西南石油大学学报(自然科学版)  2019, Vol. 41 Issue (3): 151-159
一种基于水淹影响的相渗曲线重构方法    [PDF全文]
李金宜 , 段宇, 周凤军, 朱文森, 信召玲    
中海石油(中国)有限公司天津分公司渤海石油研究院, 天津 塘沽 300459
摘要: 针对储层水淹对地层流体渗流规律影响刻画较难的问题,基于渤海典型疏松砂岩稀油油藏LD油田和稠油油藏Q油田密闭取芯井岩芯样品,开展水淹程度对油水相渗曲线影响实验研究。基于水淹对相渗影响认识,提取不同水淹程度下相渗曲线特征参数并重新组合,建立两种类型油藏考虑水淹影响的"全寿命"油水相对渗透率曲线。实验结果表明,与采用未水淹、弱水淹层段岩石样品完成的油水相对渗透率曲线相比,中水淹、强水淹层段相渗曲线束缚水饱和度更高,残余油饱和度更低,等渗点更偏右,驱油效率更高。与不考虑水淹情况相比,考虑水淹影响的重构相对渗透率曲线,其残余油饱和度和束缚水饱和度更低,含水饱和度相同时,两相相对渗透率均呈现整体降低趋势,最终驱油效率增大。与不考虑水淹影响的方案相比,考虑水淹影响的重构相渗在Q油田矿场数值模拟中应用,在含水98%时的采出程度提高近1%。
关键词: 疏松砂岩     密闭取芯井     水淹     新鲜样品     相对渗透率     高含水    
Method for Reconstructing Relative Permeability Curves Based on Flooding Effect
LI Jinyi , DUAN Yu, ZHOU Fengjun, ZHU Wensen, XIN Zhaoling    
Bohai Oilfield Petroleum Research Institue, CNOOC China Limited, Tianjin Branch, Tanggu, Tianjin 300459, China
Abstract: Targeting the problem of difficulty in summarizing the influence of reservoir flooding on the laws of formation fluid seepage, a study on the influence of the flooding effect on oil-water relative permeability curve was conducted. The study used core samples from confined coring wells in Oilfield LD, which is an unconsolidated sand reservoir of thin oil rims, typically found in the Bohai Sea, and in Oilfield Q of heavy oil rims. Based on the influence of flooding effect on relative permeability, parameters characterizing the infiltration curves under different degrees of flooding were extracted and regrouped to construct the "full life cycle" oil-water relative permeability curves of the two types of reservoirs by considering the flooding effect. Experimental results show that, compared with the oil-water relative permeability curves of unflooded and weakly flooded samples, oil-water relative permeability curves obtained from layers that underwent medium to heavy flooding had higher saturation of the bound water and lower saturation of the residual oil with higher oil displacement efficiency, and their points of equivalent permeability were closer to the right. Reconstructed relative permeability curves that consider the flooding effect had lower saturation of residual oil and bound water than those that do not. When they both had the same water saturation, their two-phase relative permeability showed an overall downward trend with an enhanced oil displacement efficiency at the end. Applying the reconstructed relative permeability that considered the flooding effect into numerical simulation for Oilfield Q led to an improvement in the recovery percentage of almost 1% at 98% water content.
Keywords: unconsolidated sand reservoir     confined coring well     flooding     fresh sample     relative permeability     high water content    
引言

油水相对渗透率实验是研究储层流体渗流规律的重要基础实验之一。结合相对渗透率数据,郎东升等开展了油水层识别[1],高楚桥、蒋炳金、刘丽萍等分析了储层的产液产水规律[2-4],龙明、陈伟、苗雅楠、刘彦成、周明顺等预测了油井产能[5-9],贾英兰等计算注采比[10],杜利等计算了单井水驱波及状况[11],王者琴、王怒涛等计算了单井控制储量等[12-13]

在注水开发阶段,油田储层水淹程度的变化是一个长期的、缓慢的过程,在从未水淹、低水淹发展到中水淹、强水淹的过程中,储层微观孔喉结构和润湿性同时也在不断变化[14-15],这种变化将对储层流体渗流规律、驱油效率乃至采收率产生重要影响。Owens和Masalmeh等的研究指出岩石润湿性对相渗曲线具有重要影响[16-17];陈蓉等认为,亲水油层比亲油油层开发效果更好[18]。刘中云等研究认为,弱水湿岩石水驱采收率最高[19]。程林松等指出,岩石润湿性变化对水驱效果的影响与开发初期岩石润湿性程度有关[20]。吴素英考虑了不同含水率润湿性变化与否和采出程度的对比,认为储层亲水性增强将有利于最终采收率提高[21]

