2. 油气藏地质及开发工程国家重点实验室·成都理工大学, 四川 成都 610059
2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan 610059, China
随着常规油气资源的枯竭,页岩气开采对于日益增长的能源需求至关重要。全球页岩气资源总量预计为456
自Hubbert和Willis在1957年开展起裂压力研究以来[13],已建立了多种预测井壁起裂压力的模型,并取得了一定的成果[9-10, 14-23]。但是,由于页岩具有显著各向异性特征,导致页岩在不同方向的弹性性质和抗张强度差异显著[24-29],因此,以上将岩石视为各向同性介质的起裂压力计算模型对各向异性页岩并不完全适用。考虑到页岩的各向异性,1988年,Aadnoy针对横观各向同性地层提出了一个考虑弹性各向异性、剪切各向异性和抗张强度各向异性的的斜井井壁稳定模型,他指出忽略各向异性效应会引入误差[30]。1995年,Ong和Roegiers考虑岩石的弹性各向异性提出了一种井壁稳定“设计准则”来计算各向异性对裂缝起裂压力的影响,他们通过模拟发现裂缝起裂与地层的各向异性密切相关,尤其是在水平井眼中[31]。2012年,Khan等指出,当剪切应力超过岩石的抗张强度时,裂缝开始出现,推导了考虑页岩弹性各向异性的起裂压力表达式,并以加拿大Horn河油田为例证明了在完井设计中考虑各向异性的重要性[32]。2019年,Ma等建立了考虑各向异性变形、模量各向异性、抗张强度各向异性和地应力各向异性的起裂压力预测模型,分析了不同地层产状下起裂压力随不同影响参数的变化规律,研究结果表明当模型中考虑岩石各向异性力学参数时,计算得到的起裂压力可能高于或低于各向同性模型计算得到的起裂压力[8]。
虽然上述起裂模型考虑了岩石各向异性特征,但大部分只考虑了岩石的弹性参数各向异性,限制了这些模型在具有弹性各向异性和抗张强度各向异性页岩中的应用。Ma等的模型同时考虑了页岩弹性和抗张强度各向异性,但该模型只适用于直井[8]。除此以外,以上模型大多只针对起裂压力开展了相关研究,而对于表征井壁裂缝起裂行为的起裂位置和起裂倾角很少受到关注。因此,本文将基于页岩各向异性特征,建立页岩气水平井井壁裂缝起裂模型,开展井壁裂缝起裂力学行为研究,从而为钻井井漏和水力压裂设计提供理论指导。
1 页岩各向异性力学特征测试页岩地层中由于黏土颗粒、干酪根包裹体、微裂纹的各向异性和页岩层理的局部排列,导致页岩在不同方向的弹性性质和强度参数差异显著[24, 26-29]。为了分析页岩各向异性特征,开展了龙马溪组页岩在不同加载角度下的单轴压缩和巴西劈裂实验研究,分析了龙马溪组页岩弹性模量和抗张强度各向异性特征。
1.1 实验样品实验样品取自四川盆地龙马溪组黑色露头页岩,主要成分为石英、长石、方解石以及黏土矿物,其中还夹杂少许白云石和黄铁矿。页岩基质颗粒形态不规则,矿物颗粒随机分散,颗粒内部及各矿物颗粒之间夹杂少许微孔隙和微裂缝,其微观结构如图 1所示。
图 2为龙马溪页岩在不同加载角下的弹性模量。由图可知,不同角度
采用巴西圆盘劈裂法开展了龙马溪组页岩在不同角度下的抗拉实验,实验结果如图 3所示。由图可知,龙马溪组页岩具有显著的抗张强度各向异性特征。随着
(1) 页岩为连续、均质、横观各向同性介质,在层理面内页岩力学参数和性质相同;
(2) 水平井井眼轴向与层理面平行;
(3) 井筒周围页岩的应力、应变满足广义平面应变条件;
(4) 忽略渗流、传热和化学反应的影响。
2.2 水平井井周应力分布模型建立地层局部坐标系下,岩石的本构方程为
$ \left[ {\begin{array}{*{20}{c}} {{\varepsilon _x}}\\ {{\varepsilon _y}}\\ {{\varepsilon _z}}\\ {{\gamma _{yz}}}\\ {{\gamma _{xz}}}\\ {{\gamma _{xy}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\dfrac{1}{E}}&{ - \dfrac{\nu }{E}}&{ - \dfrac{{\nu '}}{{E'}}}&0&0&0\\ { - \dfrac{\nu }{E}}&{\dfrac{1}{E}}&{ - \dfrac{{\nu '}}{{E'}}}&0&0&0\\ { - \dfrac{{\nu '}}{{E'}}}&{ - \dfrac{{\nu '}}{{E'}}}&{\dfrac{1}{{E'}}}&0&0&0\\ 0&0&0&{\dfrac{1}{{G'}}}&0&0\\ 0&0&0&0&{\dfrac{1}{G}}&0\\ 0&0&0&0&0&{\dfrac{1}{{G'}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{\sigma _x}}\\ {{\sigma _y}}\\ {{\sigma _z}}\\ {{\tau _{yz}}}\\ {{\tau _{xz}}}\\ {{\tau _{xy}}} \end{array}} \right] $ | (1) |
式中:
为了建立横观各向同性页岩水平井井壁裂缝起裂模型,需要不同坐标系之间的相互转换,图 4为横观各向同性地层水平井示意图,其中,
李小刚[33]等针对横观各向同性地层,基于各向异性材料力学理论,运用应力叠加原理和坐标变换方法,考虑井筒流体压力、最大水平主应力、最小水平主应力和上覆岩层压力作用,推导了水平井井壁应力拟三维解[33]
