有色金属科学与工程  2019, Vol. 10 Issue (3): 26-33
文章快速检索     高级检索
超重力方向调节电沉积镍箔表面形貌和力学性能[PDF全文]
董亮 , 郭丰 , 王明涌     
北京科技大学钢铁冶金新技术国家重点实验, 北京 100083
摘要:在电场方向与超重力方向相同和相反条件下电沉积制备金属镍箔.利用扫描电镜和原子力显微镜对镍箔表面形貌和粗糙度进行了表征, 并测试和对比了各种重力条件下电沉积镍箔硬度和拉伸强度.结果表明, 在超重力场作用下电沉积镍箔表面变得更加致密、平整, 晶粒细化, 粗糙度明显降低.特别是, 当超重力与电场方向相反(电极C)时, 镍箔表面更为平整致密.当超重力方向和电场方向相同(电极B)时, 镍箔的HV硬度可达839, 抗拉强度可达944 MPa, 性能优于电极C镍箔片, 且远高于常重力条件下电沉积镍箔HV硬度的294和抗拉强度298 MPa.
关键词超重力    电沉积    镍箔    表面形貌    力学性能    
Surface morphology and mechanical properties of Ni foils electrodeposited under super gravity
DONG Liang , GUO Feng , WANG Mingyong     
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Abstract: Ni foil was electrodeposited under vertical super gravity field with same and opposite direction to electric field. Its surface morphologies and roughness were characterized by SEM and AFM. Its hardness and tensile strength under different gravities were also examined and compared. The results indicated that its surface electrodeposited under super gravity field was more compact and flatter as the grains were refined and the roughness sharply decreased, especially with the opposite direction between super gravity and electric field (Electrode C). The mechanical properties were improved by super gravity field. When the directions of super gravity and electric field were the same (Electrode B), its hardness and tensile strength were up to 839 HV and 944 MPa, respectively. The values were superior to that obtained on Electrode C and much higher than that under normal gravity condition (294 HV and 298 MPa).
Keywords: super gravity    electrodeposition    Ni foil    surface morphology    mechanical property    

功能性金属箔/薄膜已广泛应用于电催化、电池、防腐、电磁屏蔽等领域[1-10].金属箔/薄膜的物理化学性能(如机械性能、催化活性、耐腐蚀性等)取决于其表面结构[11-13].金属电沉积是制备金属箔/薄膜的常用方法.在电沉积过程中, 金属箔/薄膜的表面结构和性能通常通过改变电流密度、溶液组成和电流波形来调节[14-16].

近年来, 在金属箔/薄膜的电沉积过程中, 利用超声、磁场等外场来调节和改善金属箔/薄膜表面结构和理化性能, 受到越来越多的关注[17-20].发现磁场可以使电沉积晶粒细化, 择优取向发生改变[17-18].超声场中也观察到类似现象[19-20]. Cobley发现在超声场下电沉积的镍镀层硬度增加[19].镀层表面结构和性能的变化通常归因于外场对传质的强化作用.

超重力场是一种能够强化"三传一反"化工过程的外场环境, 具有远大于地球常规重力的重力加速度, 因此能够显著促进微观混合、强化传质和相间分离.超重力在电化学反应过程中, 有可能起到增强反应离子对流传质、促进电极/溶液界面微观扰动和相界面更新、加速气泡分离等作用, 从而强化电化学反应过程, 调节产物结构.近十年来, 超重力电化学技术越来越受到人们的关注[21-23].由于气泡与电极表面的快速分离, 超重力场可以对电解水/氯碱电解起到强化作用, 从而实现槽电压的降低和过程节能[24-25].由于超重力强化传质的作用, 金属电沉积速率也可明显增大[26-27].

超重力场电沉积镍基箔/薄膜已经得到了广泛的研究[7, 9, 21, 28-36].结果表明, 超重力场可以对金属箔/薄膜的形貌、晶体结构和化学成分进行大范围的调整, 如微-纳米晶粒、致密-粗糙表面和晶体-非晶结构等, 其力学性能、抗腐蚀性能和催化活性均得到了提高.邵等[35]在超重力场下也一步电沉积了镍/碳纳米管复合阴极, 对析氢反应具有良好的电催化活性.

