岩性油气藏  2022, Vol. 34 Issue (2): 105-115       PDF    
×
渤海湾盆地埕北断阶带断裂发育特征及其控藏作用
缪欢1, 王延斌1, 何川2, 李建红1, 张伟2, 张雨建1, 龚训1    
1. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083;
2. 中国石油大港油田分公司 勘探开发研究院, 天津 300280
摘要: 为研究渤海湾盆地埕北断阶带主干断层的发育特征及其与上古生界烃源岩二次生烃成藏的关系,开展了地震资料解释、钻井资料分析和各时代底面构造特征研究,精细刻画了区内张北、张东、赵北和羊二庄4条主干断层几何形态、活动性和封堵性特征。结果表明:①研究区主干断层断面呈铲式或坡坪式,与两侧的次级断裂在剖面呈“Y”字型、花状等构造样式,在平面上呈羽状、雁列状;各主干断层在Es期内的活动性最强,Ng期最弱;张东断层和赵北断层在Ed期的封堵性较差,Ng期封堵性好;张北断层在Ed期的封堵性好,Ng期的封堵性较差;羊二庄断层在Ed期和Nm期的封堵性均为较好;②歧口主凹上古生界烃源岩在Es3期内达到生烃高峰期,现今为过成熟阶段;埕北断阶带上古生界烃源岩在新近系达到生烃高峰,且现今仍处于生烃高峰期;③Ed期至现今,埕北断阶带内各成藏要素比配极好,为上古生界油气藏形成的关键时期,上古生界原生油气藏主要为自生自储的背斜油气藏、断块-断鼻油气藏和新生古储的古潜山油气藏,其中背斜油气藏和断块—断鼻油气藏在全区均有分布,而古潜山油气藏分布于张东潜山。该研究成果可为埕北断阶带上古生界油气勘探提供依据。
关键词: 主干断层    二次生烃    油气成藏    上古生界    埕北断阶带    渤海湾盆地    
Fault development characteristics and reservoir control in Chengbei fault step zone, Bohai Bay Basin
MIAO Huan1, WANG Yanbin1, HE Chuan2, LI Jianhong1, ZHANG Wei2, ZHANG Yujian1, GONG Xun1    
1. School of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
2. Research Institute of Exploration and Development, PetroChina Dagang Oilfield Company, Tianjin 300280, China
Abstract: In order to study the development characteristics of the main faults in Chengbei fault step zone of Bohai Bay Basin and its relationship with the secondary hydrocarbon generation and accumulation of Upper Paleozoic source rocks, seismic data interpretation, drilling data analysis and bottom structural characteristics of each era were carried out, and the geometric shape, activity and sealing characteristics of four main faults in Zhangbei, Zhangdong, Zhaobei and Yang'erzhuang were characterized. The results show that: (1) The main fault section in the study area is shovel type or slope flat type, and the secondary faults on both sides are in "Y" shape and flower shape in the section, and in feather and en echelon shape in horizontal plane. The activity of each main fault is the strongest in Es stage and the weakest in Ng stage. The sealing properties of Zhangdong fault and Zhaobei fault were poor in Ed stage but good in Ng stage, the sealing properties of Zhangbei fault were good in Ed stage but poor in Ng stage, and the sealing properties of Yang'erzhuang fault were good in both Ed stage and Nm stage.(2) The Upper Paleozoic source rocks in Qikou main depression reached the peak of hydrocarbon generation in Es3 stage, and now it is an over mature stage. The Upper Paleozoic source rocks in Chengbei fault step zone reached the peak of hydrocarbon generation in Neogene, and now are still in the peak of hydrocarbon generation.(3) The reservoir accumulation elements in Chengbei fault step zone are well matched from Ed stage to present which are the key stage for the formation of Upper Paleozoic reservoirs. The primary reservoirs of Upper Paleozoic are mainly self-source and self-reservoir anticline reservoirs, fault block and fault nose reservoirs, and buried hill reservoirs with young source in old reservoir, among which the former two are distributed in the whole area, and the last are distributed in Zhangdong buried hill. The research results can provide a basis for Upper Paleozoic oil and gas exploration in Chengbei fault step zone.
Key words: main fault    secondary hydrocarbon generation    hydrocarbon accumulation    Upper Paleozoic    Chengbei fault step zone    Bohai Bay Basin    
0 前言

歧口凹陷油气资源丰富,是黄骅坳陷油气勘探开发的重点区[1-2],研究区WS1井发现了与上古生界煤系地层有关的油气藏[3],表明歧口凹陷上古生界煤系烃源岩具有良好的油气勘探前景[4-7]。区内埕北断阶带毗邻歧口主凹等生烃中心,上古生界河流相碎屑岩储层及下古生界奥陶系储层广泛发育,区内大断层延伸长、断距大,可使下降盘的生油层与潜山储层对接,形成良好的油气运移通道和供储关系[8-12],为歧口凹陷上古生界烃源岩的重点勘探区块。断裂构造对歧口凹陷油气控制作用明显,油气藏分布与构造活动紧密相关,主要分布在一些构造带和断层带上[13-16]

尽管以往的学者对歧口凹陷上古生界烃源岩的特征及生烃演化、主干断裂的发育特征和断裂构造对古近系烃源岩的生烃、油气储运的控制作用等方面做了大量的工作[4-16],但目前关于埕北断阶带内各主干断裂构造发育特征描述不精细且主要集中在主干断裂与次级断裂相互作用而形成的几何构造样式、上古生界烃源岩的二次生烃与断裂构造成藏匹配关系模糊,这些问题将进一步限制埕北断阶带的上古生界油气的勘探。

