有色金属科学与工程  2018, Vol. 9 Issue (2): 75-80
文章快速检索     高级检索
某铜矿胶结充填体的强度值设计[PDF全文]
占飞1 , 付玉华1,2 , 杨世兴1     
1. 江西理工大学资源与环境工程学院,江西 赣州 341000;
2. 紫金矿业集团股份有限公司,福建 龙岩 364000
摘要:通过经验类比法和理论模型法对福建某铜矿的胶结充填体进行强度值设计.对比各方法下的设计强度值,结合该铜矿深部X1号矿体的赋存条件,最终确定福建某铜矿深部X1号矿体充填开采的充填体所需强度设计方案为:长形顶底部为1.93 MPa,中部为1.53 MPa;方形顶底部为2.67 MPa,中部为2.12 MPa.
关键词经验类比法    理论模型法    强度设计    
Design of strength value of cemented filling body in a copper mine
ZHAN Fei1 , FU Yuhua1,2 , YANG Shixing1     
1. School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
2. Zijin Mining Group Co., Ltd, Longyan 364000, China
Abstract: The strength value for the cemented filling body in a copper mine in Fujian is designed. After comparing the design strength values under different methods, we obtain the strength design scheme for filling body of deep X1 ore body filling mining: the bottom of the long top is 1.93 MPa, the middle is 1.53 MPa, the bottom of the square top is 2.67 MPa, and the middle is 2.12 MPa.
Key words: empirical analogy    theoretical model method    strength design    

胶结充填体必须有足够的强度维护采空区稳定并保持自身的稳定,以达到安全回采其相邻矿块的目的[1-2].国内外对充填体的研究很多,杨伟等[3]通过单轴、三轴压缩以及动载冲击试验,探究动态抗压强度强度增强因素与应变率的关系;付建新等[4]通过单因素多水平试验,对比分析了料浆浓度,灰砂比以及养护龄期对充填体强度的敏感性;宋卫东等[5]将充填体置于侧限压缩条件下,探究不同工况下充填体的峰值强度、残余强度以及破坏形式;邝泽良等[6]研究了在循环荷载全过程下充填体声发射的特性以及分形特征;贺桂成等[7]对宝山矿西部矿的采场充填体强度进行设计并表明了在应用过程中达到良好效果;目前,充填体强度理论设计方法,总体上分为2大类,一是经验类比法,二是理论模型法.对于经验类比法,曾照凯等[8]针对安徽某铜矿运用经验类比法对其采场胶结充填体进行试验设计;王俊等[1]也曾针对大红铜矿运用该法设计充填体强度.在理论模型法方面,蔡嗣经等[9-10]曾经按“充填体是一自立性人工矿柱”这一模型来设计充填体强度;陈玉宾等[11]也曾针对上向水平分层充填建立强度模型;魏微等[12]利用改进的BP网络神经模型来指导设计充填体的强度;上述2种方法都各有优缺点,经验类比法因简便经济被许多矿山采用,但矿山的主观因素在很大程度上影响着充填体的强度设计,该法缺乏力学分析的支持.对于理论模型法,虽融入一些力学理论,但在假设模型上面也有缺陷.例如:太沙基模型假定在一定深度上矿柱各应力分量为常量的观点上存在不妥之处,托马斯模型只考虑了充填体的几何尺寸与容重,而未考虑其本身的强度特性(内聚力、摩擦角等),楔形滑动模型则没考虑到充填体的侧裂阻滑作用.因此,本研究分别运用经验类比法和理论模型法对福建某铜矿深部X1号矿体充填开采的充填体强度进行设计, 并综合分析各方法的结果,给出较为合理的充填体强度值设计方案.

1 充填体强度确定方法 1.1 经验类比法

经验类比法是将所要设计的目标矿山的开采与充填条件和相类似的生产矿山进行比较,从而选择一个认为较合理的充填体强度值.由于使用简便,故应用颇为广泛.福建某铜矿深部X1矿体主要采用大直径深孔嗣后充填采矿法开采,包括“长条形”与“方形”两类方案.方形采场长宽各为30 m,高100 m,前期采用尾砂胶结充填,后期改为废石尾砂胶结充填;长条形方案采场在中段平面内按15 m×50 m长方形布置,高为矿体垂高,在50 m及以上.

通过对比该矿深部开采工程技术条件和表 1矿山开采实例,其中凡口铅锌矿、安庆铜矿、塔拉铅锌矿和芒特艾萨矿与深部开采在采矿方法、采场参数以及充填工艺方面近似,其中又以安庆铜矿与该矿长形法相近,芒特艾萨矿与该矿正形法最近.经类比,福建某铜矿深部开采充填体的强度应在1.50~2.10 MPa.