随着储层水淹程度加剧,储层油水两相渗流特征在不断变化,因此油水相对渗透率曲线也需要对应修正[22-23]。但在相对渗透率室内实验驱替过程中,很难准确反映出真实储层注水冲刷过程中润湿性的改变及由此带来油水相对渗流能力的变化。目前,国内学者结合矿场实际水淹情况对相对渗透率曲线进行修正的专门研究尚未见报道。

从渤海典型高孔高渗疏松砂岩油藏中按稀油油藏和稠油油藏两种类型,分别挑选具有代表性的密闭取芯井岩芯样品开展考虑水淹影响的相渗实验,重构代表油田开发“全寿命”过程的相对渗透率曲线。重构的相对渗透率曲线将对中高含水后期剩余油分布的准确刻画和开发指标的预测带来新的思考。

1 实验设备及流程 1.1 油-水相对渗透率实验设备

实验设备及流程与文献[24]一致。实验设备如图 1所示。

图1 恒压法测定油水相对渗透率实验流程示意图 Fig. 1 Flow chart of oil-water relative permeability experiment
1.2 实验流程

(1) 样品前处理。(2)新鲜样品油水相对渗透率实验。(3)洗油样品油水相对渗透率实验。

2 水淹级别对稀油油藏相渗曲线影响分析及曲线重构

稀油油藏密闭取芯井岩芯样品为取自LD10-1-A21S1井未水淹层段和中水淹层段的6块新鲜含油样品,样品信息及实验数据见文献所述[24]。取样深度点岩样的全岩分析如表 1所示。

表1 新鲜岩石含油柱塞样品钻取位置区域全岩分析 Tab. 1 Rock analysis of the drilled position for fresh sample

由文献[24]和表 1实验结果可知,6块岩石柱塞样品的钻取深度位置相差不远,常规物性和岩石性质均相差不大,因此,可对未水淹层段和中水淹层段岩石样品油水相对渗透率曲线各参数取平均值后进行对比分析,如表 2所示。

表2 不同水淹级别下的稀油油藏新鲜岩石含油柱塞样品相对渗透率曲线参数平均值对比 Tab. 2 The comparison for average parameter of relative permeability curves under different water level by fresh samples

表 2实验结果可知,与未水淹层段样品实验结果相比,中水淹层段样品油水相对渗透率曲线的等渗点含水饱和度明显右移,显示岩石润湿性从未水淹时的中性向中水淹时的亲水性转变。同时,因为水淹层段岩石亲水性增强,其曲线对应的束缚水饱和度更大,残余油饱和度更低,最终的驱油效率更高。

分别对未水淹、中水淹样品的相对渗透率曲线做归一化。以未水淹样品为例,将1-009A、1-013A和2-005A新鲜含油样品对应的3条相对渗透率曲线的$a$$b$$S_{\rm{wi}}$$S_{\rm{or}}$$K_{\rm{ro}}$($S_{\rm{wi}}$)及$K_{\rm{rw}}$($S_{\rm{or}}$)特征值做算数平均值,并将各参数平均值作为归一化后相对渗透率曲线的各参数取值[25]。由此,绘制出归一化油水相对渗透率曲线。

可见,随着水淹程度加剧,油相相对渗透率呈现整体抬高,水相相对渗透率呈现整体降低,残余油饱和度对应的水相渗透率值增大,如图 2所示。实际油藏注水开发过程中,储层在不同水淹阶段的油水相对渗流能力改变较大。

图2 稀油油藏不同水淹级别下的相对渗透率归一化曲线 Fig. 2 Normalized relative permeability curves of light oil reservoir samples under different water flooded levels

按照考虑水淹影响的油水相对渗透率曲线重构原则和方法[24],得到稀油油藏岩芯样品的“全寿命”相渗曲线。不考虑水淹影响的6条新鲜岩芯样品归一化相渗曲线及考虑水淹影响的重构相渗曲线数据如表 3所示。

表3 稀油油藏不同水淹级别的归一化相渗及重构相渗数据 Tab. 3 The data used for normalization and reconstruction of relative permeability curves of light oil reservoir samples

水淹对相对渗透率曲线形态影响较大见图 3,可以看到,与不考虑水淹情况相比,考虑水淹影响的重构相对渗透率曲线,其残余油饱和度和束缚水饱和度更低,含水饱和度相同时,两相相对渗透率均呈现整体降低趋势,最终驱油效率增大,更能体现油田注水开发“全寿命”过程中油水渗流规律的动态变化特征。

