力流沉积(图 7c7d)。对比FSST和LST,可以发现LST的高含砂率区域相比FSST向盆地方向迁移,沉积中心也由FSST时期的G12井附近向LST时期的G11井附近西移。LST的沉积类型与FSST类似,但三角洲体系向盆地推进更远,与层序格架的认识一致。

下载原图 图 6 东营凹陷梁东地区沙三中亚段下降体系域沉积相平面展布特征 Fig. 6 Planar distribution characteristics of the sedimentary facies in the FSST of the middle sub-member of the third member of the Shahejie Formation in the Liangdong area, Dongying Sag
下载原图 图 7 东营凹陷梁东地区沙三中亚段低位体系域沉积相平面展布特征 Fig. 7 Planar distribution characteristics of the sedimentary facies in the LST of the middle sub-member of the third member of the Shahejie Formation in the Liangdong area, Dongying Sag
4 断层活动对层序的控制作用

关于Es3m层序及其沉积体系的控制因素,已有研究主要聚焦于盆地构造、气候和沉积物供给3个方面[15-16, 21]。Es3m发育于盆地快速裂陷阶段,叠加高沉降速率(最大达500 m/Ma)与温暖湿润的气候,促进了高可容纳空间的形成(最大水深达140 m)。南东方向的物源区提供了充足的物源条件,使研究区三角洲发育稳定,沉积厚度大。同时,盆地内高频的干—湿气候变化,影响了湖平面升降及沉积物供给,进一步控制了体系域的形成和演化[40]。尽管以往针对Es3m层序及其内幕结构已有大量研究,但层序结构的侧向变化及其控制因素却很少被关注。大量研究表明,体系域的几何样式及对应的层序地层界面沿岸线走向常发生明显的变化[28-29, 41],这种变化反映了沉积物供给(A)与可容纳空间(S)在三维空间上的差异。断层活动控制体系域结构,体现在同一体系域内部结构的空间差异性[42-43]。在大型生长断层的控制下,盆地不同位置的古地貌和沉降速率差异明显。生长断层活动强度较大的区域,断层上盘表现出低地貌和高沉降量,进一步驱动高可容纳空间的形成;反之,生长断层活动强度较小的区域,断层上、下盘地貌差异小,上盘沉降量较小,导致相对低可容纳空间的形成。

在研究区内,体系域的结构在侧向上表现出微弱差异,这种差异主要受陈官庄断裂带F1活动的控制。F1断裂的断距-埋深和生长指数显示,在Es3m沉积时期,F1断裂活动性最强,中部断裂的生长指数达1.8,断距达到最大值(图 8a8b)。在G117井一带,FSST和LST的地层厚度及砂地比最大,反映了F1断裂对沉积中心的控制(图 6图 7)。此外,F1断裂作为该区的三级断层,在其上盘高沉降、高可容纳空间的区域,Es3m内部发育完整的HST,FSST,LST和TST[图 8c1)]。然而在F1断裂下盘的低沉降、低可容纳空间区域,HST和LST厚度明显减小。相较于图 8c1)来说,LST表现出更低的岸线轨迹[图 8c2)]。在最南部测线中,HST,FSST,LST和TST发育程度最差,因可容纳空间有限,地层厚度薄,体系域识别更加困难。FSST和LST表现为薄层,岸线轨迹从平缓到弱下降[图 8c3)]。

下载原图 图 8 东营凹陷梁东地区F1断层对沙三中亚段层序地层格架的控制作用 Fig. 8 The control of the F1 fault on the sequence stratigraphic framework of the middle sub-member of the third member of the Shahejie Formation in the Liangdong area, Dongying Sag
5 石油地质意义

