西南石油大学学报(自然科学版)  2019, Vol. 41 Issue (6): 181-186
棒状柱塞结构优化模拟    [PDF全文]
刘永辉1 , 黄麒钧2, 杜竞2, 马洪奎2, 许鸷宇2    
1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 四川 成都 610500;
2. 中国石油青海油田钻采工艺研究院, 甘肃 敦煌 736202
摘要: 柱塞气举是页岩气压裂液返排的关键技术之一。为了进一步提高棒状柱塞举液密封效果,利用Fluent软件建立单一流道的二维几何模型,采用湍流模型模拟棒状柱塞运行时凹形槽内流场情况,优选槽型(正直角梯形、等腰梯形、反等腰梯形、反直角梯形和矩形),对比分析不同槽深和槽宽时的流场情况,并开展优化后棒状柱塞与常用衬垫式柱塞对比物理模拟实验。结果表明,柱塞运行时在凹槽中心有一个低速区,在该低速区会不断产生干扰流体正常流动的涡流,从而使整体流速降低以达到密封的效果;在对比槽型中,正直角梯形槽的密封效果最好;现场常用参数范围内,随槽宽、槽深增大,密封效果变强(槽宽20 mm、槽深6 mm时最优),且槽宽对柱塞密封性的影响大于槽深。物理模拟实验证实,相同条件下优化后的棒状柱塞在小气量情况下举液效果优于常用衬垫式柱塞。本研究结合CFD建立了可靠物理模型,且优化后棒状柱塞举液效果较好,对现场实际应用有指导作用。
关键词: 棒状柱塞     举液     密封     Fluent     凹槽     涡流    
Optimization of Solid Plunger's Structure
LIU Yonghui1 , HUANG Qijun2, DU Jing2, MA Hongkui2, XU Zhiyu2    
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
2. Qinghai Oilfield Drilling and Production Academy, PetroChina, Dunhuang, Gansu 736202, China
Abstract: Plunger lift has been the key technology of liquid flowback after fracking in shale gas reservoirs. In order to enhance the seal effect of fluid lift with solid plunger, the Fluent software was employed to set up the two-dimensional geometric model with a single flow channel, and turbulent flow model was adopted to simulate the flow field condition of groove with movement of solid plunger. Based on optimizing the shapes of groove (straight angle trapezoid groove, isosceles trapezoid groove, inverse isosceles trapezoid groove, inverse right angle trapezoid groove, and rectangular groove), this paper contrasts and analyzes the flow field condition with different groove width and depth, and then carries out the physical simulation experiment to contrast the dual pad plunger commonly and optimized solid plunger. Based on the above numerical simulations and experiments, we conclude that there is a low speed zone in the center of the groove when the plunger running, in which eddies appear constantly and interfere with the normal flow of the fluid. In that case, the flow rate is reduced to achieve the sealing effect. Through the comparison of groove type, it can be seen that the seal effect of trapezoidal groove with straight angle is the best. Accounting to the common situation on site, with wider and deeper groove, the sealing effect would be better (the performance of groove with the width as 20 mm and the depth as 6 mm is much better than the others'). Physical simulation experiment proved that under the same condition of low gas velocity, the liquid lifting effect of rod plunger is better than that of liner plunger. In this study, a reliable physical model was established in combination with CFD, and the optimized solid plunger had a good lift effect, which could guide the field application.
Keywords: solid plunger     removing liquid     seal     Fluent     groove     turbulence    
引言

页岩气已成为世界天然气产量增长的主要推动力[1],采用1 000$\sim$4 000 m超长水平段、大型水力分段压裂开采,压裂液用量极大(全井段15 000$\sim$48 000 m$^3$),返排周期长[2]。随着页岩储层压力下降,产气量下降,气井依靠自身能量携液困难,逐渐出现积液现象[3-4]。柱塞气举作为间歇气举的一种特殊形式,是恢复积液气井产能的有效方式[5-6]。柱塞作为一种固体密封界面,将气体和被举升液体分开,依靠气井自身气体压力,使柱塞在油管内往复运动[7],防止气体大量上窜以及液体的漏失,从而提高举升效率[8],已在国内外常规天然气井得到广泛应用[9-15],也在页岩气井开展先导试验。