众所周知, 重力和电场都具有方向性.在电沉积过程中, 由于反应离子的消耗, 阴极附近将产生浓度梯度.基于重力和电场方向, 将产生两种极端情况, 即重力方向分别与电场方向相同(图 1(a))和相反(图 1(b)).因此, 镀层的表面结构和性能也可能会发生变化.在之前的工作中, 仅在超重力与电场方向相同的情况下, 进行了电沉积金属箔的研究[29-31].文中在超重力与电场方向相同或相反的情况下分别电沉积镍箔, 并对其表面形貌和力学性能进行比较, 分析和讨论形貌和力学性能差异性的根源.研究结果将为优化和完善超重力场电沉积金属箔结构和性能, 进而获得高性能金属材料提供理论支撑.另一方面, 随着空间开发的快速发展, 在微重力环境下电沉积功能材料成为长远要求.然而, 在地球上, 微重力场是由自由落体、飞行器和人造卫星获得的[37], 实验成本高、时间短(< 8 s), 实验难度较大.因此, 通过离心机获得的超重力场, 并进行功能材料电沉积研究, 进而预测微重力下电沉积金属结构和性能, 具有重要的意义.

图 1 重力(G)与电场(E)方向相同(a)与重力(G)与电场(E)方向的方向相反(b)示意 Fig. 1 The illustration for the same (a) and opposite direction (b) between gravity (G) and electric field (E)

1 实验 1.1 设备

通过离心机获得超重力场(图 2(a)).电解池在超重力场下为水平(即旋转), 在常重力条件下为垂直(即不旋转).重力系数(G)定义为实际重力加速度与地球重力加速度(9.8 m/s2)之比.通过调节转速来改变重力系数, 计算如下:

图 2 超重力场下镍电沉积的结构示意 Fig. 2 The schematic configuration for Ni electrodeposition under super gravity field. (a) Equipment

(1)

式(1)中N为转速(r/mim), g为地球重力加速度(9.8 m/s2), L为电极中心到轴的距离, 本实验为0.22 m.常重力条件下G值为1.电解池示意图如图 2(b)所示.镍电沉积溶液采用水浴加热.阴极为纯钛, 阳极为可溶镍, 纯度99 %.电极面积3.5 cm2 (图 2(c)).阳极和阴极之间的距离是2 cm.

1.2 镍箔电沉积

镍电沉积溶液为300 g/L NiSO4·6H2O、30 g/L NiCl2、40 g/L H3BO4、0.5 g/L NaC12H25SO4和0.25 g/L糖精钠.用H2SO4调节pH至3.0. Ni电沉积电流密度为0.1 A/cm2和电沉积时间为60 min.电沉积温度为65 ℃.常重力条件下电沉积Ni电极称为A电极.在超重力场下, 当超重力方向与电场方向相同(图 1(a))和相反(图 1(b))时, 电沉积Ni箔分别为电极B和电极C.所有的化学试剂都是分析纯.

1.3 镍箔表征

电沉积后, 从Ti基体上剥离镍箔.通过SEM (JEOL, JSM6700F)和AFM (Di MultiMode)表征镍箔表面形貌.采用原子力显微镜检测镍箔表面粗糙度量.采用电子万能试验机(WDW3020)和微硬度计(nMT-3)分别测试了镍箔的拉伸应力和硬度.

2 结果与讨论 2.1 镍箔电沉积

当重力和电场方向相反时(图 1(b)), 常重力条件下(G=1)进行电沉积Ni, 发现2 min后可获得Ni薄膜, 此时Ni(OH)2层覆盖整个电极表面, 抑制了镍进一步电沉积.在镍电沉积过程中, 很难避免析氢副反应.氢气泡的运动是由与重力方向相反的浮力所驱动的.因此, 阴极表面被氢气泡覆盖.由于浓差极化以及电极与Ni2+离子被气泡隔离, 镍难以进一步电沉积.随着阴极附近pH值的快速升高, 析氢反应加剧, Ni2+水解为Ni(OH)2.