表 1 国内外矿山采场充填体配比设计表 Table 1 Design table for proportioning of filling body in mine stope
点击放大

1.2 理论模型法

1)蔡嗣经经验公式.式(1)所示的充填体垂直应力σv(MPa)与其高度H(m)的半立方抛物线关系[13].

$ {H^2} = a\sigma _v^3\;\;\;\;\;\;\;\;\;\;{\sigma _v} = \sqrt[3]{{\frac{{{H^2}}}{a}}} $ (1)

式(1)中:a为经验系数,H<50 m时, a=600,H>100 m时, a=1 000.

由公式${\sigma _v} = {\rm{ }}\sqrt[3]{{\frac{{{H^2}}}{a}}}$ ,经验系数a取600,得充填体高度与充填矿柱应力之间的关系.表 2图 1分别列出了由蔡嗣经经验法计算得到充填体高度和所需要的强度之间的关系,由此可知,随着充填体高度增加,为维持充填体的自立稳定,所需的强度也随之增加[14-15],当高度达50 m时,充填体所需强度为1.61 MPa,当高度为100 m时,充填体所需强度为2.55 MPa.

图 1 蔡嗣经法充填体高度与强度关系曲线 Fig. 1 Relationship between body height and filling method Sijing Cai strength curve

表 2 蔡嗣经法充填体高度与强度关系 Table 2 The relationship between CAI Sijing method of filling body height and strength
点击放大

2)太沙基(Terzaghi)模型.该方法假定:矿柱在深度上是无限的,在任一给定的矿柱深度上,各个应力分量是常量[16].虽然上述假定有一定的局限性,但可以大大简化分析过程.设有一充填体,其横断面为矩形,长LB,如图 2所示,取坐标原点在充填体顶部.

图 2 太沙基计算模型 Fig. 2 Terzaghi calculation model

根据假定,在距顶部y处,垂直应力分量σv与水平应力分量σH均为常量,有如下关系:

$ {\sigma _H} = H{\sigma _v} $ (2)

式(2)中,K是在该深度处的水平侧压力系数.在充填体与围岩接触带上,剪应力τ为:

$ \tau = C + K{\sigma _v}\tan \phi $

现在,考虑充填体中某一薄层上各应力与重力的平衡,在垂直方向上可得一微分方程:

$ \frac{{{\rm{d}}{\sigma _v}}}{{{\rm{d}}\mathit{y}}} + A{\sigma _v} = D $ (3)

式(4)中:

$ \begin{array}{l} A = \frac{{2\left( {L + B} \right)}}{{LB}}K\tan \phi \\ D = r - \frac{{2C\left( {L + B} \right)}}{{LB}}\\ r = \rho g \end{array} $

r是充填材料的单位容重,ρ籽是充填材料的密度.当AD独立于y时,注意到在y=0时,σv=0则式(3)可解得:

$ {\sigma _v} = \frac{D}{A}\left[{1-{e^{-Ay}}} \right] $ (4)

ADy相关,则式(3)只能用数值法求解.

当B→∞时,则图 2所示的模型成为一个平面应变模型,即二维模型.此时有:

$ \begin{array}{l} {A_2} = \frac{2}{L}K\tan \phi \\ {D_2} = r - \frac{{2C}}{L} \end{array} $

BL时,则模型的断面为一正方形,即三维模型.此时有:

$ \begin{array}{l} {A_3} = \frac{4}{L}K\tan \phi \\ {D_3} = r - \frac{{4C}}{L} \end{array} $

在一般情况下,可以认为水平侧压力系数K为:

$ K = \frac{\mu }{{1 - \mu }} $ (5)

式(5)中μ为充填材料的泊松比.采用式(4),根据室内试验,取r=2.1 kN/m3C=0.85 MPa,φ=25°,μ=0.3,按长形和方形2种方案计算,计算结果如表 3所列.

表 3 太沙基法充填体高度与强度关系 Table 3 Relationship between body height of Terzaghi method and filling strength
点击放大

表 3图 3列出了由太沙基模型法计算得到充填体高度和所需强度之间的关系,由此可知,随着充填体高度增加,为维持充填体的自立稳定,所需的强度也随之增加,当高度达50 m时,充填体所需强度长形为1.49 MPa,方形为2.67 MPa,当高度为100 m时,充填体所需强度长形为1.75 MPa,方形为3.37 MPa.