以渤海湾盆地歧口凹陷埕北断阶带为研究对象,依据钻井资料、地震资料以及各时代底面构造图精细刻画区内张东、张北、赵北和羊二庄断层的空间几何特征、活动性和封堵性,并在歧口凹陷石炭系—二叠系烃源岩的生烃演化基础上,分析主干断层的发育特征与上古生界烃源岩的二次生烃耦合成藏匹配关系和上古生界原生油气藏的成藏模式,以期为埕北断阶带上古生界油气藏勘探提供依据。

1 地质概况

歧口凹陷位于渤海湾盆地东北部,黄骅凹陷中北部,南起埕宁隆起,北至北大港潜山构造带,东临歧口沿岸带,西到孔店潜山构造带,总面积约5 280 km2,是黄骅凹陷最大的沉积单元[7]。歧口凹陷经历了古近系同裂陷阶段和新近系后裂陷阶段两个构造演化阶段,其中,同裂陷阶段又可分为裂陷Ⅰ幕和裂陷Ⅱ幕,最终形成了西部三隆夹三凹和东部以歧口主凹为主的负向构造单元格局,整体形似一个不对称的箕状构造[15]。歧口凹陷内每个次凹子单元具有“北深南浅”和“北断南超”的特点。歧口凹陷自下而上沉积了13套地层,其中石炭系—二叠系发育的优质煤系烃源岩和古近系巨厚层暗色湖湘泥岩为歧口凹陷的重要生烃层位[1-4]。本次研究的目的地层为石炭系—二叠系煤系烃源岩。

埕北断阶带位于歧口凹陷南缘,为埕宁隆起向歧口凹陷过渡的断阶式斜坡区,其北侧以歧东断层为界与歧口主凹相接,西以赵北、羊二庄等基岩断层与歧南次凹、歧北次凹相隔[17],勘探面积超过2 300 km2图 1)。研究区被歧东、张东、张北、海4井、赵北、羊二庄等断层所切,形成了由北向南逐级抬升的断阶结构[18]。位于赵北断层下降盘的中断阶张东潜山上古生界地层埋深为3 600~4 400 m,位于羊二庄断层上升盘的高断阶赵东潜山与羊二庄构造地层埋深为1 800~2 200 m。歧口凹陷内的油气钻井揭示,石炭系—二叠系原生油气藏主要存在3套良好的储盖组合(图 1),第1套为奥陶系峰峰组及其之上的本溪组、太原组,第2套为二叠系石盒子组及其之上的石千峰组,第3套为石千峰组及其之上的中生界。

下载原图 图 1 渤海湾盆地埕北断阶带位置(a)及上古生界地层柱状图(b) Fig. 1 Location of Chengbei fault step zone(a)and stratigraphic column of Upper Paleozoic(b)in Bohai Bay Basin
2 主干断层的发育特征

埕北断阶带内共有二级主干断层5条,其中张北断层、张东断层、赵北断层和羊二庄断层对上古生界烃源岩发育、油气藏的运移成藏控制作用明显,以这4条主干断层为研究对象,基于二维地震资料和各时代底面构造特征,精细刻画其几何特征、活动性以及封堵性。

2.1 几何特征

学者们关于埕北断阶带内的主干断层已有相关研究[17-21],但均为简单描述,难以达到精细刻画的要求。基于二维地震资料和歧口凹陷的构造图精细描述可研究这些主干断层不同部位的几何特征(表 1)。

下载CSV 表 1 埕北断阶带各个主干断层的几何特征 Table 1 Geometric characteristics of main faults in Chengbei fault step zone

张北断层走向为NE,倾向WN,平面呈反“L”型,长约14 km(图 2a),断面上陡下缓,呈铲式。依据发育特征可分为南北2段。其中,南段走向近EW向,倾角较陡,断距较北部小,次级断层切割较深,断块体呈断阶结构;北段为NE向走向,倾角较陡,倾角在走向上变化较小,断距较大,可达1 000 m。断层两侧发育多条近东西向次级横向调节断层与之相交,形成典型的羽状平面组合样式,剖面上呈多米诺型组合样式。

下载原图 图 2 埕北断阶带各个主干断层的平面形态及地震剖面 Fig. 2 Plane shape and profile of main faults in Chengbei fault step zone

张东断层走向NEE,倾向NNE,延伸长度约20 km(图 2b)。断面几何形态呈坡坪式,其缓倾部位处于东营组,表明与东营组岩性密切相关,上升盘能动性强的基底或潜山也起到了重要作用[19]。走向变化明显,可将其分为东西2段。其中,东段走向为NE向,断距、水平位移较西段小,发育多条走向与张东断层近似的次级断层,平面上呈羽状组合样式,剖面上形成共轭式组合样式;西段走向为NWW向,断距落差较东段要高,西与张北断层相接,发育多条平行次级断层,在平面上组合呈雁列状组合形式,剖面上组合呈花状构造。

赵北断层东端与羊二庄断层相接,走向变化明显,从陆地到海域,走向由NE转为NEE向,延伸长约14 km[17]图 2c)。断面上陡下缓,呈铲式。上升盘则缺失东一段地层,下降盘发育友谊、羊二庄一区等背斜或断鼻等圈闭[20]。断层规模、空间组合、次级断层发育程度、断块拼接方式等方面沿走向变化比较明显,根据变化可以分为东段、中段和西段3部分。其中,东段断层断距较小,以单条正断层为主,上盘也发育反向正断层,剖面上构成“Y”字型组合样式,在本段最南端南北两侧次级断层最多(8条)规模最大,呈羽列状排列;中段走向近WE向,倾角比西段大,整体较陡,中段断层条数变多,下盘构成多米诺式组合;西段走向为NEE向,断层倾角较缓,断层西端也以单条正断层为特点,在上盘发育反向正断层,构成“Y”字型,平面上形成侧列状组合。

