有色金属科学与工程  2019, Vol. 10 Issue (5): 101-105
文章快速检索     高级检索
TbCu7型SmCo7-xHfx合金的结构及磁性能[PDF全文]
谢伟诚 , 陶力 , 钟明龙 , 刘仁辉 , 倪刚 , 胡贤君 , 钟震晨     
江西理工大学,江西省稀土磁性材料及器件重点实验室,江西 赣州 341000
摘要:采用熔体快淬法在40 m/s制备了SmCo7-xHfxx=0, 0.1, 0.15, 0.2, 0.3)合金薄带,研究Hf取代量对SmCo7-xHfx合金的相组成、组织结构及磁性能的影响.结果表明:随Hf取代量的增加,均可获得TbCu7型结构的亚稳相,晶格常数ac也随之增加,c/a比值在0.82~0.83,晶粒平均尺寸减小,且更加均匀;在性能方面,Hf取代量为0.2时,可获得最优磁性能Br为0.55 T和Hc为1 084 kA/m. Hf的添加还可有效改善合金高温性能,在27~400 ℃温度区间,矫顽力温度系数由未添加时-0.21 %/℃改善到-0.18 %/℃,提升14.3%.
关键词SmCo7合金    Hf取代    组织结构    磁性能    
Structure and magnetic properties of TbCu7-type SmCo7-xHfx alloys
XIE Weicheng , TAO Li , ZHONG Minglong , LIU Renhui , NI Gang , HU Xianjun , ZHONG Zhenchen     
Jiangxi Province Key Laboratory for Rare Earth Magnetic Materials and Devices, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract: SmCo7-xHfx (x=0, 0.1, 0.15, 0.2, 0.3) alloy ribbons were prepared by melt-spun at 40 m/s. The phase composition, microstructure and magnetic properties of SmCo7-xHfx alloys were investigated. The results show that, the metastable phase of TbCu7 structure can be obtained with the increasing of Hf substitution, as well as the lattice constants a and c. The c/a ratio is 0.82~0.83, and the grains become finer and uniform. The optimum magnetic properties (Br=0.55 T and Hc=1 084 kA/m) were obtained with x=0.2 Hf substitution. The Hf substitution could also improve the alloy high temperature performance observably. The coercivity temperature coefficient is improved from -0.21 %/℃ to -0.18 %/℃, with a growing range around 14.3%, at the temperature range of 27~400 ℃.
Keywords: SmCo7 alloy    Hf substitution    microstructure    magnetic property    

钕铁硼磁体因其优异的磁性能被广泛应用于新能源汽车、风力发电、电子信息等领域,但其居里温度为312 ℃,通常在150 ℃以下使用,而随着社会不断发展,航空航天、高速电机、高精密仪器等领域对磁体在高温环境中应用的要求越来越高,不仅要求具有高的磁能积,更要能适应高温工作环境,磁体需在150~300 ℃,甚至400~500 ℃极高温环境下工作,钕铁硼磁体因热退磁效应往往会失效,因此具有良好高温性能的SmCo基磁体越来越受到重视[1-5]. SmCo基合金有CaCu5型SmCo5、Th2Zn17型Sm2Co17和TbCu7型SmCo7. SmCo5有较高的磁晶各向异性场,但其饱和磁化强度低;Sm2Co17虽有较高的饱和磁化强度,但磁晶各向异性场低,且需要通过长时间繁琐的热处理,才能提升矫顽力.而SmCo7合金具有高各向异性场,大的饱和磁化强度,高的居里温度,较好的矫顽力温度系数,有望发展成新一代高温永磁体,因此成为当前高温永磁合金研究热点之一[6-8].