图 3 太沙基法充填体高度与强度关系曲线 Fig. 3 Relationship between body height of Terzaghi method and filling intensity curve

3)托马斯(Thomas)模型.考虑成拱作用,这种作用主要是由于充填料与围岩壁之间的相互摩擦所引起的[17].在充填体内,垂直应力的分布大体上可表示为:

$ {\sigma _v} = \frac{{rh}}{{\left( {1 + \frac{h}{w}} \right)}} $ (6)

式(6)中:σv为作用在充填体底部的垂直应力;r为充填材料的单位容重;h为充填体的高度;w为充填体的宽度.

这个模型只考虑了充填体的几何尺寸与充填料的容重,而没有考虑充填料本身的强度特性,即材料的内聚力与摩擦角[18-19],与太沙基模型相比较,这是一个严重的缺陷.因此,该模型应在这一方面进一步修正.

根据托马斯模型,由式(6)计算可得充填体高度和所需强度之间的关系,计算结果如表 4所列.

表 4 托马斯法充填体高度与强度关系 Table 4 Relationship between height and strength of Thomas method filling body
点击放大

表 4图 4列出了由托马斯模型法计算得到充填体高度和所需要强度之间的关系,由此可知,随着充填体高度增加,为维持充填体的自立稳定,所需的强度也随之增加,当高度达50 m时,充填体所需强度长形为0.24 MPa,方形为0.39 MPa,当高度为100 m时,充填体所需强度长形为0.27 MPa,方形为0.48 MPa.

图 4 托马斯法充填体高度与强度关系曲线 Fig. 4 Relationship between height and strength of Thomas method filling body

4)楔体滑动分析模型.为克服托马斯模型的不足,用楔体滑动分析得出如下计算模型.

$ {\sigma _v} = \frac{{rh}}{{\left( {1 - K} \right)\left( {\tan a + \frac{{2H}}{L}\frac{{{C_j}}}{C}\sin a} \right)}} $ (7)

式(7)中:σv为胶结充填体矿柱中垂直应力,MPa;r为充填材料的单位容重, kN/m3H为充填体的高度, m;L为充填体的宽度, m;K为侧压系数,K=1-sinϕ,a=45+1/2ϕ;CΦ为充填体的内聚力与摩擦角;CjΦj为充填体与围岩间的内聚力与摩擦角.

根据楔体滑动分析模型,按式(7)计算可得充填体高度和所需强度之间的关系,计算结果如表 5所列.

表 5 楔体滑动分析模型充填体高度与强度关系 Table 5 Wedge sliding analysis model relationship between height and strength of filling body
点击放大

表 5图 5列出了由楔体滑动分析模型计算得到充填体高度和所需强度之间的关系,由此可知,随着充填体高度增加,为维持充填体的自立稳定,所需的强度也随之增加,当高度达50 m时,充填体所需强度长形为0.51 MPa,方形为0.71 MPa.当高度为100 m时,充填体所需强度长形为0.65 MPa,方形为1.02 MPa.

图 5 楔体滑动分析模型充填体高度与强度关系曲线 Fig. 5 Wedge sliding analysis model relationship between height and strength of filling body

2 结果与应用

将上述5类方法设计的充填体所需强度列于表 6,对比可知:各种方法计算得到充填体强度值相差较大,其中以经验类比法、蔡嗣经经验法和太沙基模型设计值较为接近;托马斯模型法和楔体滑动模型法接近,托马斯模型法设计值最小;相同开采高度,方形采场充填体强度比长形采场充填体所需强度略大.

表 6 各种方法设计充填体强度值 Table 6 various methods to design strength of filling body/MPa
点击放大

该铜矿X1矿体处于深部,整个采场处于高应力状态,且采场上部岩层存在裂缝,充填体在充于采场后需平衡来自于这种复杂环境的压力,且充填体顶底部的强度要求比充填体中部的要求要高.托马斯模型法和楔体滑动模型法相对于其他方法所求得的强度过小,并不能满足维持稳定要求,在应用过程中不考虑这两种方法的效力.综上,通过对经验类比法、蔡嗣经经验法和太沙基模型法获得的强度值求平均值,为此次强度设计的较优值.其中,充填体顶底部应用高度为100 m时所得强度值,充填体中部应用高度为50 m时所得强度值.所以,福建某铜矿深部X1矿体充填开采的充填体所需强度为:长形顶底部为1.93 MPa,中部为1.53 MPa;方形顶底部为2.67 MPa,中部为2.12 MPa.