羊二庄断层走向多呈NEE向、NE向,长约24 km。倾向NW,倾角40°~60°(图 2d)。羊二庄基底断层在剖面上产状较陡,呈坡坪式,并具有负花状构造特征,与对应盖层中雁列式展布的张东断层、歧东断层等断层系构成另一个帚状断层体系[21]。沿走向,羊二庄断层可分为东段、中段和西段3段,断层带总体成左阶雁列式正断层系,反映出断层带右旋走滑的动力学机制[15]。其中,羊二庄断层东段走向为NEE向,倾向北西,倾角接近60°;中段走向为NNE向,倾向北西,倾角接近50°,但次级断层由东向西逐渐发育;走向由西段的EW向,向东部转为NEE向,断层长9 km,构造样式为“Y”型构造。

2.2 活动性

用于表征断层活动性的方法有生长指数法、活动速率法和断层落差法[22-26]。其中,活动速率法相较于应用条件苛刻且不考虑沉积压实作用的生长指数法具有的简单、便捷和易获取的特点[24],相较于断层落差法具有直观性和对比性强的特点[22]。因此,笔者采用活动速率法来分析研究区内主干断层的活动性。

断层活动形成的落差与其相应沉积时间的比值叫做断层活动速率[25-26]。从地震剖面获取了Es3、Es2,Es1,Ed,Ng,Nm等6个时代断层落差,对研究区内各个主干断层不同部位、不同时代活动性进行定量描述(图 3)。

下载原图 图 3 埕北断阶带主干断层活动性 Fig. 3 Activities of main faults in Chengbei fault step zone

统计不同断层不同时期内的活动平均速率(表 2)可以得出,张北、张东、赵北3条主干断层ES3期—Es2期活动性减弱,Es2期—Es1期活动性增强达到最大值,Es1期—Ng期活动性持续减弱至最小值,在Nm期活动性再增强,但活动性增幅不大;羊二庄断层在Es2期活动性达到最大值,之后持续减弱,到Ng期达到最小值,Nm期活动性小幅度增强。

下载CSV 表 2 埕北断阶带主干断层不同时期的平均活动速率统计表 Table 2 Average activity rate of main faults in different stages in Chengbei fault step zone

通过对主干断层不同部位断层活动性分析可得,张东断层(图 3a)在Es时期内,断层两端的活动性强于中段,Ed期—Ng期内,断层的西段活动性强于东段和中段;张北断层(图 3b)和羊二庄断层(图 3d)在Es时期内,两端的活动性弱于中段,Ed期—Ng期内,东段活动性强于西段和中段;赵北断层(图 3c)在各个时期内,中段的活动性均强于东段和西段。这是由于Es4早期,太平洋板块对华北板块的俯冲由Ek期NWW向转向NW向[27-28],Es3期—Es1期,在NW—SE向伸展区域应力场作用下,主干断层整体活动性强,此时断裂展布以NE向为主。新近纪,由于印支板块对西藏板块的强烈挤压和向N俯冲,此时歧口凹陷区域应力场转变为以右旋剪切为主[15, 29],各个主干断层部分区带走向转为近WE向。

2.3 封堵性

区域应力场特征,断层性质、展布、活动,断层的两侧岩性及产状配置等因素影响着断层的封堵性[30]。其他学者研究发现,断层的走向与最大主压应力方向间的夹角可以表示断层的封堵性,当最大压应力与断层走向平行时,断层趋于开启,封堵性差;当最大主压应力与断层的走向斜交的时候,锐夹角越小,越有利于断裂的开启,封堵性差;当最大压应力与断层走向垂直的时候,断层趋于闭合,封堵系数较高[31]

Es3期— Es1期,受拉张应力的影响,研究区内主干断层的封堵性整体较差,有利于油气的运聚成藏;Ed期—Ng期,由于印支板块对西藏板块的强烈挤压和向北俯冲,此时歧口凹陷区域应力场以挤压应力和右旋剪切应力为主,且Ed期的最大主压应力方向为SE102°、Nm期的最大主压应力方向为SE178°,现今以右旋剪切应力为主[29, 32]

采用模糊定量统计方法[31]计算出埕北断阶带内主干断层不同时期的封闭系数(表 3)。依据最大主拉应力方向与断裂走向间夹角所对应的闭合系数(表 4),张北断层在Ed期内封堵性强,不利于油气运聚,Nm期内的封堵性较差,不利于油气的保存;张东断层和赵北断层在Nm期内封堵性强,有利于油气成藏,在Ed期内封堵性弱,有利于油气的运移;羊二庄断层在Ed期—Nm期的封堵性均为较好,较为有利于油气的保存。

下载CSV 表 3 埕北断阶带主干断层不同时期的断裂封闭系数 Table 3 Sealing coefficient of main faults in different stages in Chengbei fault step zone
下载CSV 表 4 最大主压应力方向与断裂走向间夹角所对应的闭合系数取值[31] Table 4 Sealing coefficient calculated by acute angle between maximum principal compressive stress orientation and fault strike
3 歧口凹陷上古生界烃源岩特征及其生烃演化