为了提高柱塞密封效果,一般会在柱塞表面刻出一定形状的凹槽,使流体流经凹槽时产生湍流,从而消耗一部分流动能量,降低流体的流动速度和压能,以此来提高密封效果。国内外学者对此机理进行了一定研究:段进贤通过Fluent软件模拟柱塞开槽与未开槽情况下柱塞下部气窜速度,结果表明开槽柱塞的密封效果更好[16];李庭玉通过Fluent模拟了柱塞开槽尺寸及开槽数量对于密封效果的影响[17];Neil Longfellow利用CFD模拟了柱塞凹槽处的流场分布情况;Wienen研究了组合式柱塞的举升密封效果[18]

棒状柱塞结构简单、适应性强,应用广泛,但其结构类型和参数变化大,在一些井中举升效果并不理想,其核心问题是棒状柱塞密封问题。因此,本文利用Fluent软件建立单一流道的二维几何模型,模拟计算棒状柱塞运行时周围流场情况,采用速度评价柱塞的密封效果,优化棒状柱塞结构及参数,对提高其密封效果与举升效率具有重要的现实意义,对现场实际应用有指导作用。

1 模型建立 1.1 几何模型与网格划分

本文建立的柱塞运行模型见图 1。油管内径62 mm,柱塞最大外径59.5 mm,柱塞与油管内壁之间的最小间距为1.25 mm,柱塞长度600 mm。模拟计算5种槽型(正直角梯形、等腰梯形、反等腰梯形、反直角梯形和矩形)、3组槽深(3,6和9 mm)和4组槽宽(5,10,15及20 mm)条件下柱塞的紊流密封情况。

图1 柱塞运行流体流动示意图 Fig. 1 Schematic diagram of fluid flow during plunger operation

网格划分及边界条件设置对计算结果影响较大。本文采用矩形网格模拟,并在柱塞开槽部位对网格进行加密,可以保证流体流经开槽部位的模拟精度。边界条件设置为入口压力8.00 MPa,出口压力7.99 MPa。图 2为等腰梯形槽的网格模型。模拟计算模型和参数设置见表 1

图2 等腰梯形槽形柱塞模型建立及网格划分 Fig. 2 Establishment of isosceles trapezoidal groove plunger model and meshing
表1 模拟计算模型和参数设置 Tab. 1 Simulation calculation model and parameter setting
1.2 控制方程

假设柱塞举升流体无热传导,则柱塞周围流体运动的控制方程只包括连续性方程与N-S(Navier-Stokes)方程[16],其连续性方程为

$ \dfrac{{\partial \rho }}{{\partial t}} + \dfrac{{\partial \left( {\rho u} \right)}}{{\partial x}} + \dfrac{{\partial \left( {\rho v} \right)}}{{\partial y}} + \dfrac{{\partial \left( {\rho \omega } \right)}}{{\partial z}} = 0 $ (1)

式中:

$\rho$—流体密度,kg/m$^3$

$t$—时间,s;

$u, v, \omega$—速度矢量在$x$$y$$z$方向上的分量,m/s。

动量方程为

$ \dfrac{{\partial \left( {\rho u} \right)}}{{\partial t}} + {\rm{div}}\left( {\rho u\mathit{\boldsymbol{U}}} \right) = {\rm{div}}\left( {\mu \nabla u} \right) - \dfrac{{\partial p}}{{\partial x}} + {S_u} $ (2)
$ \dfrac{{\partial \left( {\rho v} \right)}}{{\partial t}} + {\rm{div}}\left( {\rho v\mathit{\boldsymbol{U}}} \right) = {\rm{div}}\left( {\mu \nabla v} \right) - \dfrac{{\partial p}}{{\partial x}} + {S_v} $ (3)
$ \dfrac{{\partial \left( {\rho \omega } \right)}}{{\partial t}} + {\rm{div}}\left( {\rho \omega \mathit{\boldsymbol{U}}} \right) = {\rm{div}}\left( {\mu \nabla\omega } \right) - \dfrac{{\partial p}}{{\partial x}} + {S _{\omega}} $ (4)