TbCu7型SmCo7相是亚稳相,在高温下会分解成SmCo5和Sm2Co17,无法在室温下稳定存在,通常需要通过第三元素添加来获得稳定的单一相或采用快速凝固技术来制备高温亚稳相,为此不少学者对此展开相关研究. Luo等[9]主要研究Si、Cu、Ti、Zr、Hf等第三元素添加对占据晶位的区别及影响,同时指出(Co, M)7与Sm的原子半径比在1.421~1.436,MCo7的生成焓小于-12 kJ/mol且添加元素中有四价电子时才能稳定亚稳相. Guo等[10]研究表明低含量Nb元素添加,铜辊转速为30~40 m/s时能够获得TbCu7型SmCo7相,Nb倾向于占据其2e晶位, 室温性能在SmCo6.8Nb0.2时矫顽力为812 kA/m. Chang等[11]研究指出Zr和Hf元素能有效形成稳定的1:7相,且Hf元素比Zr元素更能有效地提高磁晶各向异性场, 在室温时SmCo6.6Hf0.4矫顽力1 369 kA/m. Sun等[12]研究发现SmCo7-xGax中,只有在Ga添加量为0.9时方能得到TbCu7型铸锭合金. Zhang等[13]系统研究了退火工艺对SmCo7单相合金的相组成和组织结构的演变及其对磁性能的影响,发现SmCo7相在室温至600 ℃间具有良好的单相稳定性.

上述研究主要集中在不同元素添加及热处理工艺对室温性能及结构的影响,对SmCo7-xHfx合金更具应用价值的高温性能方面研究较少.因此,文中选择SmCo7-xHfxx=0~0.3)为研究对象,研究了Hf添加对SmCo7-xHfx合金的相组成、组织结构、磁性能以及高温性能的影响.

1 实验方法

采用氩弧熔炼法制备名义成分为SmCo7-xHfxx=0.00, 0.10, 0.15, 0.20, 0.30)合金铸锭,铸锭熔炼4次以保证成分均匀,熔炼时Sm按名义成分过量12%以补偿其挥发,将熔炼好的合金铸锭通过熔体快淬法制备合金薄带(铜辊转速为40 m/s).采用X射线衍射仪(XRD,Empyrean,荷兰帕纳科公司)、扫描电子显微镜(SEM,MLA650F,美国FEI公司)和综合物性测量系统(PPMS,DynaCool-9,美国Quantum Design公司)对合金薄带的组织结构和磁性能进行了分析表征.

2 结果与讨论 2.1 组织结构分析

图 1所示为不同Hf取代量SmCo7-xHfxx=0.00, 0.10, 0.15, 0.20, 0.30)合金薄带XRD图谱.从图 1中可以看出不同Hf取代量合金薄带均形成了TbCu7型SmCo7相,没有其他明显杂相形成.同时随Hf取代量的增加,(110)晶面的衍射峰向低角度偏移,这是由于Hf原子半径(r=0.208 nm)比Co原子半径(r=0.152 nm)大,Hf进入晶格后会取代2e晶位Co原子,导致晶格常数增大,根据布拉格方程式2d sinθ=nλ,晶格常数增大,使得θ值减小,衍射峰向低角度偏移[14].此外,随着Hf取代量增加,(002)晶面衍射峰逐渐宽化,表明晶粒尺寸随Hf取代量增加而减小.

图 1 SmCo7-xHfx合金薄带XRD图谱 Fig. 1 XRD patterns for SmCo7-xHfxribbons

为进一步分析Hf取代量对XRD衍射峰偏移情况,采用Rietica软件对衍射图谱对其进行结构精修. 图 2所示为SmCo7合金计算拟合与实验检测的X射线衍射图谱.从图 2中可看出计算拟合值与实验检测值匹配较好(其误差参数Rp=2.147%,Rwp=2.739%).从结构精修中得到了SmCo7-xHfx合金薄带晶格常数如表 1所列,括号里为不确定精度.合金晶格常数ax=0时4.882(1)增加至x=0.3时4.930 7(1),晶格常数c则从x=0时4.052(9)增加至x=0.3时4.059(8),晶格常数增大导致衍射峰往低角度偏移,与前文分析结果一致;同时c/a比值随取代量的增加而减小,其比值在0.82~0.83,这一结果与Luo等[15-17]研究不同元素取代时TbCu7型SmCo7c/a比值在0.81~0.83结果相一致.