歧口凹陷石炭系—二叠系煤系烃源岩主要分布在山西组和太原组地层中,其中山西组煤层厚8~ 10 m,暗色泥岩厚40~60 m,TOC平均值为1.96%,太原组煤层厚10~12 m,暗色泥岩厚60~80 m,TOC平均值为3.72%,均为好—很好烃源岩[33-36]

负向构造单元具有埋深较大,有机质演化程度高等特点,往往成为油气藏的烃源灶[36]。埕北断阶带通过正断层与歧口主凹、歧北次凹和歧南次凹等生烃中心相接。此外,研究区内石炭系—二叠系分布广泛,这为埕北断阶带提供了充足的油气来源。

目前,歧口凹陷上古生界烃演化研究主要集中在隆起区,负向构造单元由于地层埋深大、钻井资料缺乏,上古生界生烃演化研究较少。在其他学者对歧口凹陷和渤海湾盆地沉降史研究[37-38]的基础上,结合地震资料及钻井资料,采用沉积速率法恢复剥蚀厚度[39],并利用petro mod软件模拟歧口主凹(图 4a)和埕北断阶带(图 4b)的埋藏史,进而分析歧口主凹和埕北断阶带的生烃特性。

下载原图 图 4 歧口主凹和埕北断阶带的埋藏史 Fig. 4 Burial history of Qikou main depression and Chengbei fault step zone

基于其他学者的研究成果[33, 37-38]和歧口凹陷构造演化史[27],研究区石炭系—二叠系烃源岩在二叠纪末—三叠纪初进入了生烃门限,歧口主凹地层温度约为80 ℃,埕北断阶带地层约为90 ℃,三叠纪末期,华北板块与扬子板块相互挤压,黄骅坳陷EW轴向宽缓的褶皱构造开始形成,研究区整体抬升遭受强烈剥蚀[33, 40-41],该时期生烃中断;中生代,研究区接受陆相沉积建造[7],下白垩统岩浆活动使歧口凹陷部分潜山区域整体抬升接受剥蚀,由于岩浆的加温、烘烤作用,部分地区烃源岩受热生烃[4, 7, 33, 35, 42],但该次生烃范围小,不足以形成工业油气藏;古近纪,歧口凹陷受区域伸展应力的影响发育大量主干断层,各级构造单元大幅度沉降,随埋深增加,烃源岩热演化程度增高,开始二次生烃,但在东营组沉积期,断陷活动变弱,喜山运动使得歧口凹陷小幅度抬升遭受剥蚀[7, 27],随后歧口凹陷进入坳陷发展阶段,接受河流相和冲积平原相沉积,上古生界烃源岩持续生烃。歧口主凹在Es3期末达生烃高峰期,Ro为0.7%~0.9%,但现今歧口主凹烃源岩已达过成熟阶段,Ro已达2.0%,而埕北断阶带的烃源岩成熟度为成熟阶段,Ro已达1.0%。

4 主干断层与生烃期次的耦合成藏关系 4.1 主要生烃期与主干断层的活动性及封堵性关系

Es3期—Es2期,歧口凹陷上古生界烃源岩开始进入二次生烃期,在区域拉张应力的作用下,主干断层活动性强,断层的封堵性差,有利于油气的排出和运聚,但不利于油气的保存;Es1期—Ed期为歧口凹陷上古生界烃源岩最大生烃期,主干断层的活动性由强转弱,张北断层和羊二庄断层为好—较好,有利于油气的保存,张东断层和赵北断层封堵性较差,不利于油气保存;Ng期—Nm期,上古生界烃源岩持续生烃,各个主干断层的活动性变弱,张东断层、赵北断层和羊二庄断层的封堵性好,有利于油气的保存,张北断层的封堵性差,不利于油气的保存(表 5)。这表明Ed期—现今为埕北断阶带上古生界油气成藏的关键时期,该结果与其他学者利用流体包裹体测温[43]与储层沥青拉曼光谱特征[44]预测所得油气成藏期次的结果大致相近。

下载CSV 表 5 埕北断阶带不同时期内主干断裂发育特征与生烃耦合关系表 Table 5 Coupling relationship between fault development characteristics and hydrocarbon generation in different stages in Chengbei fault step zone
4.2 上古生界原生油气藏类型

依据钻遇油气井资料(图 5),埕北断阶带的油气藏主要为自生自储的背斜油气藏、自生自储的断块-断鼻油气藏和新生古储的古潜山油气藏,其中,背斜油气藏和断块-断鼻油气藏在全区均有分布,而赵北潜山和羊二庄潜山的峰峰组灰岩的孔裂隙发育较差,油气难以储存[45],故古潜山油气藏分布在张东潜山。背斜主要形成于印支期—燕山期末,由于挤压应力的作用,埕北断阶带内形成大量的背斜、推覆叠瓦等构造样式[29-30],断块-断鼻形成于Es期,受伸展应力的影响,各主干断层的活动剧烈,切割原有的背斜构造,形成断块-断鼻构造样式。

下载原图 图 5 埕北断阶带油气藏类型 Fig. 5 Types of oil and gas reservoirs in Chengbei fault step zone
4.3 主干断裂对油气保存的控制

烃源岩成熟生烃是油气成藏的基础,优质的储层提供了油气的储集空间,致密的盖层是油气良好的保存环境,开启的断层有利于油气的排出和运移,而封堵的断层有利于油气保存成藏。生烃期、圈闭形成时间和断层活动3者之间良好的匹配关系是形成现存油气藏的关键[46]