图3 稀油油藏不同水淹级别的归一化相渗及重构相渗数据 Fig. 3 The data used for normalization and reconstruction of relative permeability curves of light oil reservoir samples
3 水淹级别对稠油油藏相渗曲线影响分析及曲线重构

稠油油藏密闭取芯井岩芯样品取自QHD32-6-A31井不同水淹级别层段,结合主力砂体物性,挑选岩芯样品空气渗透率分别为8 000、3 000、1 500 mD级别。图 4展示了不同水淹层段岩芯样品在新鲜含油状态下的实验结果曲线与洗油后实验结果曲线的对比,对比结果显示差异较大,新鲜样相渗曲线的残余油饱和度更大,束缚水饱和度更小,等渗点更小,水相相对渗透率更大,油相相对渗透率更小;强水淹层段的岩芯样品在新鲜含油状态下实验结果曲线与洗油后实验结果曲线基本一致,这与文献[24]中稀油油藏相渗实验规律一致。实验结果表明,对于渤海高孔高渗疏松砂岩油藏的储层岩芯样品,尽管样品渗透率和油黏度存在差异,但均吻合上述新鲜样相渗与洗油样相渗规律差异的结论。稠油油藏岩芯样品信息及实验结果见表 4表 5

图4 稠油油藏岩芯样品洗油前后油水相对渗透率曲线对比 Fig. 4 Comparison of oil and water relative permeability curve before and after oil wash
表4 岩石样品柱塞信息及实验基础条件 Tab. 4 Information of samples and experimental conditions
表5 稠油油藏岩芯样品在新鲜状态和洗油后状态下油水相对渗透率实验结果 Tab. 5 Oil-water relative permeability experimental results used by fresh samples and washed samples

以新鲜样7-010B为例,钻取相似渗透率岩芯柱塞开展水淹对稠油油藏相对渗透率曲线影响研究。选取强水淹层段洗油岩芯样品11-016A和11-019A按照相同实验条件完成相对渗透率实验并做强水淹层段归一化相渗,实验结果如表 6图 5所示。

表6 稠油油藏样品不同水淹下相对渗透率实验结果对比 Tab. 6 The comparison for parameter of relative permeability curves under different water level by fresh samples
图5 稠油油藏不同水淹级别下的相对渗透率归一化曲线 Fig. 5 Normalized relative permeability curves of heavy oil reservoir samples under different water flooded levels

同样按照考虑水淹影响的相渗重构原则和方法[24],得到稠油油藏岩芯样品的“全寿命”相渗曲线。不考虑水淹影响的归一化相渗及考虑水淹影响的重构相渗数据如图 6所示。

图6 稠油油藏水淹对油水相对渗透率曲线的影响 Fig. 6 Influence of water-flooding on oil-water relative permeability curve of heavy oil reservoir samples

图 3图 6可以看到,稠油油藏考虑水淹影响的重构相渗与不考虑水淹影响相渗的规律差异特征与稀油油藏特征是一致的,其残余油饱和度和束缚水饱和度更低,含水饱和度相同时,两相相对渗透率均呈现整体降低趋势,最终驱油效率增大。

因此,对于渤海高孔高渗疏松砂岩水驱开发油藏,无论稀油还是稠油类型,在其开发后期的高含水阶段,受水淹影响,储层中流体两相渗流规律已然发生变化。文献[24]矿场数值模拟结果已指出,对于稀油油藏,考虑水淹影响的相对渗透率曲线重构方案在井组含水98%时,其采出程度高出不考虑水淹影响方案近2%。这对在高含水阶段合理预测开发指标,精准挖潜剩余油具有重要指导意义。

4 矿场数值模拟应用

储层润湿性主要受原油极性组分和水分子对矿物颗粒表面竞争吸附的影响。在注水开发过程中,储层孔隙中含水饱和度随水淹程度加剧而不断增大,原本吸附在颗粒表面的沥青质、胶质等极性组分的吸附强度将不断减弱直至被剥离颗粒表面,储层亲油性不断减弱而亲水性不断增强。当储层润湿性由亲油向亲水转变后,毛管压力对注入水在孔隙中的流动由阻力变为动力,将进一步推动水分子不断占据颗粒表面,在局部形成稳定的水膜。储层由未水淹向强水淹变化的过程,实际也对应着储层孔隙表面水膜吸附厚度不断增大,水膜形态连续横向展布的过程。原本吸附的原油组分在剥离颗粒表面后也将在注入水的携带下不断从油井采出,从而在中水淹、强水淹阶段获得更多的原油采出,最终提高油田采收率。