式中:

$p$—微元上的压力,N/m$^2$

$\mu$—动力黏度,Pa$\cdot$s;

$\mathit{\boldsymbol{U}}$—流体速度矢量,m/s;

$S_u, S_v, S_\omega$—动量守恒方程的广义源项。

2 模拟结果 2.1 槽型优化

正直角梯形槽柱塞模拟结果见图 3。由局部速度云图可知,在每个槽的中心位置都具有一个低速区,且从上游到下游,该低速区范围有逐渐增大的趋势。由局部速度矢量图可知,该低速区产生涡流,当流体流经槽的右壁面时,槽中由于涡流引起的低速流体沿壁面向上流动和上部流体混合,降低间隙中靠近槽一边的流体流速。当流体继续流动到达槽的左壁面时,在壁面的阻挡作用下流体流速进一步降低,其中,一部分流体沿左壁面向下流动,形成新的涡流,另一部分流体减速后继续向前流动。因此,整个流动过程中,槽中会不断形成涡流,干扰流体的正常流动,从而使整体流速降低以达到密封的效果。

图3 正直角梯形槽柱塞模拟计算结果 Fig. 3 Simulation results of straight angle trapezoidal groove plunger

流体流经5种槽形时的最大流动速度对比见图 4。流体流经正直角梯形槽时的流速最小,为61.5 m/s,反等腰梯形槽的流速最大,为73.8 m/s,等腰梯形槽、反直角梯形槽和矩形槽的流速分别为66.7、63.1和63.6 m/s。流速越低,气体上窜越弱,紊流作用越强,密封作用更强。因此,优选正直角梯形槽作为棒状柱塞的基本结构。

图4 5种槽形下流体的最大流动速度 Fig. 4 The maximum flow velocity of fluid under five groove shapes
2.2 槽宽优化

固定槽深6 mm,对槽宽进行单因素敏感的部分模拟结果见图 5。流体沿左壁面向上流动的低速流体对间隙处的高速流体形成了较大程度地阻碍,使得两股流体的混合部位流速降低。且涡流现象随槽宽增大而不断增强。当槽宽为20 mm时,槽中形成了很明显的涡流,表明对流体流动的干扰作用显著,紊流密封效果明显。

图5 不同槽宽时局部速度矢量图(槽深6 mm) Fig. 5 Local velocity vector at different width (at depth 6 mm)

图 6为不同槽深条件下流体流速随槽宽的变化关系。随槽宽增大,柱塞与油管间隙处的流体最大流速减小,表明槽宽越大,密封效果越好;但槽深变化对该规律影响小,表明槽宽对密封效果的影响大于槽深对密封效果的影响。

图6 不同槽深下槽宽对流体流速的影响 Fig. 6 The influence of different width on fluid velocity at different depth
2.3 槽深优化

确定最优槽宽为20 mm后,对槽深进行单因素敏感分析见图 7。槽深越浅,开槽位置处的涡流越接近槽的底部,涡流区越小,流体流动更接近层流;反之槽深越大,槽中形成的涡流现象越明显,说明对流体流动的干扰作用越强。槽深3、6及9 mm时柱塞与油管间隙的最大流动速度分别为58.8、55.6和56.3 m/s。因此,槽宽20 mm、槽深6 mm时柱塞的紊流密封效果好。

图7 不同槽深时局部速度矢量图(槽宽20 mm) Fig. 7 Local velocity vector at depth different (at width 20 mm)

结合现场实际,进一步拓宽槽宽和槽深范围,其模拟结果见图 8。不同槽宽下间隙处最大流速变化规律略有不同:槽宽5 mm时,随着槽深的增大,间隙处最大流速先增大后逐渐减小,减幅较小,表明柱塞的紊流密封效果随槽深的增大而变差;槽宽10 mm时,随着槽深的增大,流体流速逐渐增大,表明紊流密封效果逐渐变差;而当槽宽为15 mm时,随着槽深的增大,流体流速先减小后保持不变,表明在该条件下,槽深为6 mm时紊流密封效果最好,继续增大槽深不会对密封效果产生大的影响。综上所述槽宽20 mm、槽深6 mm为最优密封组合。