依据埕北断阶带油气事件图(图 6),上古生界烃源岩在印支期末进入生烃门限,但该次生烃强度低,不具备形成大规模油气藏的潜力;中生代,埕北断阶带沉积的泥岩与下伏的石炭系—二叠系之间形成了良好的储盖组合;Es3—Es1期,歧口凹陷各负向构造单元的上古生界烃源岩达到了生烃高峰期,主干断层伸展活动强烈,将研究区切割为由北向南逐级抬升的断阶结构,各生烃中心的生成油气可运移至奥陶系和上古生界之中,但该时期断层封堵性较差,不利于油气的保存;Ed期,主干断层活动性减弱,张北断层和羊二庄断层的封堵性分别为好和较好,张东和赵北断层的封堵性差,歧南次凹和歧北次凹生成的油气无法运移至研究区成藏,该时期的油气来源为歧口主凹和埕北断阶带,生成的油气运移至赵东潜山和羊二庄潜山成藏;Ng期—现今,为上古生界烃源岩二次生烃成藏的主要关键时期,除张北断层的封堵性较差外,其余均较好—很好,且上古生界烃源岩处于持续生烃阶段。因此,Ed期—现今,研究区内各成藏要素匹配极好。

下载原图 图 6 埕北断阶带油气事件图 Fig. 6 Oil and gas event diagram of Chengbei fault step zone
5 结论

(1)渤海湾盆地埕北断阶带主干断层断面呈铲式或坡坪式,与两侧的次级断裂在剖面呈“Y”字型、花状等构造样式,在平面上呈羽状和雁列状;各主干断层在Es期内的活动性最强,Ng期最弱;张东断层和赵北断层在Ed期的封堵性较差,Ng期封堵性好;张北断层在Ed期的封堵性好,Ng期的封堵性较差;羊二庄断层在Ed期和Nm期的封堵性均为较好。

(2)歧口主凹上古生界烃源岩在Es3期内达到生烃高峰期,现今为过成熟阶段;埕北断阶带上古生界烃源岩在新近系达到生烃高峰,且现今仍处于生烃高峰期内。

(3)Ed期至现今,埕北断阶带内各成藏要素比配极好,为上古生界油气藏形成的关键时期。上古生界原生油气藏主要为自生自储的背斜油气藏、断块-断鼻油气藏和新生古储的古潜山油气藏,其中背斜油气藏和断块-断鼻油气藏在全区均有分布,而古潜山油气藏分布于张东潜山。