以渤海河流相Q油田稠油主力砂体为例,该砂体主要含油层系为明化镇组,为典型疏松砂岩储层(图 7),具备高孔、高渗的储集物性特征,砂体横向展布稳定。储层孔隙度主要分布在25%~45%,渗透率(100~11 487)$\times$10$^{-3}$ mD,地层原油黏度78 mPa$\cdot$s,目前含水90%左右。

图7 矿场数值模拟模型 Fig. 7 Typical filed numerical simulation model

典型井组数值模拟结果如表 7图 8所示。

表7 Q油田各模型方案采收率对比 Tab. 7 Comparison of recovery ratio of various model schemes for Q Oilfield
图8 稠油油藏考虑水淹影响的重构相对渗透率对开发指标影响对比 Fig. 8 Comparison of development indexes by using reconstructed relative permeability curve considering water flooding for heavy reservoir

根据稠油油藏Q油田矿场数值模拟结果可以看出,在相同含水率情况下,考虑水淹影响的相对渗透率曲线重构方案的采出程度更高,这与文献中稀油油藏规律一致[24]。在高含水后期开展开发指标预测,在含水98%时采出程度相差近1%。因此,渤海高孔渗疏松砂岩稠油油藏开发指标预测同样需要考虑水淹的影响,应当采用重构相渗曲线。

5 结论

(1) 随着取芯段水淹程度加剧,样品油水相对渗透率曲线的等渗点含水饱和度明显右移,显示岩石润湿性从未水淹、弱水淹时的中性、弱亲水性向中水淹、强水淹时的亲水性、强亲水性转变。同时因为水淹层段岩石亲水性增强,其相对渗透率曲线束缚水饱和度升高,残余油饱和度降低,驱油效率更高。

(2) 水淹加剧时,油相相对渗透率呈现整体抬高趋势,水相相对渗透率呈现整体降低趋势,实际油藏注水开发过程中,储层在不同水淹阶段的油水相对渗流能力将发生较大改变。

(3) 在渤海典型的高孔渗疏松砂岩油藏类型里,稀油和稠油岩芯样品考虑水淹影响与不考虑水淹影响相比,相渗均表现出其残余油饱和度和束缚水饱和度更低,含水饱和度相同时,两相相对渗透率均呈现整体降低趋势的特征。