$ \left\{ {\begin{array}{*{20}{l}} {{\sigma _r} = {\sigma _x}{{\cos }^2}\theta + {\sigma _y}{{\sin }^2}\theta + 2{\tau _{xy}}\sin \theta \cos \theta }\\ {{\sigma _\theta } = {\sigma _x}{{\sin }^2}\theta + {\sigma _y}{{\cos }^2}\theta - 2{\tau _{xy}}\sin \theta \cos \theta }\\ {{\tau _{\theta r}} = {\tau _{r\theta }} = \left( {{\sigma _y} - {\sigma _x}} \right)\sin \theta \cos \theta + {\tau _{xy}}\cos \left( {2\theta } \right)}\\ {{\tau _{rz}} = \sin \theta {\tau _{yz}} + \cos \theta {\tau _{xz}}}\\ {{\tau _{\theta z}} = \cos \theta {\tau _{yz}} - \sin \theta {\tau _{xz}}}\\ {{\sigma _z} = {\sigma _z}} \end{array}} \right. $ | (2) |
其中
$ \left\{ {\begin{array}{*{20}{l}} {{\sigma _x} = {\sigma _{x1}} + {\sigma _{x2}} + {\sigma _{x3}}}\\ {{\sigma _y} = {\sigma _{y1}} + {\sigma _{y2}} + {\sigma _{y3}}}\\ {{\sigma _z} = {\sigma _{z1}} + {\sigma _{z2}} + {\sigma _{z3}} + {\sigma _{z5}}}\\ {{\tau _{xy}} = {\tau _{xy1}} + {\tau _{xy2}} + {\tau _{xy3}}}\\ {{\tau _{yz}} = {\tau _{yz4}}}\\ {{\tau _{xz}} = {\tau _{xz4}}} \end{array}} \right. $ | (3) |
式(3)中,下标1、2、3、4、5分别表示井筒液柱压力、井筒
$ \left\{ {\begin{array}{*{20}{l}} {{\sigma _{x1}} = \dfrac{{ - {p_{\rm w}}}}{C}\left[ {{{\sin }^4}\theta \left( {D - q} \right) + {{\sin }^2}\theta {{\cos }^2}\theta \cdot \left( {{q^2} + qD - p - q} \right) - {q^2}{{\cos }^4}\theta } \right]}\\ {{\sigma _{y1}} = \dfrac{{ - {p_{\rm w}}}}{C}\left[ {{{\sin }^2}\theta {{\cos }^2}\theta \left( {D + 1 - q - p} \right) - {{\sin }^4}\theta + {{\cos }^4}\theta \left( {qD - q} \right)} \right]}\\ {{\sigma _{z1}} = \nu {\sigma _{x1}} + \nu '{\sigma _{y1}}}\\ {{\tau _{xy1}} = \dfrac{{{p_{\rm w}}}}{C}\left[ {{{\sin }^3}\theta \cos \theta \left( {D + 1 - q} \right) + \sin \theta {{\cos }^3}\theta \left( {qD + {q^2} - q} \right)} \right]} \end{array}} \right. $ | (4) |
$ \left\{ {\begin{array}{*{20}{l}} {{\sigma _{x2}} = \sigma _x^\infty \dfrac{{\left( {1 + D} \right){{\sin }^4}\theta - q{{\sin }^2}\theta {{\cos }^2}\theta }}{C}}\\ {{\sigma _{y2}} = \sigma _x^\infty \dfrac{{\left( {1 + D} \right){{\sin }^2}\theta {{\cos }^2}\theta - q{{\cos }^4}\theta }}{C}}\\ {{\sigma _{z2}} = \nu {\sigma _{x2}} + \nu '{\sigma _{y2}}}\\ {{\tau _{xy2}} = \sigma _x^\infty \dfrac{{q{{\cos }^3}\theta \sin \theta - \left( {1 + D} \right){{\sin }^3}\theta \cos \theta }}{C}} \end{array}} \right. $ | (5) |