参考文献
[1]
肖敦清, 姜文亚, 蒲秀刚, 等. 渤海湾盆地歧口凹陷中深层天然气成藏条件与资源潜力. 天然气地球科学, 2018, 29(10): 1409-1421.
XIAO Dunqing, JIANG Wenya, PU Xiugang, et al. Natural gas formation conditions and resource potential in mid-deep strata of the Qikou Sag, Bohai Bay Basin. Natural Gas Geoscience, 2018, 29(10): 1409-1421. DOI:10.11764/j.issn.1672-1926.2018.08.012
[2]
JIANG Fujie, PANG Xiongqi, BAI Jing, et al. Comprehensive assessment of source rocks in the Bohai Sea area, eastern China. AAPG Bulletin, 2016, 100(6): 969-1002. DOI:10.1306/02101613092
[3]
于学敏, 冯明, 滑双君. 从古生界的生烃条件看大港探区深部的勘探前景. 勘探家, 1998(4): 13-16.
YU Xuemin, FENG Ming, HUA Shuangjun. Deep exploration prospect in Dagang exploration area based on the Paleozoic hydrocarbon generation conditions. Petroleum Explorationist, 1998(4): 13-16.
[4]
廖前进, 于学敏, 何咏梅, 等. 大港探区上古生界煤系烃源岩特征及资源潜力. 天然气地球科学, 2003, 14(4): 250-253.
LIAO Qianjin, YU Xuemin, HE Yongmei, et al. The characteristics and resource potential of coal-bearing formations in Upper Paleozoic in Dagang Oilfield. Natural Gas Geoscience, 2003, 14(4): 250-253. DOI:10.3969/j.issn.1672-1926.2003.04.004
[5]
赵贤正, 蒲秀刚, 姜文亚, 等. 黄骅坳陷古生界含油气系统勘探突破及其意义. 石油勘探与开发, 2019, 46(4): 621-632.
ZHAO Xianzheng, PU Xiugang, JIANG Wenya, et al. An exploration breakthrough in Paleozoic petroleum system of Huanghua Depression in Dagang Oilfield and its significance, North China. Petroleum Exploration & Development, 2019, 46(4): 621-632.
[6]
金凤鸣, 王鑫, 李宏军, 等. 渤海湾盆地黄骅坳陷乌马营潜山内幕原生油气藏形成特征. 石油勘探与开发, 2019, 46(3): 521-529.
JIN Fengming, WANG Xin, LI Hongjun, et al. Formation of the primary petroleum reservoir in Wumaying inner buried-hill of Huanghua Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 2019, 46(3): 521-529.
[7]
尹向烟. 黄骅坳陷北大港凸起中生界、上古生界潜山油气资源潜力评价. 东营: 中国石油大学(华东), 2018.
YIN Xiangyan. The oil and gas resource potential assessment in Mesozoic and Upper Paleozoic in Beidagang Uplift, Huanghua Depression. Dongying: China University of Petroleum(East China), 2018.
[8]
高长海, 张新征, 查明. 歧口凹陷埕北断阶带输导体系特征及其对油气分布的控制. 石油地质与工程, 2012, 26(2): 1-6.
GAO Changhai, ZHANG Xinzheng, ZHA Ming. Carrying bed system feature and its controlling on oil & gas distribution in Chengbei fault step belt of Qikou Sag. Petroleum Geology & Engineering, 2012, 26(2): 1-6. DOI:10.3969/j.issn.1673-8217.2012.02.001
[9]
曲江秀, 查明, 高长海, 等. 大港油田埕北断阶带油气运移、成藏期次及成藏模式. 海相油气地质, 2009, 14(3): 37-45.
QU Jiangxiu, ZHA Ming, GAO Changhai, et al. Models of hydrocarbon migration and accumulation in Chengbei fault step belt in Dagang Oilfield. Marine Origin Petroleum Geology, 2009, 14(3): 37-45. DOI:10.3969/j.issn.1672-9854.2009.03.005
[10]
高长海, 查明. 大港油田埕北断阶带不整合与油气运聚. 岩性油气藏, 2010, 22(1): 37-42.
GAO Changhai, ZHA Ming. Unconformity surface and hydrocarbon migra-tion and accumulation in Chengbei fault step belt of Dagang Oilfield[. J] Lithologic Reservoirs, 2010, 22(1): 37-42. DOI:10.3969/j.issn.1673-8926.2010.01.007
[11]
吴雪松, 赵仕民, 肖敦清, 等. 埕北断阶带油气成藏条件与模式研究. 天然气地球科学, 2009, 20(3): 362-371.
WU Xuesong, ZHAO Shimin, XIAO Dunqing, et al. Hydrocarbon accumula-tion model of Chengbei fault step zone. Natural Gas Geoscience, 2009, 20(3): 362-371.
[12]
高长海, 查明. 大港油田埕北断阶带油气成藏过程分析. 石油天然气学报, 2008, 30(4): 47-53.
GAO Changhai, ZHA Ming. Hydrocarbon accumulation process in Chengbei fault step belt of Dagang Oilfield. Journal of Oil and Gas Technology, 2008, 30(4): 47-53. DOI:10.3969/j.issn.1000-9752.2008.04.010
[13]
王洪宇, 付晓飞, 王海学, 等. 渤海湾盆地歧口凹陷断裂活动定量分析和评价对油气成藏的控制作用研究. 地质学报, 2020, 94(10): 3062-3073.
WANG Hongyu, FU Xiaofei, WANG Haixue, et al. Research on the controlling effect of quantitative analysis and evaluation of fault activity on oil and gas accumulation in Qikou Sag of Bohai Bay Basin. Acta Geologica Sinica, 2020, 94(10): 3062-3073. DOI:10.3969/j.issn.0001-5717.2020.10.018
[14]
付广, 王宇鹏. 断裂密集带及附近下生上储式油气富集的控制因素. 岩性油气藏, 2018, 30(2): 23-29.
FU Guang, WANG Yupeng. Controlling factors of hydrocarbon enrichment with the type of "below source and upper reservoir" in fault concentrated zones and nearby. Lithologic Reservoirs, 2018, 30(2): 23-29.
[15]
马钰凯, 孙永河, 马妍, 等. 渤海湾盆地歧口凹陷构造演化及断裂带成因. 石油学报, 2020, 41(5): 526-539.
MA Yukai, SUN Yonghe, MA Yan, et al. Tectonic evolution and genesis of fault zones in Qikou Sag, Bohai Bay Basin. Acta Petrolei Sinica, 2020, 41(5): 526-539.
[16]
魏真真, 王丙贤, 杨静. 歧口凹陷断裂构造特征及其控油气作用. 科学技术与工程, 2020, 20(11): 4288-4295.