3 结论

通过经验类比法可知,凡口铅锌矿、安庆铜矿、塔拉铅锌矿和芒特艾萨矿与福建某铜矿深部开采在采矿方法、采场参数、充填工艺方面近似,其中又以安庆铜矿与该铜矿长形法相近,芒特艾萨矿与该铜矿方形法最相近,因此,福建某铜矿深部开采充填体的强度应在1.50~2.10 MPa.

由蔡嗣经经验法可知,随着充填体高度增加,为维持充填体的自立稳定,所需的强度也随之增加,当高度达50 m时,充填体所需强度为1.61 MPa,当高度为100 m时,充填体所需强度为2.55 MPa.在充填体强度随高度的变化规律方面上,太沙基模型法、托马斯模型法、楔体滑动分析模型都与蔡嗣经经验法类似,但在数值上有较大差异.

综合各种方法分析,福建某铜矿深部X1号矿体充填开采的充填体强度设计方案为:长形顶底部为1.93 MPa,中部为1.53 MPa;方形顶底部为2.67 MPa,中部为2.12 MPa.

参考文献
[1]
王俊, 乔登攀, 邓涛, 等. 大红山铜矿胶结高矿柱强度设计及工程实践[J]. 黄金, 2014(8): 41–46. DOI: 10.11792/hj20140809.
[2]
郭利杰, 杨小聪. 深部采场胶结充填体力学稳定性研究[J]. 矿冶, 2008, 17(3): 10–11.
[3]
杨伟, 张钦礼, 杨珊, 等. 动载下高浓度全尾砂胶结充填体的力学特性[J]. 中南大学学报(自然科学版), 2017, 48(1): 156–161. DOI: 10.11817/j.issn.1672-7207.2017.01.022.
[4]
付建新, 杜翠凤, 宋卫东. 全尾砂胶结充填体的强度敏感性及破坏机制[J]. 北京科技大学学报, 2014, 36(9): 1149–1157.
[5]
宋卫东, 任海锋, 曹帅. 侧限压缩条件下充填体与岩柱相互作用机理[J]. 中国矿业大学学报, 2016, 45(1): 49–55.
[6]
邝泽良, 赵奎, 等. 循环荷载作用下胶结充填体声发射特征试验研究[J]. 有色金属科学与工程, 2017, 8(4): 91–97.
[7]
贺桂成, 刘永, 丁德馨, 等.废石胶结充填体强度特性及其应用研究[J].2013, 30(1):74-79.   http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ksyl201301014&dbname=CJFD&dbcode=CJFQ
[8]
曾照凯, 张义平, 王文明. 高阶段采场充填体强度及稳定性研究[J]. 金属矿山, 2010(1): 31–34.
[9]
蔡嗣经. 胶结充填材料的强度特性与强度设计(Ⅰ)[J]. 江西冶金学院学报, 1985(3): 39–44.
[10]
蔡嗣经. 胶结充填材料的强度特性与强度设计(Ⅱ)[J]. 江西冶金学院学报, 1985(4): 12–21.
[11]
陈玉宾, 乔登攀, 孙宏生. 上向水平分层充填体的强度模型及应用[J]. 金属矿山, 2014(10): 27–31.
[12]
魏徽, 高谦. 改进的BP神经网络模型预测充填体强度[J]. 哈尔滨工业大学学报, 2013, 45(6): 90–95. DOI: 10.11918/j.issn.0367-6234.2013.06.016.
[13]
邓代强, 汪令辉, 王发芝, 等. 采空区充填配比参数设计及工程检验[J]. 福州大学学报, 2013, 41(2): 207–212.
[14]
付玉华, 占飞, 余信橙. 高阶段采场充填体稳定性的数值分析[J]. 中国矿业, 2017, 26(7): 111–115.
[15]
杨宝贵, 孙恒虎, 庄百宏. 高水固结充填体的自立[J]. 有色金属, 2000, 52(2): 7–10.
[16]
蔺港, 孔令刚, 詹良通, 等. 基于太沙基土拱效应考虑基质吸力影响的松动土压力计算模型[J]. 岩土力学, 2015, 36(7): 2095–2014.
[17]
THOMAS. Fill technology in underground metalliferous mine[M]. CanadaKingston: AcadamicServiceLtd, 1979: 35-41.
[18]
由希, 任凤玉, 何荣兴, 等. 阶段空场嗣后充填胶结充填体抗压强度研究[J]. 采矿与安全工程学报, 2017, 34(1): 163–169.
[19]
彭志华. 胶结充填体力学强度尺寸效应[J]. 中国矿业, 2009, 18(7): 88–99.