有色金属科学与工程  2018, Vol. 9 Issue (1): 77-79, 104
文章快速检索     高级检索
Nd取代对Pr-Nd-Fe-B烧结磁体耐腐蚀性的影响[PDF全文]
戚植奇1 , 喻玺1 , 杜君峰1,2 , 王亮亮1 , 刘滨1 , 庞再升1 , 李家节3 , 王公平4     
1. 赣州富尔特电子股份有限公司 江西 赣州 341000;
2. 江西省稀土永磁材料及器件工程研究中心 江西 赣州 341000;
3. 江西理工大学工程研究院 江西 赣州 341000;
4. 江西师范大学物理与通信电子学院 江西 南昌 330022
摘要:以HAST加速寿命试验后磁体失重,以及在不同腐蚀介质中磁体动电位极化曲线为表征,研究稀土元素Nd取代Pr对烧结Pr-Nd-Fe-B磁体耐腐蚀性的影响.结果表明:用Nd完全取代Pr后,磁体失重减小,室温下在0.1 mol/L HCl溶液、3.0 % NaOH溶液、3.5 % NaCl溶液中腐蚀电位不同程度地正移,表明磁体耐腐蚀性得到改善.通过场发射扫描电子显微镜观察HAST试验后磁体的微观组织形貌发现,Nd取代Pr后,晶界分布变得更加连续、清晰,且晶界交隅处的富稀土相含量减少,从而延缓了晶界腐蚀速率,使磁体的总体耐腐蚀性得到提升.
关键词烧结Pr-Nd-Fe-B磁体    耐腐蚀性    失重    动电位极化曲线    
Effect of Nd Substitution for sintered Pr-Nd-Fe-B magnet corrosion resistance
QI Zhiqi1 , YU Xi1 , DU Junfeng1,2 , WANG Liangliang1 , LIU Bin1 , PANG Zaisheng1 , LI Jiajie3 , WANG Gongping4     
1. Ganzhou Fortune Electronic Co., Ltd, Ganzhou 341000, China;
2. Research Center for Rare Earth Permanent Magnet Materials and Devices Engineering of Jiangxi Province, Ganzhou 341000, China;
3. Institute of Engineering and Research, Jiangxi University of Science and Technology, Ganzhou 341000, China;
4. College of Physics, Electronics and Comunication, Jiangxi Normal University, Nanchang 330022, China
Abstract: Effects of Nd substitution for sintered Pr-Nd-Fe-B magnets corrosion resistance were investigated, via mass loss of the magnets by HAST, and potentiodynamic polarization curves under different corrosive mediums. The result shows that the mass loss reduced, and the corrosion potential moved positively to different extent within the condition of 0.1 mol/L HCl, 3.0 % NaOH and 3.5 % NaCl aqueous solution, after the rare-earth element Pr of the sintered Pr-Nd-Fe-B magnet completely been substituted, which indicates the better resistance against electrochemical corrosion. The microstructure of the magnet using Nd by SEM in comparison with the(Pr-Nd) one suggests that the grain boundaries becomes more clear and continuous, and the Nd-rich phase at triple junctions is reduced. Through which the corrosion rate of the grain boundaries is slowed down, and as is effective to the corrosion resistance.
Key words: Pr-Nd-Fe-B sintered magnet    corrosion resistance    mass loss    potentiodynamic polarization curves    

钕铁硼(Nd-Fe-B)磁体具有磁性能高、抗退磁能力强、易加工成型,以及易实现器件小型化、节能等优点,被广泛应用于电子通信、自动控制、新能源、节能电机等众多领域[1-2].由于考虑制造成本、资源平衡利用等因素,行业内普遍使用镨钕合金而非纯金属钕作为原料进行生产制成烧结Pr-Nd-Fe-B磁体.但是其耐腐蚀性能较差[2-7],易发生腐蚀[2, 8],致使磁体失效,制约了磁体的应用[1].

为此,科研工作者采用各种方法和手段对其耐腐蚀性行为开展了大量研究. ZHANG P等[9]采用Cu和Nb粉末联加作为改进剂改善钕铁硼磁体的耐腐蚀性;文献[10-11]通过添加Cu_(85)Sn_(15)和Cu/Al改善晶界从而提高磁体的耐腐蚀性;PAN M等[12]则采用Cu和Zr粉末联加改善磁体耐腐蚀性,ZHOU Q等[13]采用难熔金属Nb和Ti取代Fe来降低磁体PCT失重;2017年,王小二[14]利用Mg纳米粉添加到钕铁硼磁体里面,使之形成Mg-Nd晶界相,进而提高磁体的耐腐蚀性.但利用稀土元素Nd取代Pr的研究很少.

因此,结合钕铁硼行业的生产实际,采用Nd取代Pr-Nd制备烧结磁体,研究分析Nd取代对磁体HAST失重、腐蚀电位和微观结构的影响,为改进Pr-Nd-Fe-B烧结磁体的耐腐蚀性提供依据,这具有一定的实际意义.