$ \left\{ {\begin{array}{*{20}{l}} {{\sigma _{x3}} = \sigma _y^\infty \dfrac{{\left( {1 + D} \right){{\sin }^4}\theta - q{{\sin }^2}\theta {{\cos }^2}\theta }}{C}}\\ {{\sigma _{y3}} = \sigma _y^\infty \dfrac{{\left( {1 + D} \right){{\sin }^2}\theta {{\cos }^2}\theta - q{{\cos }^4}\theta }}{C}}\\ {{\sigma _{z3}} = \nu {\sigma _{x3}} + \nu '{\sigma _{y3}}}\\ {{\tau _{xy3}} = \sigma _y^\infty \dfrac{{q{{\cos }^3}\theta \sin \theta - \left( {1 + D} \right){{\sin }^3}\theta \cos \theta }}{C}} \end{array}} \right. $ | (6) |
$ \left\{ {\begin{array}{*{20}{l}} {{\tau _{yz4}} = \dfrac{m}{{m - 1}}\tau _{yz}^\infty - \dfrac{{{{\left( {{A^2} + {B^2}} \right)}^{\frac{1}{4}}}\cos \left[ {{{\arctan \left( {{B /A}} \right)}/2}}\right]}}{{\left( {m - 1} \right)\left( {{m^2}{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}\tau _{yz}^\infty }\\ {{\tau _{xz4}} = - \dfrac{{m{{\left( {{A^2} + {B^2}} \right)}^{\frac{1}{4}}}\sin \left[ {{{\arctan \left( {{B / A}} \right)}/2}} \right]}}{{\left( {m - 1} \right)\left( {{m^2}{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}\tau _{yz}^\infty } \end{array}} \right. $ | (7) |
$ {\sigma _{z5}} = \sigma _z^\infty - \nu \sigma _x^\infty - \nu '\sigma _y^\infty $ | (8) |
其中
$ {{q^2} = \dfrac{{\left( {1 - \nu {'^2}} \right)E'E}}{{E{'^2} - {\nu ^2}E}}} $ |
$ {p = \dfrac{{E{'^2}E - 2E'EG\nu - 2\nu '\nu E'EG}}{{E{'^2}G - EG{\nu ^2}}}} $ |
$ {m = \sqrt {{G / {G'}}} } $ |
$ A = \left( {2{m^2} - 1 - {m^4}} \right){{\sin }^2}\theta {{\cos }^2}\theta + {m^2} $ |
$ B = 2\left( {{m^3} - m} \right)\sin \theta \cos \theta $ |
$ C = {{\sin }^4}\theta + {q^2}{{\cos }^4}\theta + p{{\sin }^2}\theta {{\cos }^2}\theta $ |
$ D = \sqrt {p + 2q} $ |
$ \left\{ {\begin{array}{*{20}{l}} {\sigma _x^\infty = {\sigma _{\rm{v}}}}\\ {\sigma _y^\infty = {\sigma _{\rm{H}}}{{\sin }^2}\beta + {\sigma _{\rm{h}}}{{\cos }^2}\beta }\\ {\sigma _z^\infty = {\sigma _{\rm{h}}}{{\sin }^2}\beta + {\sigma _{\rm{H}}}{{\cos }^2}\beta }\\ {\tau _{xy}^\infty = \tau _{xz}^\infty = 0}\\ {\tau _{yz}^\infty = \left( {{\sigma _{\rm{h}}} - {\sigma _{\rm{H}}}} \right)\sin \beta \cos \beta } \end{array}} \right. $ | (9) |
式中:
在井周应力分布模型的基础上,根据主应力表达式,可得到井壁任意一点的3个主应力
$ \left\{ {\begin{array}{*{20}{l}} {{\sigma _1} = {\sigma _r}}\\ {{\sigma _2} = \dfrac{1}{2}\left( {{\sigma _z} + {\sigma _\theta }} \right) + \dfrac{1}{2}{{\left[ {{{\left( {{\sigma _z} - {\sigma _\theta }} \right)}^2} + 4{\tau _{\theta z}}^2} \right]}^{\frac{1}{2}}}}\\ [8pt] {{\sigma _3} = \dfrac{1}{2}\left( {{\sigma _z} + {\sigma _\theta }} \right) - \dfrac{1}{2}{{\left[ {{{\left( {{\sigma _z} - {\sigma _\theta }} \right)}^2} + 4{\tau _{\theta z}}^2} \right]}^{\frac{1}{2}}}} \end{array}} \right. $ | (10) |