在超重力场下, 如图 1(b)(即电极C), 可以成功电沉积镍箔, 但有一个角(图 3)除外, 这是由于惯性的影响, 气泡沿电极表面移动, 在电极边缘快速分离.因此, 有效地降低了气泡覆盖率, 使镍电沉积得以持续进行.然而, 边缘气泡的分离阻碍了Ni2+离子的电化学还原, 因此在该位置没有电沉积获得镍箔.

图 3 在C电极上电镀镍箔 Fig. 3 Ni foil electrodeposited on Electrode C

用扫描电镜对镍箔表面形貌进行表征, 结果如图 4所示.在A电极上, 镍箔由较大的晶粒组成, 表面粗糙(图 4(a)).超重力场作用下, 在超重力场与电场方向相同的B电极上, Ni箔晶粒细化, 表面变得非常平整致密(图 4(b)).在超重力与电场方向相反的电极C上, 可观察到表面形貌也有类似的改善(图 4(c)).与常规重力相比, 引入超重力场, 将在电极/溶液界面营造微观对流单元(如图 1), 因而可以改善金属离子传质和电流在电极表面的均匀分布, 从而促进金属镍均匀形核, 即晶核数量增大, 因此晶粒细化.

图 4 电沉积Ni箔的SEM像 Fig. 4 The SEM images of electrodeposited Ni foils

用AFM进一步检测了镍箔的表面形貌(图 5), 并对其粗糙度进行了评价(图 6).可以发现A电极上沉积的镍箔不均匀, 出现了较大的波动(图 5(a)).这意味着Ni晶粒的不均匀生长.而在B和C电极上, 波动得到有效抑制, 表面趋于均匀(图 5(b)图 5(c)).另外, C电极的表面比B电极更平整致密.

图 5 电沉积Ni箔的AFM图像 Fig. 5 The AFM images of electrodeposited Ni foils

图 6所示为AFM图像中沿直线的高度分布.对于在常重力条件下电沉积的镍箔, 线呈现出明显的波动, 最大高度差可达117 nm(图 6(a)).而相似重力系数(G)下, B电极和C电极的高度差分别为25 nm和20 nm.表明超重力可以均匀化电沉积镍箔表面.其中, C电极表面较光滑.

A电极(a); 电极B上G=65(b)和G=354(c); C电极上G=56(d)和G=322(e) (a) On Electrode A; (b) G=65 and (c) G=354 on Electrode B; (d) G=56 and (e) G=322 on Electrode C 图 6 晶粒高度分布剖面 Fig. 6 The profile of height distribution of grains

根据式(2)[28]计算出图 6中基于高度的均方根粗糙度(RMS).

(2)

其中, N2为图像的像素数, h(x, y)为每个点的高度, 为平均高度.镍箔的表面粗糙度扫描面积3×3 μm2, 如图 7所示.在常重力条件下, 粗糙度可达20.9 nm.粗糙度随G值的增大而减小. C电极的粗糙度小于B电极. G值为322时, C电极的粗糙度仅为4.04 nm.

图 7 电沉积镍箔表面粗糙度 Fig. 7 The surface roughness of electrodeposited Ni foils

众所周知, 电结晶过程中晶粒的大小是由成核和生长决定的.当晶核的形成速率大于生长速率时, 晶粒细化.相反, 颗粒粗大.通常成核时间TN(即诱导周期)约为1 ms[29].然而, 消除反应离子浓度差的微混合时间为Tm, 大约是5 ~ 50 ms[29]. Tm比TN大很多.也就是说, 成核是在非均匀溶液中进行的.因此, Ni晶粒的成核和生长也是不均匀的, 导致晶粒较大, 表面粗糙(图 4(a)图 5(a)).在超重力场作用下, 电极表面强化微混合加速了Ni2+的传质.据估计, Tm下降到约0.04~0.4 ms[28].这个值小于TN.晶粒的成核和生长可以在均匀溶液中进行.因此, 在超重力场下电沉积的镍箔颗粒细小均匀, 表面光滑致密.