图 2 SmCo7合金计算拟合与实验检测XRD图谱 Fig. 2 Calculated XRD patterns for SmCo7 ribbon

表 1 SmCo7-xHfx合金晶格常数a、cc/a比值 Table 1 Lattice parameters a, c and c/a ratio for SmCo7-xHfx alloys
点击放大

图 3所示为不同Hf取代量的SmCo7-xHfx合金薄带自由面SEM图.从图 3中可看出不同Hf取代量对晶粒大小和形状有明显影响,未添加Hf时合金薄带形成了粗大、不均匀的长轴晶粒,晶粒平均尺寸3.00 μm,如图 3(a)所示;随着Hf取代量增加,晶粒由长轴晶粒变为等轴晶粒,且整体更细小均匀,平均尺寸从x=0时3.00 μm减小至x=0.3时1.41 μm.长轴晶粒形成主要是铜辊表面和薄带自由面存在大的热流梯度,晶粒随着热流自由生长,而高熔点Hf(熔点为2 233 ℃)添加后,熔体快淬过程中冷却时会先行析出,析出的Hf相当于增加了形核点,抑制了SmCo7相晶粒继续生长,使得晶粒更加细小均匀[18-20].这与晶粒尺寸随Hf取代量增加而减小XRD分析结果相一致.

图 3 不同成分SmCo7-xHfx合金薄带自由面SEM像 Fig. 3 SEM images of SmCo7-xHfxribbons free sides

2.2 磁性能及高温性能

图 4所示为SmCo7-xHfx合金薄带常温下的初始磁化及退磁曲线. 图 4中第二象限退磁曲线可看出,随Hf取代量增加,合金薄带矫顽力有较大幅度提高,从x=0时279 kA/m增加至x=0.3时1 560 kA/m;剩磁逐渐下降,从x=0时0.64 T降低至x=0.3时0.53 T,并在SmCo6.8Hf0.2处获得较优性能,为Br=0.55 T,Hc=1 084 kA/m.矫顽力增加是因为Hf原子取代Co原子的2e晶位可提高磁晶各向异性场,使得矫顽力上升;从图 4第一象限的初始磁化曲线表明饱和磁化强度随Hf取代量增加逐渐降低,因为轻稀土Sm与过渡族Co元素的耦合为平行铁磁排列,由于非磁性Hf原子进入了晶格中,破坏了Sm-Co原子间的排列,导致饱和磁化强度降低,引起剩磁下降.此外,当Hf取代量为0.3时,退磁曲线出现了一个小台阶表明磁性相耦合不好,这可能是由于其他相析出造成的,但其他相含量少,在XRD未能检测出来[21, 22].

图 4 SmCo7-xHfx合金在常温下的初始磁化及退磁曲线 Fig. 4 Initial magnetization and demagnetization curves of SmCo7-xHfxalloys at room temperature

剩磁温度系数α和矫顽力温度系数β可用来表明合金薄带在该温度区间磁性能的热稳定性.温度系数αβ可分别由式(1)和式(2)计算得出,温度系数绝对值越小,表明其温度稳定性越好. 图 5所示为SmCo7-xHfx合金薄带在不同温度下的温度系数,从图 5中可知不同温度区间的温度系数αβ均随着Hf取代量增加得到改善,表明Hf的取代能有效改善合金薄带的热稳定性.在27~200 ℃区间,Hf取代量在x=0.1~0.2时改善幅度增加,在x=0.2~0.3时改善幅度减缓.热稳定性改善主要是Hf的取代,提高了磁晶各向异性场,使得室温磁性能提升,抗热扰动能力增强;同时细化晶粒有利于矫顽力增加,微观组织结构优化能有效降低退磁因子,提高矫顽力温度系数[7].从表 2可知,SmCo6.8Hf0.3在27~400℃间,矫顽力温度系数由未添加时的-0.21 %/℃改善到-0.18 %/℃,提升了14.3%,明显优于1:5型和2:17型SmCo合金[23, 24].