图8 不同槽宽下槽深对流体流速的影响 Fig. 8 The influence of different depth of groove on fluid velocity at different width
3 物理模拟实验

根据上述模拟结果加工的棒状柱塞与现场常用的衬垫式柱塞对比结果见图 9。实验结果表明,在小气量情况下(实验气量 < 7 m$^3$/h),优化后的棒状柱塞举液效果更优。

图9 柱塞举升物理实验模拟结果 Fig. 9 Simulation results of plunger lift physical experiment
4 结论

(1) 柱塞运行时在槽的中心位置具有一个低速区,产生干扰流体正常流动的涡流,从而使整体流速降低以达到密封的效果。5种槽型模拟结果表明正直角梯形槽的密封效果最好。

(2) 现场常用参数范围内,槽宽、槽深越大,槽中涡流现象越明显,密封效果越好(槽宽20 mm、槽深6 mm,柱塞密封性最优);槽宽对柱塞密封性的影响大于槽深。

(3) 在小气量情况下(实验气量 < 7 m$^3$/h),优化后的棒状柱塞举液效果优于常用的衬垫式柱塞。

参考文献
[1]
王世谦. 页岩气资源开采现状、问题与前景[J]. 天然气工业, 2017, 37(6): 115-129.
WANG Shiqian. Shale gas exploitation:Status, issues and prospects[J]. Natural Gas Industry, 2017, 37(6): 115-129. doi: 10.3787/j.issn.1000-0976.2017.06.016
[2]
夏海帮, 袁航, 岑涛. 彭水区块页岩气生产井排采方式研究与应用[J]. 石油钻探技术, 2014, 42(4): 21-26.
XIA Haibang, YUAN Hang, CEN Tao. Study and application of drainage methods for shale gas wells in Pengshui Block[J]. Petroleum Drilling Techniques, 2014, 42(4): 21-26.
[3]
白玉湖, 杨皓, 陈桂华, 等. 页岩气产量递减典型曲线中关键参数的确定方法[J]. 特种油气藏, 2013, 20(2): 65-68.
BAI Yuhu, YANG Hao, CHEN Guihua, et al. Methods to determine the key parameters of typical production decline curves of shale gas reservoirs[J]. Special Oil & Gas Reservoirs, 2013, 20(2): 65-68. doi: 10.3969/j.issn.1006-6535.2013.02.015
[4]
梁全权, 邹啁, 王维娜, 等. 产水凝析气井积液诊断研究[J]. 天然气勘探与开发, 2015, 38(1): 57-59.
LIANG Quanquan, ZOU Tiao, WANG Weina, et al. Liquid-loading diagnosis of water-producing condensate gas well[J]. Natural Gas Exploration and Development, 2015, 38(1): 57-59. doi: 10.3969/j.issn.1673-3177.2015.-01.013
[5]
李士伦. 天然气工程[M]. 北京: 石油工业出版社, 2000.
[6]
贾敏, 李隽, 李楠. 柱塞气举排水采气技术进展及应用[J]. 西部探矿工程, 2015, 27(7): 25-28.
JIA Min, LI Juan, LI Nan. The progress and application of drainage gas recovery technology by plunger gas lift[J]. West-china Exploration Engineering, 2015, 27(7): 25-28. doi: 10.3969/j.issn.1004-5716.2015.07.008
[7]
于蓉. 对柱塞气举排水采气工艺的几点认识[J]. 钻采工艺, 1994(2): 82-85.
YU Rong. Some understanding of gas recovery process with plunger gas lift drainage[J]. Drilling Production Technology, 1994(2): 82-85.
[8]
王贤君, 盖德林. 气井柱塞举升排液采气优化设计[J]. 中国石油大学学报(自然科学版), 2000, 24(2): 36-39.
WANG Xianjun, GE Delin. Optimum design of plunger lift for gas well[J]. Journal of China University of Petroleum (Science & Technology Edition), 2000, 24(2): 36-39. doi: 10.3321/j.issn:1000-5870.2000.02.011
[9]
何云, 张文洪, 郑峰, 等. 柱塞气举排水采气工艺在大牛地气田的应用[J]. 石油天然气学报, 2009, 31(2): 351-353.