(4) 采用考虑水淹影响的重构相渗曲线,将对油田高含水阶段的开发指标预测产生较大影响。相渗曲线应在注水开发过程中进行动态调整。

参考文献
[1]
郎东升, 秦秋寒, 柳成志, 等. 相对渗透率分析技术在录井油水层识别中的应用[J]. 大庆石油学院学报, 2003, 27(3): 4-7.
LANG Dongsheng, QIN Qiuhan, LIU Chengzhi, et al. The application of relative permeability analysis technique to identifying oil-water bed[J]. Journal of Daqing Petroleum Institute, 2003, 27(3): 4-7. doi: 10.3969/j.issn.2095-4107.2003.03.002
[2]
高楚桥, 章成广, 肖承文, 等. 用油水相对渗透率确定低电阻油层产液性质[J]. 石油勘探与开发, 2003, 30(5): 80-82.
GAO Chuqiao, ZHANG Chengguang, XIAO Chengwen, et al. Estimate produced fluid type of low resistivity hydrocarbon-bearing reservoirs from relative permeability[J]. Petroleum Exploration and Development, 2003, 30(5): 80-82. doi: 10.3321/j.issn:1000-0747.2003.05.024
[3]
蒋炳金, 唐海, 吕栋梁, 等. 用相对渗透率曲线研究薄层底水油藏产水规律[J]. 新疆石油地质, 2006, 27(5): 588-590.
JIANG Bingjin, TANG Hai, LV Dongliang, et al. Research on water production law of reservoir with thin thickness and bottom water using relative permeability curve[J]. Xinjiang Petroleum Geology, 2006, 27(5): 588-590. doi: 10.3969/j.issn.1001-3873.2006.05.022
[4]
刘丽萍. 相对渗透率分析用于核磁共振录井评价储集层油水产出能力[J]. 录井工程, 2014, 25(1): 21-24.
LIU Liping. Reservoir oil-water output capacity evaluation of NMR logging with relative permeability analysis[J]. Mud Logging Engineering, 2014, 25(1): 21-24. doi: 10.3969/j.issn.1672-9803.2014.01.005
[5]
龙明, 徐怀民, 陈玉琨, 等. 结合相对渗透率曲线的KHK产量劈分方法研究[J]. 石油天然气学报, 2012, 34(4): 114-118.
LONG Ming, XU Huaimin, CHEN Yukun, et al. KHK production splitting method combined with relative permeability curve[J]. Journal of Oil and Gas Technology, 2012, 34(4): 114-118. doi: 10.3969/j.issn.1000-9752.2012.04.-024
[6]
陈伟, 段永刚, 方全堂. 水平井产能预测相关式研究[J]. 西南石油大学学报(自然科学版), 2008, 30(5): 108-110.
CHEN Wei, DUAN Yonggang, FANG Quantang. The study on horizontal well productivity prediction relational equation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(5): 108-110. doi: 10.3863/j.issn.1000-2634.2008.05.024
[7]
苗雅楠, 李相方, 周云健, 等. 并购国外油田水平井产能快速准确预测方法[J]. 石油钻采工艺, 2016, 38(5): 640-644.
MIAO Ya'nan, LI Xiangfang, ZHOU Yunjian, et al. Fast and accurate prediction method about productivities of horizontal wells in merged overseas oilfields[J]. Oil Drilling & Production Technology, 2016, 38(5): 640-644. doi: 10.13639/j.odpt.2016.05.018
[8]
刘彦成, 罗宪波, 康凯, 等. 陆相多层砂岩油藏渗透率表征与定向井初期产能预测——以蓬莱19-3油田为例[J]. 石油勘探与开发, 2017, 44(1): 97-103.
LIU Yancheng, LUO Xianbo, KANG Kai, et al. Permeability characterization and directional wells initial productivity prediction in the continental multilayer sandstone reservoirs:A case from Penglai 19-3 Oil Field, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2017, 44(1): 97-103. doi: 10.11698/PED.2017.01.-11
[9]
周明顺, 范宜仁, 刘志杰, 等. 饶阳凹陷复杂砂岩储层产能测井预测方法[J]. 石油学报, 2017, 38(2): 208-216.
ZHOU Mingshun, FAN Yiren, LIU Zhijie, et al. Logging prediction method for productive capacity of complex sandstone reservoirs in Raoyang Sag[J]. Acta Petrolei Sinica, 2017, 38(2): 208-216. doi: 10.7623/syxb201702008
[10]
贾英兰, 贾永禄, 周霞, 等. 封闭油藏注水开发阶段注采比计算新方法[J]. 西南石油大学学报(自然科学版), 2014, 36(1): 89-94.
JIA Yinglan, JIA Yonglu, ZHOU Xia, et al. New calculation methods of injection-production ratio for waterinjecting development stage in closed reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(1): 89-94. doi: 10.11885/j.issn.-1674-5086.2013.06.30.01
[11]
杜利, 陈清华, 戴胜群. 应用油水相对渗透率曲线和动态数据确定水驱波及状况[J]. 油气地质与采收率, 2003, 10(4): 45-46.
DU Li, CHEN Qinghua, DAI Shengqun. Application of oil-water relative permeability curve and dynamic data to defining waterflood sweep situation[J]. Petroleum Geology and Recovery Efficiency, 2003, 10(4): 45-46. doi: 10.-3969/j.issn.1009-9603.2003.04.016
[12]
王者琴, 吴晓慧, 张永梅, 等. 水驱曲线和相对渗透率曲线联用计算分类井地质储量[J]. 大庆石油地质与开发, 2007, 26(6): 61-63.