式中:
图 5为井壁受力分析示意图,因为径向应力是一个主应力,由轴向应力和切向应力所形成的平面是一个主应力平面。
同时,
$ \gamma = \dfrac{1}{2}{\tan ^{ - 1}}\dfrac{{2{\tau _{\theta z}}}}{{{\sigma _\theta } - {\sigma _z}}} $ | (11) |
式中:
由于
$ \psi = \gamma + \dfrac{{\mathtt{π}} }{2}{\rm{ = }}\dfrac{1}{2}{\tan ^{ - 1}}\dfrac{{2{\tau _{\theta z}}}}{{{\sigma _\theta } - {\sigma _z}}} + \dfrac{{\mathtt{π}} }{2} $ | (12) |
式中:
通过分析可知,只有当最小主应力出现负值时,井壁才会出现拉应力。将最小主应力代入抗拉强度准则中,便可得到页岩水平井起裂压力非线性方程
$ {\sigma _3} - \alpha {p_{\rm p}} + T\left( {{\beta _{\rm b}}} \right) = 0 $ | (13) |
其中
$ T\left( {{\beta _{\rm b}}} \right) = \dfrac{{{T_{\rm m}}{T_{\rm b}}}}{{{T_{\rm b}}{{\sin }^2}{\beta _{\rm b}} + {T_{\rm m}}{{\cos }^2}{\beta _{\rm b}}}} $ | (14) |
式中:
为了确定夹角
$ {\beta _{\rm b}}{\rm{ = }}{\cos ^{ - 1}}\dfrac{{\vec n \cdot \vec N}}{{\left| {\vec n} \right| \cdot \left| {\vec N} \right|}}{\rm{ = }}{\cos ^{ - 1}}\dfrac{{{c_1}}}{{\sqrt {{c_1}^2 + {c_2}^2 + {c_3}^2} }} $ | (15) |
其中
$ \left\{ \begin{array}{l} {c_1}{\rm{ = }}\sin \theta \sin \psi \\ {c_2}{\rm{ = }}\sin \beta \cos \theta \sin \psi + \cos \beta \cos \psi \\ {c_3}{\rm{ = }}\sin \beta \cos \psi - \cos \beta \cos \theta \sin \psi \end{array} \right. $ | (16) |
联立式(2)~式(16),对非线性方程(13)进行求解即可得到页岩水平井井壁裂缝起裂压力
根据本文所建立的井壁裂缝起裂模型,利用二分法对式(13)进行求解,采用MATLAB软件编制了井壁裂缝起裂行为求解程序,其详细计算流程如图 6所示。
以四川盆地CN示范区下志留系龙马溪页岩为例,分析页岩气水平井井壁裂缝起裂力学行为影响因素及其变化规律,该地区龙马溪页岩储层埋深约2 280~2 500 m,垂向应力梯度为2.60 MPa/hm、最大水平地应力梯度为3.15 MPa/hm(N120°E)、最小水平地应力梯度为2.20 MPa/hm,属于典型的走滑断层应力机制,其孔隙压力梯度达到2.03 MPa/hm[34]。
以垂深2 500 m为例,该位置上覆岩层压力为65.00 MPa,最大水平地应力为78.75 MPa,最小水平地应力为55.00 MPa,孔隙压力为50.75 MPa,平行层理方向的弹性模量为26.66 GPa,平行层理方向的泊松比为0.202,垂直层理方向的弹性模量为18.48 GPa,垂直层理方向的泊松比为0.242,Biot系数为0.80,页岩层理面抗张强度为3.47 MPa,页岩本体抗张强度为6.61 MPa。
3.1 模型验证与对比为了分析各向异性对井壁裂缝起裂力学行为的影响规律,计算了各向同性、弹性模量各向异性、泊松比各向异性、抗张强度各向异性和完全各向异性5种情形下不同井眼方位的起裂压力
由图 7a可知,5种情形下,起裂压力均会随着
图 7b展示了井壁裂缝
图 7c为5种情形下井壁裂缝倾角
为了分析模量各向异性程度对井壁裂缝起裂行为的影响规律,保持基础参数不变,分别计算了
由图 8可知,当井眼方位沿最大水平地应力方向时(
为了分析泊松比各向异性程度对井壁裂缝起裂行为的影响规律,保持基础参数不变,计算了
由图 9可以看出,当
由于页岩本体和层理面抗张强度存在较大差异,为了分析页岩强度各向异性对井壁裂缝起裂行为的影响规律,通过改变页岩本体强度,对比了
地应力对井壁裂缝起裂行为有显著影响,保持基础参数不变,取
由图 11可知,当水平最大主应力与水平最小主应力相等时,在任意井眼方位下,
地层孔隙压力对井壁裂缝起裂压力有较大影响,为了分析不同孔隙压力对井壁裂缝起裂行为的影响规律,保持基础参数不变,计算了孔隙压力为50,45,40和35 MPa条件下,在不同井眼方位下的