在层序地层格架的约束下,开展沉积特征研究并建立沉积充填和演化模式,能够有效提高砂体分布预测精度[44-45]。在油气勘探开发过程中,不同级次的层序具有不同意义。三级层序分析多用于油气勘探,四级及以上级次的层序在储层分布分析中具有重要作用[46]。Es3m为一个三级层序,内部包含4个体系域。早期发育的HST主要由厚层的深湖暗色泥岩和油页岩沉积组成,是良好的烃源岩。FSST和LST发育了厚层的三角洲前缘砂体和重力流砂体,构成了优质储集层。末期短暂的TST沉积了广泛的暗色泥岩,可作为良好的盖层。Es3m在垂向上构成了一个生、储、盖配置良好的体系,其中FSST和LST作为砂质储层发育的优势单元,是主要的勘探开发目标层段。

在三级层序格架的约束下,以体系域为单元开展准层序或砂层组的划分,能够有效指导砂体对比和油气开发。基于岩性变化和自然伽马曲线特征,将该段划分为6个准层序(PSS1—PSS6),对应6个砂层组。其中,准层序PSS6对应FSST,准层序PSS2—PSS5对应LST,准层序PSS1对应TST。油藏剖面表明,PSS4—PSS6内部砂体表现出连续进积的趋势(图 9)。LST中PSS4—PSS5砂体厚度和推进距离明显大于PPS6,油层发育特征与砂体发育特征基本一致,其规模和特征主要受层序格架的控制。早期PSS6—PSS5油藏主要受砂体上倾尖灭控制,晚期PSS4油藏则受砂体和断层共同控制,断层与砂体匹配关系良好。综上所述,不同尺度的层序分析可以有效指导储层预测与砂体精细对比,同时也是研究油藏特征的重要工具。

下载原图 图 9 东营凹陷梁东地区沙三中亚段FSST和LST油藏剖面图 Fig. 9 Oil reservoir profile diagrams of the FSST and LST in the middle sub-member of the third member of the Shahejie Formation in the Liangdong area, Dongying Sag
6 结论

(1)东营凹陷梁东地区的Es3m划分为HST,FSST,LST和TST。HST由多套近平行且垂向加积叠置的底积层与前积层构成;FSST内部为切线斜交型前积反射,缺乏顶积层和底积层;LST整体呈“S”型前积反射;TST表现出明显的上超反射。

(2)在FSST沉积时期,研究区主要发育水下分流河道、河口坝和重力流沉积。LST沉积时期,地层厚度自东向西呈现“薄—厚—薄”的分布规律,微相仍以水下分流河道、河口坝和重力流沉积为主。沉积演化上,LST继承了FSST的沉积相带,且进一步向盆地方向推进。

(3)F1生长断裂的活动对层序结构产生了影响,导致层序结构在侧向上出现明显差异。在F1断裂上盘,Es3m发育完整的HST,FSST,LST和TST;而在F1断裂下盘,HST和LST的厚度明显减小,LST显示出更低的岸线轨迹。在南部地区,HST,FSST,LST和TST的发育程度最差。

(4)基于不同尺度的层序分析,有助于精确对比砂体并进行储层预测。梁家楼地区的Es3m划分为6个准层序(PSS1—PSS6),对应于6个砂层组。LST(PSS4—PSS5)和FSST(PSS6)内部的三角洲和重力流砂体是主要的储集层,油层发育特征与砂体发育特征几乎相同。