另一方面, 在垂直超重力场下(图 1), 形成了许多对流单元[30], 也抑制了树枝状突起的产生.因此, 镍箔的表面比常重力条件下更平坦.在电极B上, 超重力方向与离子传质方向相同, 而在电极C上, 两者方向相反.因此, 相比于电极B, 金属离子向电极C表面的传质速率较慢, 导致更大的浓差极化和反应过电位, 有利于形核, 不利于长大.因此, 电极C上获得的镍箔晶粒更加细小.

2.2 镍箔力学性能

测试了镍箔的硬度和拉伸强度.由图 8可知, 在常重力条件下电沉积的镍箔HV硬度仅为294.在B电极和C电极上, 硬度均随着G值的增加而增加.例如, 在B电极上, 当G值为354时, HV硬度可达839.同样, 随着G值的增大, 拉伸强度也增大(图 9).在B电极上G值为354时, 抗拉强度增加到944 MPa.

图 8 镍箔硬度 Fig. 8 The hardness of Ni foils

图 9 镍箔的应力-应变曲线(a)和拉伸强度(b) Fig. 9 The stress-strain curve (a) and the tensile strength (b) of Ni foils

金属箔的硬度和拉伸强度与晶粒尺寸和内应力有关.金属的抗拉强度和硬度通常可用Hall-Petch方程[36]表示:

(3)
(4)

Hσ分别是金属的硬度和抗拉强度, d是平均颗粒直径, σ0H0k是物质本身的常数.通过降低镍箔的晶粒尺寸, 可以提高镍箔的抗拉强度和硬度.根据图 4图 5的结果, 晶粒随重力系数的增大而减小.因此, 拉伸强度和硬度的提高应归因于晶粒的细化.

此外, 从图 8图 9中还可以发现, B电极电沉积镍箔的硬度和抗拉强度均大于C电极上电沉积镍箔的硬度和抗拉强度.浮力的方向与超重力相反.气泡在C电极上的停留时间比B电极上的长, 氢更容易被C电极上的镍箔吸收, 导致镍箔内应力增大, 硬度和抗拉强度降低.

3 结论

1) 垂直超重力场作用下电沉积镍箔表面致密, 晶粒细小, 硬度和抗拉强度均明显高于常重力条件下的镍箔;

2) 镍箔表面粗糙度和晶粒尺寸随重力系数的增大而减小.在C电极上电沉积镍箔粗糙度和晶粒尺寸略低于B电极上的镍箔;

3) 在超重力场与电场方向相同时, 电沉积镍箔具有较好的力学性能, 这可能与镍箔内部低的内应力有关.