WANG Zheqin, WU Xiaohui, ZHANG Yongmei, et al. Combination application of waterflooding curve and relative permeability curve to calculate the geologic reserves of different typed wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(6): 61-63. doi: 10.-3969/j.issn.1000-3754.2007.06.015
[13]
王怒涛, 张风波, 罗志锋, 等. 油井单井控制储量确定新方法研究[J]. 西南石油大学学报, 2007, 29(5): 77-78.
WANG Nutao, ZHANG Fengbo, LUO Zhifeng, et al. A new method determing oil well control reserves[J]. Journal of Southwest Petroleum University, 2007, 29(5): 77-78. doi: 10.3863/j.issn.1674-5086.2007.05.021
[14]
彭珏, 康毅力. 润湿性及其演变对油藏采收率的影响[J]. 油气地质与采收率, 2008, 15(1): 72-76.
PENG Jue, KANG Yili. Effects of wettability and its evolution on oil reservoir recovery[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(1): 72-76. doi: 10.3969/j.-issn.1009-9603.2008.01.022
[15]
宁玉萍, 王峻峰, 罗东红, 等. 流花油田礁灰岩储层微观性质及驱替特征研究[J]. 西南石油大学学报(自然科学版), 2017, 39(6): 34-44.
NING Yuping, WANG Junfeng, LUO Donghong, et al. Study on the displacement characteristics and microscopic properties of the reef limestone reservoir in Liuhua Oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(6): 34-44. doi: 10.-11885/j.issn.1674-5086.2017.09.04.02
[16]
OWENS W W, ARCHER D L. The effect of rock wettability on oil-water relative permeability relationships[J]. Journal of Petroleum Technology, 1971, 23(7): 873-878. doi: 10.2118/3034-PA
[17]
MASALMEH S K. The effect of wettability heterogeneity on capillary pressure and relative permeability[J]. Journal of Petroleum Science & Engineering, 2003, 39(3-4): 399-408. doi: 10.1016/S0920-4105(03)00078-0
[18]
陈蓉, 曲志浩, 赵阳. 油层润湿性研究现状及对采收率的影响[J]. 中国海上油气(地质), 2001, 15(5): 350-355.
CHEN Rong, QU Zhihao, ZHAO Yang. The study history of reservoir wettability and its effect on recovery[J]. China Offshore Oil and Gas (Geology), 2001, 15(5): 350-355.
[19]
刘中云, 曾庆辉, 唐周怀, 等. 润湿性对采收率及相对渗透率的影响[J]. 石油与天然气地质, 2000, 21(2): 148-150.
LIU Zhongyun, ZENG Qinghui, TANG Zhouhuai, et al. Effect of wettability on recovery and relative permeability[J]. Oil & Gas Geology, 2000, 21(2): 148-150. doi: 10.-3321/j.issn:0253-9985.2000.02.014
[20]
程林松, 李丽, 李春兰. 考虑水驱油藏润湿性变化的数值模拟方法[J]. 水动力学研究与进展, 2003, 18(6): 786-791.
CHENG Linsong, LI Li, LI Chunlan. Reservoir numerical simulation with variable rock wettability[J]. Journal of Hydrodynamics, 2003, 18(6): 786-791. doi: 10.3969/j.issn.-1000-4874.2003.06.018
[21]
吴素英. 胜坨油田二区沙二段83层储层润湿性变化及对开发效果的影响[J]. 油气地质与采收率, 2006, 13(2): 72-74.
WU Suying. Reservoir wettability change of the 83 stratum of Es2 in Block No.2 of Shengtuo Oilfield and its influence on development effect[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(2): 72-74. doi: 10.3969/j.-issn.1009-9603.2006.02.022
[22]
马明学, 鞠斌山, 王书峰. 注水开发油藏润湿性变化及其对渗流的影响[J]. 石油钻探技术, 2013, 41(2): 82-86.
MA Mingxue, JU Binshan, WANG Shufeng. Wettability change and its effect on flow in waterflooding reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(2): 82-86. doi: 10.3969/j.issn.1001-0890.2013.02.016
[23]
FENG Qihong, ZHANG Jin, WANG Sen, et al. Unified relative permeability model and waterflooding type curves under different levels of water cut[J]. Journal of Petroleum Science and Engineering, 2017, 154: 204-216. doi: 10.-1016/j.petrol.2017.04.031
[24]
李金宜, 陈丹磬, 周凤军, 等. 疏松砂岩密闭取芯井新鲜样品和洗油样品相对渗透率曲线差异性研究[J]. 西安石油大学学报(自然科学版), 2018, 33(1): 39-46.
LI Jinyi, CHEN Danqing, ZHOU Fengjun, et al. Study on difference between relative permeability curves of fresh and washed unconsolidated sandstone cores from sealed coring wells[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2018, 33(1): 39-46. doi: 10.3969/j.-issn.1673-064X.2018.01.007
[25]
缪飞飞, 刘小鸿, 张宏友, 等. 相对渗透率曲线标准化方法评价[J]. 断块油气田, 2013, 20(6): 759-762.
MIAO Feifei, LIU Xiaohong, ZHANG Hongyou, et al. Evaluation on standardized methods of original relative permeability curves[J]. Fault-Block Oil and Gas Field, 2013, 20(6): 759-762. doi: 10.6056/dkyqt201306020