参考文献
[1]
VAIL P R, MITCHUM R M, THOMPSON Ⅲ S. Seismic stratigraphy and global changes of sea level, Part 3: Relative changes of sea level from coastal onlap[M] Payton C E. Seismic stratigraphy-applications to hydrocarbon exploration. Oklahoma: American Association of Petroleum Geologists, 1977: 63-81.
[2]
胡忠贵, 王纪煊, 李世临, 等. 川东地区寒武系高台组白云岩-蒸发岩共生地层高频层序划分及地质意义. 岩性油气藏, 2023, 35(2): 113-124.
HU Zhonggui, WANG Jixuan, LI Shilin, et al. High-frequency sequence division and geological significance of dolomite-evaporite paragenetic strata of Cambrian Gaotai Formation in eastern Sichuan Basin. Lithologic Reservoirs, 2023, 35(2): 113-124.
[3]
VAN WAGONER J C, POSAMENTIER H W, MITCHUM R M, et al. An overview of the fundamentals of sequence stratigraphy and key definitions[M] WILGUS C K, HASTINGS B S, POSAMENTIER H, et al. Sea-level changes: An integrated approach. Tulsa: SEPM Socie ty for Sedimentary Geology, 1988: 39-45.
[4]
王乔, 宋立新, 韩亚杰, 等. 辽河西部凹陷雷家地区古近系沙三段沉积体系及层序地层. 岩性油气藏, 2021, 33(6): 102-113.
WANG Qiao, SONG Lixin, HAN Yajie, et al. Depositional system and sequence stratigraphy of the third member of Paleogene Shahejie Formation in Leijia area, Western Liaohe Depression. Lithologic Reservoirs, 2021, 33(6): 102-113.
[5]
GALLOWAY W E. Genetic stratigraphic sequences in basin analysisⅠ: Architecture and genesis of flooding-surface bounded depositional units. AAPG Bulletin, 1989, 73(2): 125-142.
[6]
彭军, 褚江天, 陈友莲, 等. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征. 岩性油气藏, 2020, 32(4): 12-22.
PENG Jun, CHU Jiangtian, CHEN Youlian, et al. Sedimentary characteristics of Lower Cambrian Canglangpu Formation in Gaoshiti-Moxi area, Sichuan Basin. Lithologic Reservoirs, 2020, 32(4): 12-22.
[7]
CATUNEANU O, ABREU V, BHATTACHARYA J P, et al. Towards the standardization of sequence stratigraphy. Earth and Atmospheric Science Reviews, 2009, 92(1/2): 1-33.
[8]
CATUNEANU O, GALLOWAY W E, KENDALL C G S C, et al. Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 2011, 44(3): 173-245. DOI:10.1127/0078-0421/2011/0011
[9]
龚承林, STEEL R J, 彭旸, 等. 深海碎屑岩层序地层学50年(1970—2020)重要进展. 沉积学报, 2022, 40(2): 292-318.
GONG Chenglin, STEEL R J, PENG Yang, et al. Major advances in deep-marine siliciclastic sequence stratigraphy, 1970 to 2020. Acta Sedimentologica Sinica, 2022, 40(2): 292-318.
[10]
CATUNEANU O. Principles of sequence stratigraphy. Amsterdam: Elsevier, 2006: 375.
[11]
苗顺德, 李秋芬. 地震沉积学的内涵及其在陆相断陷盆地中的应用. 岩性油气藏, 2012, 24(4): 64-69.
MIAO Shunde, LI Qiufen. Concept of seismic sedimentology and its application in continental rift basin. Lithologic Reservoirs, 2012, 24(4): 64-69. DOI:10.3969/j.issn.1673-8926.2012.04.012
[12]
朱筱敏, 王华, 朱红涛, 等. 陆相层序地层学研究进展及发展关注. 石油学报, 2023, 44(8): 1382-1398.
ZHU Xiaomin, WANG Hua, ZHU Hongtao, et al. Research progress and development focuses of continental sequence stratigraphy. Acta Petrolei Sinica, 2023, 44(8): 1382-1398.
[13]
朱筱敏, 陈贺贺, 葛家旺, 等. 陆相断陷湖盆层序构型与砂体发育分布特征. 石油与天然气地质, 2022, 43(4): 746-762.