参考文献
[1]
刘柏雄, 钟素文. 电沉积法制备泡沫镍的研究[J]. 有色金属科学与工程, 2011, 2(3): 28–31.
[2]
张荣伟, 孙军伟, 李升燕, 等. 锰元素对铜镍合金电化学性能的影响[J]. 有色金属科学与工程, 2018, 9(4): 60–65.
[3]
陈敏, 肖玄, 汤爱涛. 钛精矿制备Fe-TiCN金属陶瓷的研究[J]. 有色金属科学与工程, 2015, 6(5): 70–72.
[4]
宋高阳, 宋波, 杨玉厚, 等. 利用超重力分离5052铝合金熔体中的非金属夹杂[J]. 有色金属科学与工程, 2015, 6(1): 29–34.
[5]
高启瑞, 宋波, 杨占兵, 等. 含钛高炉渣碳化及超重力分离碳化钛的研究[J]. 有色金属科学与工程, 2017, 8(2): 1–7.
[6]
PLOWMAN B J, JONES L A, BHARGAVA S K. Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition[J]. Chemical Communication, 2015, 51: 4331–4346. DOI: 10.1039/C4CC06638C.
[7]
WANG M Y, WANG Z, GUO Z C. Electrodeposited free-crack niw films under super gravity filed: structure and excellent corrosion property[J]. Materials Chemistry and Physics, 2014, 148: 245–252. DOI: 10.1016/j.matchemphys.2014.07.041.
[8]
NIU X H, LAN M B, ZHAO H L, et al. Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures[J]. Analytical Chemistry, 2013, 85: 3561–3569. DOI: 10.1021/ac3030976.
[9]
LIU T, GUO Z C, WANG Z, et al. Structure and mechanical properties of iron foil electrodeposited in super gravity field[J]. Surface and Coatings Technology, 2010, 204: 3135–3140. DOI: 10.1016/j.surfcoat.2010.02.060.
[10]
NIA N S, CREUS J, FEAUGAS X, et al. Influence of metallurgical parameters on the electrochemical behavior of electrodeposited ni and ni-w nanocrystalline alloys[J]. Applied Surface Science, 2016, 370: 149–159. DOI: 10.1016/j.apsusc.2016.02.101.
[11]
GAO S, LIN Y, JIAO X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529: 68–71. DOI: 10.1038/nature16455.
[12]
YU X T, WANG M Y, WANG Z, et al. The structure evolution mechanism of electrodeposited porous Ni films on Ni4Cl concentration[J]. Applied Surface Science, 2016, 360: 502–509. DOI: 10.1016/j.apsusc.2015.10.174.
[13]
QIAN X, HANG T, LI M, et al. Decoration of micro-nanoscale noble metal particles on 3d porous nickel using electrodeposition technique as electrocatalyst for hydrogen evolution reaction in alkaline electrolyte[J]. ACS applied materials & Interface, 2015, 7: 15716–15725.
[14]
KUO Y, LIAO W, YAU S. Effects of Anions on the electrodeposition of cobalt on pt(111) electrode[J]. Langmuir, 2014, 30: 13890–13897. DOI: 10.1021/la503513s.
[15]
MALLIK M, MITRA A, SENGUPTA S, et al. Effect of current density on the nucleation and growth of crystal facets during pulse electrodeposition of Sn-Cu lead-free solder[J]. Crystal Growth & Design, 2014, 14: 6542–6549.
[16]
LIU Z, ABEDIN S Z E, BORISENKO N, et al. Influence of an additive on zinc electrodeposition in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate[J]. Chemelectrochem, 2015, 2: 1159–1163. DOI: 10.1002/celc.201500108.
[17]
MATSUSHIMA H, BUND A, PLIETH W, et al. Copper electrodeposition in a magnetic field[J]. Electrochimica Acta, 2007, 53: 161–166. DOI: 10.1016/j.electacta.2007.01.043.
[18]
OLVERA S, ESTRADA E M A. Effect of the low magnetic field on the electrodeposition of CoxNi100-x alloys[J]. Materials Characterization, 2015, 105: 136–143. DOI: 10.1016/j.matchar.2015.05.002.
[19]
TUDELA I. Ultrasound-assisted electrodeposition of nickel: effect of ultrasonic power on the characteristics of thin coatings[J]. Surface and Coatings Technology, 2015, 264: 49–59. DOI: 10.1016/j.surfcoat.2015.01.020.
[20]
BOOPATHI S, KUMAR S S. Impact of ultrasonic waves in direct electrodeposition of nanostructured aupt -alloy catalyst on carbon substrate: structural characterization and its superior electrocatalytic activity for methanol oxidation reaction[J]. Journal of Physical Chemistry c, 2014, 118: 29866–29873. DOI: 10.1021/jp509248e.