图 5 SmCo7-xHfx合金不同温度下的温度系数 Fig. 5 Temperature coefficients at various temperature ranges for SmCo7-xHfxalloys

表 2 SmCo6.8Hf0.3合金与1:5型及2:17型SmCo合金温度系数 Table 2 Temperature coefficients of SmCo6.8Hf0.3 alloys and 1:5 and 2:17 type SmCo alloys
点击放大

(1)
(2)
3 结论

1)不同Hf取代量的SmCo7-xHfx合金薄带在40 m/s下均获得了稳定的TbCu7型SmCo7相.

2)随着Hf取代量增加,SmCo7-xHfx合金薄带晶格常数ac增大,c/a比值为0.82~0.83;晶粒由长轴晶变为等轴晶,且更加细小均匀,平均尺寸由3.00 μm减小到1.41 μm.

3)SmCo6.8Hf0.2合金薄带具有较优磁性能,为Br=0.55 T,Hc=1 084 kA/m,在27~400 ℃间,矫顽力温度系数由未添加时的-0.21 %/℃改善到-0.18 %/℃,提升了14.3%.

参考文献
[1]
钟明龙, 刘徽平. 江西稀土永磁材料产业现状与发展建议[J]. 有色金属科学与工程, 2013, 4(1): 95–100.
[2]
RONG C B, SHEN B G. Nanocrystalline and nanocomposite permanent magnets by melt spinning technique[J]. Chinese Physics B, 2018, 27(11): 117502–54. DOI: 10.1088/1674-1056/27/11/117502.
[3]
雷伟凯, 曾庆文, 胡贤君, 等. 高丰度稀土永磁材料的研究现状与展望[J]. 有色金属科学与工程, 2017, 8(5): 1–13.
[4]
LIU S Q. Sm-Co high-temperature permanent magnet materials[J]. Chinese Physics B, 2019, 28(1): 17501–17520. DOI: 10.1088/1674-1056/28/1/017501.
[5]
何伦可, 权其琛, 胡贤君, 等. Nb添加对Nd-Ce-Fe-B合金的磁性能及晶间交换耦合作用的影响[J]. 有色金属科学与工程, 2018, 9(5): 103–108.
[6]
FENG D Y, LIU Z W, WANG G, et al. Zr and Si co-substitution for SmCo7 alloy with enhanced magnetic properties and improved oxidation and corrosion resistances[J]. Journal of Alloys and Compounds, 2014, 610: 341–346. DOI: 10.1016/j.jallcom.2014.05.081.
[7]
FENG D Y, LIU Z W, ZHENG Z G, et al. Improving the structure, magnetic properties and thermal stability of rapidly quenched TbCu7-type SmCo6.4Si0.3Zr0.3 alloy by carbon addition[J]. Physica B: Condensed Matter[J]. Physica B: Condensed Matter, 2014, 446: 63–66. DOI: 10.1016/j.physb.2014.04.046.
[8]
FENG D Y, ZHAO L Z, LIU Z W, et al. An Investigation on nanocrystalline TbCu7-Type SmCo6.4Si0.3Zr0.3C0.2 alloys with Sm partially substituted by various light and heavy rare earth Elements[J]. IEEE Transactions on Magnetics, 2016, 52(12): 2102106.
[9]
LUO J, LIANG J K, GUO Y Q, et al. Effects of the doping element on crystal structure and magnetic properties of Sm (Co, M)7 compounds (M=Si, Cu, Ti, Zr, and Hf)[J]. Intermetallics, 2005, 13(7): 7–16.
[10]
GUO Z H, CHANG H W, CHANG C W, et al. Magnetic properties, phase evolution, and structure of melt spun SmCo7-xNbx (x=0~0.6) ribbons[J]. Journal of Applied Physics, 2009, 105(7): 07A731–07A733. DOI: 10.1063/1.3067856.
[11]
CHANG H W, HUANG S T, CHANG C W, et al. Comparison on the magnetic properties and phase evolution of melt-spun SmCo7 ribbons with Zr and Hf substitution[J]. Scripta Materialia, 2007, 56(12): 1099–1102. DOI: 10.1016/j.scriptamat.2007.02.009.