ZHU Xiaomin, CHEN Hehe, GE Jiawang, et al. Characterization of sequence architectures and sandbody distribution in continental rift basins. Oil & Gas Geology, 2022, 43(4): 746-762.
[14]
王华. 层序地层学基本原理、方法与应用. 武汉: 中国地质大学出版社, 2008.
WANG Hua. Basic principles, methods and applications of sequence stratigraphy. Wuhan: China University of Geosciences Press, 2008.
[15]
王波, 王玉环, 左玉杰. 渤海湾SZ36-1S地区高精度层序约束下储层预测与岩性油藏勘探潜力分析. 岩性油气藏, 2011, 23(1): 39-41.
WANG Bo, WANG Yuhuan, ZUO Yujie. Reservoir prediction constrained with high resolution sequence stratigraphy and exploration prospect of lithologic reservoirs in SZ36-1S area in Bohai Bay. Lithologic Reservoirs, 2011, 23(1): 39-41. DOI:10.3969/j.issn.1673-8926.2011.01.006
[16]
杨伟利, 姜在兴, 操应长, 等. 东营凹陷沙三段—沙二下亚段T-R层序特征及成因. 石油大学学报(自然科学版), 2003, 27(3): 6-9.
YANG Weili, JIANG Zaixing, CAO Yingchang, et al. Characters and formation of T-R sedimentary sequences of Sha-Ⅲ and the lower Sha-Ⅱ members in Dongying Depression. Journal of the University of Petroleum (Edition of Natural Science), 2003, 27(3): 6-9. DOI:10.3321/j.issn:1000-5870.2003.03.003
[17]
李维岭, 姜在兴, 张春明, 等. 东营凹陷博兴洼陷深洼区古近系沙河街组三段中亚段沉积特征. 大庆石油学院学报, 2012, 36(3): 1-7.
LI Weiling, JIANG Zaixing, ZHANG Chunming, et al. Sedimentary characteristics of the mid-sha-3 member, Shahejie Formation, eogene in the deep depression area of the Boxing sag, Dongying Depression. Journal of Daqing Petroleum Institute, 2012, 36(3): 1-7.
[18]
牛成民, 杜晓峰, 王启明, 等. 渤海海域新生界大型岩性油气藏形成条件及勘探方向. 岩性油气藏, 2022, 34(3): 1-14.
NIU Chengmin, DU Xiaofeng, WANG Qiming, et al. Formation conditions and exploration direction of large-scale lithologic reservoirs of Cenozoic in Bohai Sea. Lithologic Reservoirs, 2022, 34(3): 1-14.
[19]
操应长, 姜在兴, 夏斌, 等. 陆相断陷湖盆T-R层序的特点及其控制因素: 以东营凹陷古近系沙河街组三段层序地层为例. 地质科学, 2004, 39(1): 111-122.
CAO Yingchang, JIANG Zaixing, XIA Bin, et al. Characters and controlling factors of T-R sequence in lacustrine deposits of rift basin: An example from the Dongying Depression, eastern China. Chinese Journal of Geology, 2004, 39(1): 111-122. DOI:10.3321/j.issn:0563-5020.2004.01.012
[20]
刘建平, 鲜本忠, 王璐, 等. 渤海湾盆地东营凹陷始新世三角洲供给型重力流地震沉积学研究. 古地理学报, 2016, 18(6): 961-975.
LIU Jianping, XIAN Benzhong, WANG Lu, et al. Seismic sedimentology of delta-fed turbidites of the Eocene in Dongying sag, Bohai Bay Basin. Journal of Palaeogeography, 2016, 18(6): 961-975.
[21]
LIU Jianping, XIAN Benzhong, WANG Junhui, et al. Sedimentary architecture of a sub-lacustrine debris fan: Eocene Dongying Depression, Bohai Bay Basin, East China. Sedimentary Geology, 2017, 362: 66-82. DOI:10.1016/j.sedgeo.2017.09.014
[22]
袁静, 周涛, 乔俊, 等. 深层砂砾岩中的深部热流体作用及其地质意义: 以渤海湾盆地东营凹陷民丰—盐家地区古近系沙河街组四段为例. 石油与天然气地质, 2022, 43(4): 929-942.
YUAN Jing, ZHOU Tao, QIAO Jun, et al. Deep hydrotherma-lism of deep coarse-grained siliciclastic rocks and its geological significance: A case study of the 4th member of the Paleogene Shahejie Formation in Minfeng-Yanjia area, Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 2022, 43(4): 929-942.
[23]
黄雅睿, 杨剑萍, 卢惠东, 等. 东营凹陷营北地区沙三中亚段重力流沉积特征. 岩性油气藏, 2022, 34(1): 14-23.