由图 12可知,在任意井眼方位下,起裂压力均会随着孔隙压力的增加而减小。在
(1) 龙马溪组页岩具有显著的弹性模量各向异性和抗张强度各向异性。不同层理角度下的弹性模量不一致,在
(2) 井壁裂缝起裂力学行为与应力状态、岩石弹性参数和岩石抗张强度均有关。与各向同性相比,
(3) 模量各向异性越大,井周在0°~90°起裂的井眼方位越多。当
(4) 水平地应力对井壁裂缝起裂行为有显著影响,当水平地应力不相等时,随着水平地应力比值的增加,井壁裂缝在0°~90°起裂的井眼方位由较大值偏向较小值。井壁裂缝倾角最小值逐渐减小,且最小值逐渐偏向较小的井眼方位。
(5) 在任意井眼方位下,起裂压力均会随着孔隙压力的增加而减小;孔隙压力对井壁裂缝起裂位置影响较小;随着孔隙压力的增加,井壁裂缝起裂倾角逐渐增大。
[1] |
JIANG Yongdong, LUO Yahuang, LU Yiyu, et al. Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale[J]. Energy, 2016, 97: 173-181. doi: 10.1016/j.energy.2015.12.124 |
[2] |
YANG Feng, NING Zhengfu, LIU Huiqing. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 2014, 115: 378-384. doi: 10.1016/j.fuel.2013.07.040 |
[3] |
贾爱林, 位云生, 金亦秋. 中国海相页岩气开发评价关键技术进展[J]. 石油勘探与开发, 2016, 43(6): 949-955. JIA Ailin, WEI Yunsheng, JIN Yiqiu. Progress in key technologies for evaluating marine shale gas development in China[J]. Petroleum Exploration and Development, 2016, 43(6): 949-955. doi: 10.11698/PED.2016.06.11 |
[4] |
路保平, 丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1-9. LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of SINOPEC[J]. Petroleum Drilling Techniques, 2018, 46(1): 1-9. doi: 10.11911/syztjs.2018001 |
[5] |
贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. doi: 10.1016/S1876-3804(12)60026-3 |
[6] |
邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China:Characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.-02 |
[7] |
JIANG Yongdong, QIN Chao, KANG Zhipeng, et al. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 382-394. doi: 10.1016/j.jngse.2018.04.022 |
[8] |
MA Tianshou, LIU Yang, CHEN Ping, et al. Fractureinitiation pressure prediction for transversely isotropic formations[J]. Journal of Petroleum Science and Engineering, 2019, 176: 821-835. doi: 10.1016/j.petrol.2019.01.090 |
[9] |
DING Yi, LIU Xiangjun, LUO Pingya. The analytical model of hydraulic fracture initiation for perforated borehole in fractured formation[J]. Journal of Petroleum Science and Engineering, 2018, 162: 502-512. doi: 10.1016/j.petrol.2017.10.008 |
[10] |
HUANG Jinsong, GRIFFITHS D V, WONG Sau-Wai. Initiation pressure, location and orientation of hydraulic fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49: 59-67. doi: 10.1016/j.ijrmms.-2011.11.014 |
[11] |