WEI Zhenzhen, WANG Binxian, YANG Jing. Structural characteristics of fault and its control on oil and gas distribution in Qikou Sag. Science Technology and Engineering, 2020, 20(11): 4288-4295. DOI:10.3969/j.issn.1671-1815.2020.11.013
[17]
袁淑琴, 周凤春, 张洪娟, 等. 埕海断裂缓坡区构造特征与油气聚集规律. 长江大学学报(自科版), 2018, 15(15): 16-22.
YUAN Shuqin, ZHOU Fengchun, ZHANG Hongjuan, et al. The structural characteristics and hydrocarbon accumulation regularity of gentle slope belt in Chenghai area of Huanghua Depression. Journal of Yangtze University(Natural Science Edition), 2018, 15(15): 16-22. DOI:10.3969/j.issn.1673-1409.2018.15.005
[18]
赵万优, 王振升, 苏俊青, 等. 黄骅坳陷埕北断阶带油气成藏系统. 石油勘探与开发, 2008, 35(1): 34-39.
ZHAO Wanyou, WANG Zhensheng, SU Junqing, et al. Pool forming system of Chengbei fault-step zone in Huanghua Depression. Petroleum Exploration & Development, 2008, 35(1): 34-39. DOI:10.3321/j.issn:1000-0747.2008.01.007
[19]
王光奇, 李三忠, 周立宏, 等. 张东断层成因机制及其与油气成藏关系. 石油勘探与开发, 2002, 29(6): 38-40.
WANG Guangqi, LI Sanzhong, ZHOU Lihong, et al. Relation between petroleum accumulation and genetic mechanism of Zhangdong fault in Huanghua Depression. Petroleum Exploration & Development, 2002, 29(6): 38-40. DOI:10.3321/j.issn:1000-0747.2002.06.012
[20]
张莹, 刘强, 陈清华. 大港南部滩海区构造与油气分布. 海洋地质与第四纪地质, 2007, 27(3): 85-91.
ZHANG Ying, LIU Qiang, CHEN Qinghua. Structural characters and oil-gas distribution in south beach area of Dagang Oilfield. Marine Geology & Quaternary Geology, 2007, 27(3): 85-91.
[21]
许立青, 李三忠, 索艳慧, 等. 渤海湾盆地大歧口凹陷断裂系统与陆内拉分断陷. 地质科学, 2015, 50(2): 489-502.
XU Liqing, LI Sanzhong, SUO Yanhui, et al. Fault system and basin prototype of the great Qikou Sag, Bohai Bay Basin. Chinese Journal of Geology(Scientia Geologica Sinica), 2015, 50(2): 489-502. DOI:10.3969/j.issn.0563-5020.2015.02.009
[22]
赵勇, 戴俊生. 应用落差分析研究生长断层. 石油勘探与开发, 2003, 30(3): 13-15.
ZHAO Yong, DAI Junsheng. Identification of growth fault by fault fall analysis. Petroleum Exploration and Development, 2003, 30(3): 13-15. DOI:10.3321/j.issn:1000-0747.2003.03.004
[23]
张伟忠, 查明, 韩宏伟, 等. 东营凹陷边界断层活动性与沉积演化耦合关系的量化表征. 中国石油大学学报(自然科学版), 2017, 41(4): 18-26.
ZHANG Weizhong, ZHA Ming, HAN Hongwei, et al. Quantitative research of coupling relationship between boundary fault activity and sedi-mentary evolution in Dongying Depression. Journal of China University of Petroleum(Natural Science Edition), 2017, 41(4): 18-26. DOI:10.3969/j.issn.1673-5005.2017.04.003
[24]
雷宝华. 生长断层活动强度定量研究的主要方法评述. 地球科学进展, 2012, 27(9): 947-956.
LEI Baohua. Review of methods with quantitative studies of activity intensity of the growth fault. Advances in Earth Sciences, 2012, 27(9): 947-956.
[25]
卢异, 王书香, 陈松, 等. 一种断裂活动强度计算方法及其应用. 天然气地球科学, 2010, 21(4): 612-616.
LU Yi, WANG Shuxiang, CHEN Song, et al. Computing method about intensity of fault activity and its application. Natural Gas Geoscience, 2010, 21(4): 612-616.
[26]
李勤英, 罗凤芝, 苗翠芝. 断层活动速率研究方法及应用探讨. 断块油气田, 2000, 7(2): 15-17.
LI Qingying, LUO Fengzhi, MIAO Cuizhi. Research on fault activity ratio and its application. Fault-Block Oil & Gas Field, 2000, 7(2): 15-17.
[27]
张飞鹏, 吴智平, 李伟, 等. 黄骅坳陷印支-燕山期构造特征及其演化过程. 中国矿业大学学报, 2019, 48(4): 842-857.
ZHANG Feipeng, WU Zhiping, LI Wei, et al. Structural characteristics and its tectonic evolution of Huanghua Depression during the Indosinian-Yanshanian. Journal of China University of Mining & Technology, 2019, 48(4): 842-857.
[28]
付立新, 楼达, 李宏军, 等. 印支-燕山运动对大港探区古潜山形成的控制作用. 石油学报, 2016, 37(增刊2): 19-30.
FU Lixin, LOU Da, LI Hongjun, et al. Control effect of Indosinian-Yanshanian movement on the formation of buried hill in Dagang Exploration area. Acta Petrolei Sinica, 2016, 37(Suppl 2): 19-30.
[29]
周立宏, 卢异, 肖敦清, 等. 渤海湾盆地歧口凹陷盆地结构构造及演化. 天然气地球科学, 2011, 22(3): 373-382.
ZHOU Lihong, LU Yi, XIAO Dunqing, et al. Basinal texture structure of Qikou Sag, Bohai Bay Basin and its evolution. Natural gas Geosciences, 2011, 22(3): 373-382.
[30]
张志攀. 黄骅坳陷歧口凹陷新生代主要断裂与油气成藏. 天然气地球科学, 2014, 25(5): 679-684.
ZHANG Zhipan. The relationship between main fault & hydrocarbon accumulation in Cenozoic Qikou Sag of Huanghua Depression. Natural gas Geosciences, 2014, 25(5): 679-684.
[31]
万天丰, 王明明, 殷秀兰, 等. 渤海湾地区不同方向断裂带的封闭性. 现代地质, 2004, 18(2): 157-163.
WAN Tianfeng, WANG Mingming, YIN Xiulan, et al. Sealing properties of different direction faults in the Bohai Bay area. Geoscience, 2004, 18(2): 157-163. DOI:10.3969/j.issn.1000-8527.2004.02.003