[12]
SUN J B, BU S J, YANG W, et al. Structure and magnetic properties of SmCo7-xGax (0≤x≤1.2) alloys[J]. Journal of Alloys and Compounds, 2014, 583: 554–559. DOI: 10.1016/j.jallcom.2013.09.017.
[13]
ZHANG Z X, SONG X Y, XU W. Phase evolution and its effects on the magnetic performance of nanocrystalline SmCo7 alloy[J]. Acta Materialia, 2011, 59(4): 1808–1817. DOI: 10.1016/j.actamat.2010.11.047.
[14]
LUO J, LIANG J K, GUO Y Q, et al. Crystal structure and magnetic properties of SmCo7-xHfx compounds[J]. Applied Physics Letters, 2004, 85(22): 5299–5301. DOI: 10.1063/1.1829157.
[15]
LUO J, LIANG J K, GUO Y Q, et al. Effects of Cu on crystallographic and magnetic properties of S-M(Co, Cu)7[J]. Journal of Physics: Condensed Matter, 2003, 15(32): 5621–5624. DOI: 10.1088/0953-8984/15/32/321.
[16]
GJOKA M, HADJIPANAYIS G C, KALOGIROU O, et al. Structure and magnetic properties of RCo7-xMnx alloys (R = Sm, Gd; x = 0.1~1.4)[J]. Journal of Magnetism and Magnetic Materials, 2002, 242(4): 844–846.
[17]
LUO J, LIANG J K, GUO Y Q, et al. Phase stability, crystal structure, and magnetic properties of NdCo7-xHfxcompounds[J]. Physica B, 2004, 353(1/2): 98–103.
[18]
张广腾, 易健宏, 李丽娅. (SmCo7) 100-x (Cr3C2)x(x=0~7)熔淬薄带的结构与磁性能[J]. 磁性材料及器件, 2010, 41(1): 15–19. DOI: 10.3969/j.issn.1001-3830.2010.01.003.
[19]
YAN A, BOLLERO A, MÜLLER K, et al. Influence of Fe, Zr and Cu on the microstructure and crystallographic texture of melt-spun 2:17 Sm-Co ribbons[J]. Journal of Applied Physics, 2002, 91(10): 8825–8827. DOI: 10.1063/1.1456408.
[20]
RONG C, ZHANG H, He S, et al. Effect of Zr on the crystallographic texture of precipitation-hardened Sm (Co, Fe, Cu, Zr) ribbons[J]. Applied Physics Letters, 2005, 86(12): 12250601–12250603.
[21]
张晃暐, 黄世腾, 张正武, 等. SmCo7-xHfxCy合金薄带磁性能、相变化及显微结构研究[J]. 粉末冶金材料科学与工程, 2008, 13(3): 171–176. DOI: 10.3969/j.issn.1673-0224.2008.03.009.
[22]
FENG D Y, LIU Z W, ZHENG Z G, et al. The structure, anisotropy and coercivity of rapidly quenched TbCu7-type SmCo7-xZrx alloys and the effects of post-treatments[J]. Journal of Magnetism and Magnetic Materials, 2013, 347: 18–25. DOI: 10.1016/j.jmmm.2013.07.046.
[23]
[24]
LIU J F, ZHANG Y, HADJIPANAYIS G C. High-temperature magnetic properties and microstructural analysis of Sm(Co, Fe, Cu, Zr) permanent magnets[J]. Journal of Magnetism and Magnetic Materials, 1999, 202(1): 69–76. DOI: 10.1016/S0304-8853(99)00322-4.