HE Yun, ZHANG Wenhong, ZHENG Feng, et al. Application of plunger gas lift drainage gas recovery process in Daniudi Gas Field[J]. Journal of Oil and Gas Technology, 2009, 31(2): 351-353.
[10]
郑兴升, 李旭春, 吴杰, 等. 柱塞排水采气工艺在苏里格气田的应用及评价[J]. 钻采工艺, 2015, 38(5): 47-48.
ZHENG Xingsheng, LI Xuchun, WU Jie, et al. Application of plunger drainage gas recovery technology in Sulige Gas Field[J]. Drilling Production Technology, 2015, 38(5): 47-48. doi: 10.3969/J.ISSN.1006-768X.-2015.05.15
[11]
FENG Rendong, WANG Zhensong, SUO Meijuan, et al. Application of plunger-gas lift with gas produced from in-situ wells in Tuha Oilfield[J]. Tuha Oil & Gas, 2007, 127(1): 81-93. doi: 10.1016/j.cej.2006.10.018
[12]
BANY T. Plunger lift application in deep oil wells[J]. Appea Journal, 1988, 28(1): 47. doi: 10.1071/AJ87005
[13]
NANDOLA N N, KAISARE N S, GUPTA A. Online optimization for a plunger lift process in shale gas wells[J]. Computers & Chemical Engineering, 2018, 108: 89-97. doi: 10.1016/j.compchemeng.2017.09.001
[14]
HASHMI G M, HASAN A R, KABIR C S. Simplified modeling of plunger-lift assisted production in gas wells[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 454-460. doi: 10.1016/j.jngse.2018.02.009
[15]
张荣军, 乔康. 柱塞气举排水采气工艺技术在苏里格气田的应用[J]. 钻采工艺, 2009, 32(6): 118-119.
ZHANG Rongjun, QIAO Kang. Application of the plunger airlift draining gas recovery technology in Sulige Gas Field[J]. Drilling Production Technology, 2009, 32(6): 118-119. doi: 10.3969/j.issn.1006-768X.2009.06.038
[16]
段进贤, 李颖川, 钟海全. 新型柱塞组件的开发与应用[J]. 石油天然气学报, 2013, 35(10): 149-152.
DUAN Jinxian, LI Yingchuan, ZHONG Haiquan. Development and application of new plunger components[J]. Journal of Oil and Gas Technology, 2013, 35(10): 149-152. doi: 10.3969/j.issn.1000-9752.2013.10.033
[17]
李庭玉. 基于Fluent数值模拟的柱塞外壁开槽优化设计[J]. 天然气技术与经济, 2017, 11(5): 29-31.
LI Tingyu. Slotted optimization design for outside wall of plunger based on fluent numerical simulation[J]. Natural Gas Technology and Economy, 2017, 11(5): 29-31. doi: 10.3969/j.issn.2095-1132.2017.05.008
[18]
WIENEN J. Multistage plunger-lift systems can provide economical alternative to pumping units[J]. Journal of Petroleum Technology, 2010, 62(12): 22-24. doi: 10.2118/1210-0022-JPT
[19]
段进贤, 李颖川, 钟海全. 基于Fluent软件的新型柱塞气举流场的数值模拟[J]. 石油天然气学报, 2014, 36(3): 117-120.
DUAN Jinxin, LI Yingchuan, ZHONG Haiquan. Numerical simulation of new type plunger gas-lift fluid flow field based on fluent[J]. Journal of Oil and Gas Technology, 2014, 36(3): 117-120. doi: 10.3969/j.issn.1000-9752.2014.03.024