HOSSAIN M M, RAHMAN M K, RAHMAN S S. Hydraulic fracture initiation and propagation:roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science and Engineering, 2000, 27(3-4): 129-149. doi: 10.1016/S0920-4105(00)00056-5 |
[12] |
GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. American Association of Petroleum Geologists Bulletin, 2007, 91(4): 603-622. doi: 10.1306/11010606061 |
[13] |
HUBBERT M K, WILLIS D G W. Mechanics of hydraulic fracturing[J]. AIME Petroleum Transactions, 1957, 210: 153-168. doi: 10.1080/14786435708241195 |
[14] |
HAIMSON B. Initiation and extension of hydraulic fractures in rocks[C]. SPE 1710-PA, 1967. doi: 10.2118/1710-PA
|
[15] |
EATON B A. Fracture gradient prediction and its application in oilfield operations[J]. Journal of Petroleum Technology, 1969, 21(10): 1353-1360. doi: 10.2118/2163-PA |
[16] |
ANDERSON R A, INGRAM D S, ZANIER A M. Fracture gradient prediction and its application in oilfield operations[J]. Journal of Petroleum Technology, 1969, 21(10): 1353-1360. doi: 10.2118/2163-PA |
[17] |
DAINES S R. Prediction of fracture pressures for wildcat wells[J]. Journal of Petroleum Technology, 1982, 34(4): 863-872. doi: 10.2118/9254-PA |
[18] |
CHEN Guizhong, CHENEVERT M E, SHARMA M M, et al. A study of wellbore stability in shales including poroelastic, chemical, and thermal effects[J]. Journal of Petroleum Science and Engineering, 2003, 38(3-4): 167-176. doi: 10.1016/S0920-4105(03)00030-5 |
[19] |
金衍, 张旭东, 陈勉. 天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J]. 石油学报, 2005, 26(6): 113-118. JIN Yan, ZHANG Xudong, CHEN Mian. Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation[J]. Acta Petrolei Sinica, 2005, 26(6): 113-118. doi: 10.3321/j.issn:0253-2697.-2005.06.026 |
[20] |
WU Bisheng, ZHANG Xi, JEFFREY R G, et al. A semianalytic solution of a wellbore in a non-isothermal lowpermeability porous medium under non-hydrostatic stresses[J]. International Journal of Solids and Structures, 2012, 49(13): 1472-1484. doi: 10.1016/j.ijsolstr.2012.02.035 |
[21] |
JIN Xiaochun, SHAH N S, ROEGIERS J C, et al. Breakdown pressure determination: A fracture mechanics approach[C]. SPE 166434-MS, 2013. doi: 10.2118/166434-MS
|
[22] |
ZHANG Jincai, YIN Shangxian. Fracture gradient prediction:An overview and an improved method[J]. Petroleum Science, 2017, 14(4): 720-730. doi: 10.1007/s12182-017-0182-1 |
[23] |