1 实验材料与方法

采用工业纯Nd、Pr-Nd合金、纯Fe和B含量为19 %的B-Fe合金为原料,按照Nd32Fe67.02B0.98和Pr7Nd25Fe67.02B0.98两种成分配比.利用将其分别制成平均厚度为0.3 mm的合金片,经氢碎、气流磨获得平均粒径为3.2 μm的磁粉,在2.1 T磁场下取向成型,经200 MPa冷等静压后进入真空烧结炉进行烧结、时效.烧结工艺为1 065 ℃×5.5 h,一级时效890 ℃×3 h,二级时效480 ℃×4.5 h,制得烧结磁体.再通过平面磨床、切片机和抛光机制得尺寸为10 mm×10 mm×10 mm的测试样品磁体.

采用高温加速老化试验箱(HAST,EHS-411M)测试磁体在131 ℃, 100 %RH, 0.202 MPa条件下的质量损失(失重),采用电化学综合测试仪(CHI660E)分别测试室温下磁体在0.1 mol/L HCl溶液、3.0 % NaOH溶液、3.5 % NaCl溶液中的动电位极化曲线,采用场发射扫描电子显微镜(SEM,SU1510)观察分析于HAST试验后磁体的微观组织形貌.

2 结果与讨论 2.1 对失重的影响

2种不同成分的磁体分别经HAST试验24 h,48 h,72 h,96 h,120 h后的失重曲线如图 1所示.

图 1 Nd-Fe-B和Pr-Nd-Fe-B磁体HAST失重对比 Fig. 1 Mass loss comparison of Nd-Fe-B and Pr-Nd-Fe-B magnets by HAST

经HAST老化120 h后,使用Pr-Nd合金为原料制备的磁体(Pr-Nd-Fe-B磁体)失重达到0.033 mg /cm2,明显大于使用纯Nd的磁体(Nd-Fe-B磁体)0.027 mg/cm2的失重.这表明使用纯Nd取代Pr元素后,磁体的耐腐蚀性转好.这主要得益于在化学元素周期表中Nd元素的位置较Pr靠后,其金属活泼性弱于Pr,较不容易发生氧化反应[15].

2.2 对腐蚀电位的影响

图 2(a)~图 2(c)所示为室温下Nd-Fe-B和Pr-Nd-Fe-B 2种磁体分别在0.1 mol/L HCl溶液、3.0 % NaOH溶液、3.5 % NaCl溶液中的动电位极化曲线.从图 2中可见,室温时,在以0.1 mol/L HCl溶液为腐蚀介质条件下,Nd-Fe-B磁体腐蚀电位Ecorr(Nd-Fe-B,0.1 mol/L HCl)为-0.649 V,Pr-Nd-Fe-B磁体腐蚀电位Ecorr(Pr-Nd-Fe-B,0.1 mol/L HCl)为-0.736 V;在以3.0 % NaOH溶液为腐蚀介质条件下,Nd-Fe-B磁体腐蚀电位Ecorr(Nd-Fe-B,3.0 % NaOH)为-0.525 V,Pr-Nd-Fe-B磁体腐蚀电位Ecorr(Pr-Nd-Fe-B,3.0 % NaOH)为-0.625 V;在以3.5 % NaCl溶液为腐蚀介质条件下,Nd-Fe-B磁体腐蚀电位Ecorr(Nd-Fe-B,3.5 % NaCl)为-0.739 V,Pr-Nd-Fe-B磁体腐蚀电位Ecorr(Pr-Nd-Fe-B,3.5 % NaCl)为-0.94 V.由此可见,采用纯Nd取代Pr-Nd合金作原料后,磁体在不同腐蚀介质条件下的腐蚀电位均发生不同程度的正移,表明磁体的耐电化学腐蚀性能变好[16-19].

图 2 Nd-Fe-B和Pr-Nd-Fe-B磁体在不同腐蚀介质中的动电位极化曲线 Fig. 2 Potentiodynamic polarization curves of Nd-Fe-B and Pr-Nd-Fe-B magnets under different corrosive mediums

图 3所示为2种不同成分磁体的SEM二次电子像.该结果显示Pr-Nd-Fe-B磁体富稀土相分布不均匀(呈星云状聚集,图 3(b)).该分布易造成局部区域的富稀土相发生快速腐蚀,使整体腐蚀更为严重.而Nd-Fe-B磁体富稀土相团聚更少(图 3(a)),使腐蚀更轻微[20].表明用Nd取代Pr后,磁体的耐腐蚀性得到提高.这与前面所述结果一致.

图 3 2种磁体的SEM二次电子像 Fig. 3 Secondary electron images of the magnets by SEM

磁体在二次电子像中不同衬度区域的EDS点测结果(表 1)表明,图 3中白色区域为晶界富稀土相,灰色区域为基体主相.