[32]
万天丰. 中国东部中、新生带板内变形、构造应力场及其应用. 北京: 地质出版社, 1993.
WAN Tianfeng. Intraplate deformation, tectonic stress field and its application in Mesozoic and Cenozoic zones in eastern China. Beijing: Geological Publishing House, 1993.
[33]
张津宁, 周建生, 肖敦清, 等. 黄骅坳陷中生代构造运动对上古生界煤系烃源岩生烃演化的控制. 天然气工业, 2019, 39(9): 1-10.
ZHANG Jinning, ZHOU Jiansheng, XIAO Dunqing, et al. Control of Mesozoic tectonic movement on the hydrocarbon generation and evolution of Upper Paleozoic coal-measure source rocks in the Huanghua Depression, Bohai Bay Basin. Natural Gas Industry, 2019, 39(9): 1-10.
[34]
闫文琦, 李娇娜, 孙永河. 黄骅坳陷上古生界埋藏史研究及生烃有利区预测. 矿产勘查, 2020, 11(8): 1690-1696.
YAN Wenqi, LI Jiaona, SUN Yonghe. Burial history of Upper Paleozoic and prediction of favorable hydrocarbon-generating areas in Huanghua Depression. Mineral Exploration, 2020, 11(8): 1690-1696. DOI:10.3969/j.issn.1674-7801.2020.08.018
[35]
杨润泽, 赵贤正, 李宏军, 等. 黄骅坳陷上古生界烃源灶排烃特征及供烃模式. 中国矿业大学学报, 2020, 49(2): 367-380.
YANG Runze, ZHAO Xianzheng, LI Hongjun, et al. Hydrocarbon expulsion characteristics and hydrocarbon supply model of Upper Paleozoic source stoves in Huanghua Depression. Journal of China University of Mining & Technology, 2020, 49(2): 367-380.
[36]
陈建平, 赵长毅, 何忠华. 煤系有机质生烃潜力评价标准探讨. 石油勘探与开发, 1997, 24(1): 1-5.
CHEN Jianping, ZHAO Changyi, HE Zhonghua. Criteria for evaluating the hydrocarbon generating potential of organic matter in coal measures. Petroleum Exploration and Development, 1997, 24(1): 1-5.
[37]
侯中帅, 陈世悦, 桑树勋, 等. 渤海湾盆地上古生界泥岩地球化学特征. 煤炭学报, 2020, 45(4): 1457-1472.
HOU Zhongshuai, CHEN Shiyue, SANG Shuxun, et al. Geochemical characteristics of Upper Paleozoic mudstone in Bohai Bay Basin. Journal of China Coal Society, 2020, 45(4): 1457-1472.
[38]
郭萍. 渤海湾盆地冀中坳陷上古生界煤系烃源岩地球化学特征与生烃演化. 天然气地球科学, 2020, 31(9): 1306-1315.
GUO Ping. Geochemical characteristics and hydrocarbon generation evolution of Upper Paleozoic coal measures in Jizhong Depression, Bohai Bay Basin. Natural gas Geosciences, 2020, 31(9): 1306-1315.
[39]
李超, 姜承鑫. 盆地沉降分析中的两类沉降. 中国科技信息, 2011(19): 48-49.
LI Chao, JIANG Chengxin. Two types of subsidence in basin subsidence analysis. China Science and Technology Information, 2011(19): 48-49.
[40]
张长厚, 李程明, 邓洪菱, 等. 燕山-太行山北段中生代收缩变形与华北克拉通破坏. 中国科学(地球科学), 2011, 41(5): 593-617.
ZHANG Changhou, LI Chengming, DENG Hongling, et al. Mesozoic contraction deformation in the Yanshan and northern Taihang mountains and its implications to the destruction of the North China Craton. Scientia Sinica(Terrae), 2011, 41(5): 593-617.
[41]
WANG Yu, ZHOU Liyun, ZHAO Lijun. Cratonic reactivation and orogeny: An example from the northern margin of the North China Craton. Gondwana Research, 2013, 24(3/4): 1203-1222.
[42]
HU Jianmin, ZHAO Yue, LIU Xiaowen, et al. Early Mesozoic deformations of the eastern Yanshan thrust belt, northern China. International Journal of Earth Sciences, 2010, 99(4): 785-800. DOI:10.1007/s00531-009-0417-5
[43]
蒋有录, 刘学嘉, 赵贤正, 等. 根据储层沥青和流体包裹体综合判识油气成藏期: 以黄骅坳陷北大港古生界潜山为例. 地球科学, 2020, 45(3): 980-988.
JIANG Youlu, LIU Xuejia, ZHAO Xianzheng, et al. Comprehensive identification of oil and gas accumulation period by fluid inclusion technique and reservoir bitumen characteristics: A case study of the Paleozoic Buried hill in Beidagang, Huanghua Depression. Earth Science, 2020, 45(3): 980-988.
[44]
田建章, 陈勇, 侯凤香, 等. 储层沥青拉曼光谱特征及其对油气成藏期次的约束: 以冀中坳陷杨税务潜山为例. 光谱学与光谱分析, 2021, 41(1): 131-135.
TIAN Jianzhang, CHEN Yong, HOU Fengxiang, et al. Raman spectroscopic characteristics of reservoir bitumen and its constraints on stages of hydrocarbon accumulation: Take Yangshuiwu buried hill of Jizhong Depression as an Example. Spectroscopy and Spectral Analysis, 2021, 41(1): 131-135.
[45]
付立新, 吴雪松, 赵敏, 等. 歧口凹陷埕海潜山地质构造及奥陶系天然气成藏特点. 东北石油大学学报, 2013, 37(5): 63-72.
FU Lixin, WU Xuesong, ZHAO Min, et al. Structural geology and gas accumulation in Ordovician reservoir in Chenghai buriedhill in Qikou Sag. Journal of Northeast Petroleum University, 2013, 37(5): 63-72.
[46]
魏恒飞, 李秋媛, 毕建军, 等. 论烃源岩层系含油气系统. 大庆石油地质与开发, 2020, 39(6): 1-12.
WEI Hengfei, LI Qiuyuan, BI Jianjun, et al. Discussion on the petroleum system of hydrocarbon source-rock series. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(6): 1-12.