ZENG Fanhui, CHENG Xiaozhao, GUO Jianchun, et al. Investigation of the initiation pressure and fracture geometry of fractured deviated wells[J]. Journal of Petroleum Science and Engineering, 2018, 165: 412-427. doi: 10.1016/j.petrol.2018.02.029 |
[24] |
SAYERS C M. The effect of anisotropy on the Young's moduli and Poisson's ratios of shales[J]. Geophysical Prospecting, 2013, 61(2): 416-426. doi: 10.1111/j.1365-2478.2012.01130.x |
[25] |
JIN Zhefei, LI Weixin, JIN Congrui, et al. Anisotropic elastic, strength, and fracture properties of Marcellus shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109: 124-137. doi: 10.1016/j.ijrmms.2018.06.009 |
[26] |
MA Tianshou, ZHANG Q B, CHEN Ping, et al. Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths[J]. Journal of Petroleum Science and Engineering, 2017, 149: 393-408. doi: 10.1016/j.petrol.2016.10.050 |
[27] |
MA Tianshou, WU Bisheng, FU Jianhong, et al. Fracture pressure prediction for layered formations with anisotropic rock strengths[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 485-503. doi: 10.1016/j.jngse.2017.-01.002 |
[28] |
WANG Jun, XIE Lingzhi, XIE Heping, et al. Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1120-1129. doi: 10.1016/j.jngse.-2016.03.046 |
[29] |
ZHANG S W, SHOU K J, XIAN X F, et al. Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests[J]. Tunnelling and Underground Space Technology, 2018, 71: 298-308. doi: 10.1016/j.tust.2017.-08.031 |
[30] |
AADNOY B S. Modeling of the stability of highly inclined boreholes in anisotropic rock formations[J]. SPE 16526-MS, 1988. doi: 10.2118/16526-MS |
[31] |
ONG S H, ROEGIERS J C. Fracture initiation from inclined wellbores in anisotropic formations[C]. SPE 29993-MS, 1995. doi: 10.2118/29993-MS
|
[32] |
KHAN S, WILLIAMS R E, ANSARI S, et al. Impact of mechanical anisotropy on design of hydraulic fracturing in shales[C]. SPE 162138-MS, 2012. doi: 10.2118/162138-MS
|
[33] |
李小刚, 易良平, 杨兆中. 横观各向同性地层水平井井壁拟三维应力场计算模型[J]. 岩石力学与工程学报, 2017, 36(6): 1452-1459. LI Xiaogang, YI Liangping, YANG Zhaozhong. A pseudo three-dimensional stress model of horizontal borewell in transversely isotropic formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1452-1459. doi: 10.13722/j.cnki.jrme.2016.1046 |
[34] |
马天寿.页岩气水平井井眼坍塌失稳机理研究[D].成都: 西南石油大学, 2015. MA Tianshou. Research on the mechanisms of borehole collapse instability for horizontal wells in shale gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10615-1016005895.htm |