[21]
WANG M Y, WANG Z, GONG X Z, et al. The progress toward electrochemistry intensified by using supergravity field[J]. Chemelectrochem, 2015(2): 1879–1887.
[22]
DU J P, SHAO G J, QIN X J. High specific surface area MnO2 electrodeposited under supergravity field for supercapacitors and its electrochemical properties[J]. Materials Letters, 2012, 84: 13–15. DOI: 10.1016/j.matlet.2012.06.059.
[23]
TONG H, KONG L B, WANG C M. Electroless deposition of Ag onto p-Si(100) surface under the condition of the centrifugal fields[J]. Thin Solid Films, 2006, 496: 360–363. DOI: 10.1016/j.tsf.2005.09.079.
[24]
WANG M Y, WANG Z. The intensification technologies to water electrolysis for hydrogen production-A review[J]. Renewable and Sustainable Energy Review, 2014, 29: 573–588. DOI: 10.1016/j.rser.2013.08.090.
[25]
LAO L, RAMSHAW C, YEUNG H. Process intensification: water electrolysis in a centrifugal acceleration field[J]. Journal of Applied Electrochemistry, 2011, 41: 645–656. DOI: 10.1007/s10800-011-0275-2.
[26]
WANG M Y, WANG Z, GUO Z C. Deposit structure and kinetic behavior of metal electrodeposition under enhanced gravity-induced convection[J]. Journal of Electroanalytical Chemistry, 2015, 744: 25–31. DOI: 10.1016/j.jelechem.2015.03.003.
[27]
WANG M Y, WANG Z, GUO Z C. Preparation of electrolytic copper powders with high current efficiency enhanced by super gravity field and its mechanism[J]. Transactions of Nonferrous Metals Society fo China, 2010, 20: 1154–1160. DOI: 10.1016/S1003-6326(09)60271-5.
[28]
MORISUE M, FUKUNAKA Y. Effect of gravitational strength on nucleation phenomena of electrodeposited copper onto at tin substrate[J]. Journal of Electroanalytical Chemistry, 2003, 559: 155–163. DOI: 10.1016/j.jelechem.2003.08.021.
[29]
LIU T, GUO Z C. Structure and corrosion resistance of nickel foils deposited in a vertical gravity field[J]. Applied Surface Science, 2010, 256: 6634–6640. DOI: 10.1016/j.apsusc.2010.04.062.
[30]
WANG M Y, WANG Z. Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2015, 40: 2173–2181. DOI: 10.1016/j.ijhydene.2014.12.022.
[31]
LIU T, GUO Z C, WANG Z, WANG M Y. Effects of gravity on the electrodeposition and characterization of nickel foils[J]. International Journal of Minerals Metallurgy and Materials, 2011, 18: 59–65. DOI: 10.1007/s12613-011-0400-6.
[32]
CHEN Z H, MA Z P. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution[J]. Journal of Power Sources, 2016, 324: 86–96. DOI: 10.1016/j.jpowsour.2016.04.101.
[33]
CHEN J F. The application and technology of super gravity[M]. Beijing: Chemical Industry Press, 2002.
[34]
TONG H, KONG L B, WANG C M. Electroless deposition of Ag onto P-Si(100) surface under the condition of the centrifugal fields[J]. Thin Solid Films, 2006, 496: 360–363. DOI: 10.1016/j.tsf.2005.09.079.
[35]
SATO M, YAMADA A, AOGAKI R. Electrochemical reaction in a high gravity field vertical to an electrode surface-analysis of diffusion process with a gravity electrode[J]. Japanese Journal of Applied Physics, 2003, 42: 4520–4528. DOI: 10.1143/JJAP.42.4520.
[36]
MOTI E, SHARIAT M H, BAHROLOLOOM M E. Electrodeposition of nanocrystalline nickel by using rotating cylindrical electrodes[J]. Materials chemistry and physics, 2008, 111: 469–474. DOI: 10.1016/j.matchemphys.2008.04.051.
[37]
KIUCHI D, MATSUSHIMA H. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity[J]. Journal of Electrochem Soc, 2006, 153: E138–E143. DOI: 10.1149/1.2207008.