HUANG Yarui, YANG Jianping, LU Huidong, et al. Sedimentary characteristics of gravity flow of middle Es32 member in Yingbei area, Dongying Sag. Lithologic Reservoirs, 2022, 34(1): 14-23.
[24]
陈扬, 胡钦红, 赵建华, 等. 渤海湾盆地东营凹陷湖相富有机质页岩纹层特征和储集性能. 石油与天然气地质, 2022, 43(2): 307-324.
CHEN Yang, HU Qinhong, ZHAO Jianhua, et al. Lamina characteristics and their influence on reservoir property of lacustrine organic-rich shale in the Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 2022, 43(2): 307-324.
[25]
张鹏飞. 东营凹陷洼陷带沙三中亚段浊积岩成藏条件分析. 岩性油气藏, 2012, 24(3): 61-65.
ZHANG Pengfei. Hydrocarbon accumulation conditions of turbidite in the middle sub-member of the third member of Shahejie Formation in sub-depression belt of Dongying Sag. Lithologic Reservoirs, 2012, 24(3): 61-65.
[26]
FENG Youliang, JIANG Shu, HU Suyun, et al. Sequence stratigraphy and importance of syndepositional structural slope-break for architecture of Paleogene syn-rift lacustrine strata, Bohai Bay Basin, East China. Marine and Petroleum Geology, 2016, 69: 183-204.
[27]
陈维涛, 徐少华, 孙珍, 等. 层序地层学标准化理论在陆架坡折-陆坡区的应用: 以珠江口盆地中中新世沉积层序为例. 石油与天然气地质, 2021, 42(6): 1414-1422.
CHEN Weitao, XU Shaohua, SUN Zhen, et al. Application of standardized sequence stratigraphy theory in the shelf break-to-slope area: A case study of the Middle Miocene sedimentary sequence in the PRMB. Oil & Gas Geology, 2021, 42(6): 1414-1422.
[28]
XU Shaohua, HAN Jianhui, WANG Yingmin, et al. How much systems-tract scale, three-dimensional stratigraphic variability is present in sequence stratigraphy?An answer from the middle Miocene Pearl River Mouth Basin. AAPG Bulletin, 2020, 104(6): 1261-1285.
[29]
MADOF A S, HARRIS A D, CONNELL S D. Nearshore along-strike variability: Is the concept of the systems tract unhinged?. Geology, 2016, 44(4): 315-318.
[30]
余烨, 张昌民, 朱锐, 等. 强制海退体系域识别特征及其油气意义. 沉积学报, 2019, 37(2): 345-355.
YU Ye, ZHANG Changmin, ZHU Rui, et al. Recognition characteristics and hydrocarbon significance of a falling stage systems tract. Acta Sedimentologica Sinca, 2019, 37(2): 345-355.
[31]
徐少华, 何敏, 庞雄, 等. 被动陆缘层序地层结构的侧向变化及其启示: 以珠江口盆地中中新世13.8 Ma为例. 石油与天然气地质, 2018, 39(4): 811-822.
XU Shaohua, HE Min, PANG Xiong, et al. Lateral variation of sequence stratigraphic architecture on passive continental margin and its enlightenment: A case from the Middle Miocene in Pearl River Mouth Basin in 13.8 Ma. Oil & Gas Geology, 2018, 39(4): 811-822.
[32]
TALLING P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Marine Geology, 2014, 352(SI): 155-182.
[33]
TALLING P J, PAULL C K, PIPER D J W. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows. Earth-Science Reviews, 2013, 125: 244-287.
[34]
SHANMUGAM G, LEHTONEN L R, STRAUME T, et al. Slump and debris-flow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas(61-67°N): Implications for sand distribution. AAPG Bulletin, 1994, 78(6): 910-937.
[35]
杨田, 操应长, 田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识. 沉积学报, 2021, 39(1): 88-111.
YANG Tian, CAO Yingchang, TIAN Jingchun, et al. Discussion on research of deep-water gravity flow deposition in lacustrine basin. Acta Sedimentologica Sinica, 2021, 39(1): 88-111.