表 1 Nd-Fe-B和Pr-Nd-Fe-B磁体的EDS点测结果/% Table 1 EDS of Nd-Fe-B and Pr-Nd-Fe-B magnets /%
点击放大

3 结论

1) 采用Nd完全取代Pr后,磁体的晶界相分布更加均匀,团聚现象减少,磁体HAST失重降低,腐蚀程度减轻.

2) 采用Nd完全取代Pr后,室温时在0.1 mol/L HCl溶液、3.0 % NaOH溶液、3.5 % NaCl溶液中都呈现出腐蚀电位正移现象,耐电化学腐蚀能力增强.

参考文献
[1]
孔祥薇, 刘国征, 赵明静, 等. 烧结NdFeB永磁体的腐蚀性研究现状[J]. 稀土, 2013, 34(6): 69–70.
[2]
LI X T, LIU W Q, YUE M. Corrosion evaluation for recycled Nd-Fe-B sintered magnets[J]. Journal of Alloys and Compounds, 2017, 699: 713–717. DOI: 10.1016/j.jallcom.2017.01.022.
[3]
ZHANG P, LIANG L P, JIN J Y, et al. Magnetic properties and corrosion resistance of Nd-Fe-B magnets with Nd64Co36 intergranular addition[J]. Journal of Alloys and Compounds, 2014, 616: 345–349. DOI: 10.1016/j.jallcom.2014.07.085.
[4]
ZHOU B, LI X, LIANG X, et al. Improvement of the magnetic property, thermal stability and corrosion resistance of the sintered Nd-Fe-B magnets with Dy80Al20addition[J]. Journal of Magnetism & Magnetic Materials, 2017, 429: 257–262.
[5]
WANG Z, LIU W Q, ZHANG D T, et al. Enhancement of corrosion resistance in sintered Nd-Fe-B permanent magnet doping with different CuZn5 contents[J]. Rare Metals, 2017, 28(10): 812–815.
[6]
吴泽轶. 低成本与高抗蚀性烧结Nd-Fe-B磁体工业生产关键技术研究[D]. 湘潭: 湘潭大学, 2008.
[7]
丁霞, 薛龙飞, 丁开鸿, 等. 烧结钕铁硼永磁合金在不同酸溶液中的腐蚀行为[J]. 中南大学学报, 2016, 47(4): 1105–1109. DOI: 10.11817/j.issn.1672-7207.2016.04.004.
[8]
ZHOU B B, LI X B, CAO X J, et al. Improvement in coercivity, thermal stability, and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition[J]. Chinese Physics B, 2016, 25(11): 1–5.
[9]
ZHANG P, MA T, LIANG L, et al. Improvement of corrosion resistance of Cu and Nb co-added Nd-Fe-B sintered magnets[J]. Materials Chemistry & Physics, 2014, 147(3): 982–986.
[10]
NI J, WANG Y, JIA Z, et al. Effect of intergranular addition of Cu_(85)Sn_(15) on magnetic and anti-corrosion properties of Nd-Fe-B magnets[J]. Rare Metal Materials & Engineering, 2016, 45(8): 2111–2115.
[11]
NI J, XIN S, ZHOU S, et al. Effect of Cu/Al compound addition on anti-corrosive and magnetic properties of NdFeB sintered magnets[J]. Rare Metal Materials & Engineering, 2013, 42(12): 2536–2540.
[12]
PAN M. Improvement of corrosion resistance and magnetic properties of NdFeB sintered magnets with Cu and Zr co-added[J]. International Journal of Electrochemical Science, 2016: 2659–2665. DOI: 10.20964/110402659.
[13]
ZHOU Q, CHEN R, ZHUANG L, et al. Effect of refractory metal substitution on magnetic property and corrosion behavior of sintered NdFeB magnets[J]. Rare Metal Materials & Engineering, 2015, 44(10): 2376–2380.
[14]
王小二. 纳米粉对烧结钕铁硼抗腐蚀性能的影响[D]. 沈阳: 沈阳工业大学, 2017.
[15]
吴维昌, 冯洪清, 吴开治, 等. 标准电极电位数据手册[M]. 北京: 科学出版社, 1991.
[16]
李家节. NdFeB磁体环境加速腐蚀行为研究[D]. 北京: 钢铁研究总院, 2012.
[17]
李家节, 周头军, 郭诚君, 等. 烧结NdFeB磁体耐蚀性及其腐蚀特征研究[J]. 中国稀土学报, 2016, 34(1): 33–37.
[18]
李家节, 安桂焕, 郭诚君, 等. 烧结NdFeB磁体高温高压高湿加速腐蚀行为研究[J]. 中国稀土学报, 2016, 34(5): 555–558.
[19]
ZHOU Q Y, LI G, LIU Z, et al. Influence of the electroplating pretreatment on corrosion mechanism of NdFeB magnets[J]. Journal of Rare Earths, 2016, 34(2): 152–157. DOI: 10.1016/S1002-0721(16)60008-X.
[20]
周寿增, 董清飞, 高学绪. 烧结钕铁硼稀土永磁材料与技术[M]. 北京: 冶金工业出版社, 2011.