[36]
汤望新. 东营凹陷东部古近系沙三中—上亚段沉积差异演化研究[D]. 北京: 中国地质大学(北京), 2022.
TANG Wangxin. The difference of sedimentary characteristics between the middle submember and upper submember of the third member of Shahejie Formation of Paleogene in the eastern Dongying Depression[D]. Beijing: China University of Geosciences(Beijing), 2022.
[37]
代俊杰. 东营凹陷现河地区沙三中亚段砂体成因类型及地球物理响应特征[D]. 青岛: 中国石油大学(华东), 2018.
DAI Junjie. Genetic types and geophysical response characteristics of sand bodies in the middle sub-member of the third member of Shahejie Formation in Xianhe area, Dongying Sag[D]. Qingdao: China University of Petroleum(East China), 2018.
[38]
王伟锋, 胡瑜, 于正军, 等. 东营三角洲前缘坡移扇储集体特征及成因研究. 石油实验地质, 2016, 38(5): 600-608.
WANG Weifeng, HU Yu, YU Zhengjun, et al. Reservoir characteristics and genesis of slope fans in Dongying delta front. Petroleum Geology & Experiment, 2016, 38(5): 600-608.
[39]
张青青. 东营凹陷三角洲前缘滑塌成因重力流沉积特征及沉积模式[D]. 青岛: 中国石油大学(华东), 2018.
ZHANG Qingqing. Sedimentary characteristics and depositional model of gravity flows caused by sediment retransportation of delta front in Dongying Sag[D]. Qingdao: China University of Petroleum(East China), 2018.
[40]
SHANG Wenliang, XU Shaohua, MAO Zhenqiang, et al. High-resolution sequence stratigraphy in continental lacustrine basin: A case of Eocene Shahejie Formation in the Dongying Depression, Bohai Bay Basin. Marine and Petroleum Geology, 2022, 136(1): 1-18.
[41]
CHIARELLA D, LONGHITANO S G, TROPEANO M. Different stacking patterns along an active fold-and-thrust belt-Acerenza Bay, Southern Apennines(Italy). Geology, 2019, 47(2): 139-142.
[42]
GAWTHORPE R L, ANDREWS J E, COLLIER R E L, et al. Building up or out? Disparate sequence architectures along an active rift margin-Corinth rift, Greece. Geology, 2017, 45(12): 1111-1114.
[43]
DUFFY O B, BROCKLEHURST S H, GAWTHORPE R L, et al. Controls on landscape and drainage evolution in regions of distributed normal faulting: Perachora Peninsula, Corinth Rift, Central Greece. Basin Research, 2015, 27(4): 473-494.
[44]
彭丽, 伍轶鸣, 练章贵, 等. 陆相断陷湖盆高频层序特征及其沉积演化: 以渤海湾盆地济阳坳陷沙三下亚段为例. 石油与天然气地质, 2019, 40(4): 789-798.
PENG Li, WU Yiming, LIAN Zhanggui, et al. Features and sedimentary evolution of high-frequency sequence in continental lacustrine rift basin: Example of the lower Shahejie member 3 in Jiyang Depression, Bohai Bay Basin. Oil & Gas Geology, 2019, 40(4): 789-798.
[45]
白云翔. 胜利油田东部区域东营组沉积性质研究. 中国石油和化工标准与质量, 2023, 43(14): 140-142.
BAI Yunxiang. Study on sedimentary properties of Dongying Formation in eastern area of Shengli Oilfield. China Petroleum and Chemical Standard and Quality, 2023, 43(14): 140-142.
[46]
沙旭光, 姜忠正, 李玉兰, 等. 塔里木盆地卡塔克隆起良里塔格组台缘带储层控制因素. 矿业科学学报, 2023, 8(5): 600-612.
SHA Xuguang, JIANG Zhongzheng, LI Yulan, et al. Controlling factors of reservoir in platform margin zone of Lianglitage Formation in Katake Uplift, Tarim Basin. Journal of Mining Science and Technology, 2023, 8(5): 600-612.
东营凹陷梁东地区古近系沙三中亚段层序地层划分及石油地质意义
曲星宇