西南石油大学学报(自然科学版)  2019, Vol. 41 Issue (3): 107-112
水平气井井筒气液两相流型预测    [PDF全文]
刘永辉1 , 罗程程1, 刘通2, 任桂蓉2, 王中武3    
1. 西南石油大学石油与天然气工程学院, 四川 成都 610500;
2. 中国石化西南油气分公司石油工程技术研究院, 四川 德阳 610800;
3. 中国石油新疆油田陆梁油田作业区, 新疆 克拉玛依 834000
摘要: 准确判断产水水平气井井筒流型是预测其井筒压降、合理制定排水采气方案的关键。水平井沿流向井斜角从90 °到0连续变化,目前尚无描述水平井两相流动的统一流型图,只能分别采用描述水平管、倾斜管和垂直管的3个流型图来分段处理,各流型图实验条件差异大;且产水气井日产水量极小,气液比极高,易超出工程常用气液两相管流流型图的坐标值范围,导致其预测结果误差大。为此研制了水平段-倾斜段-垂直段的水平井空气-水两相流动模拟实验装置,考虑产水气井特高气液比的特点开展了7组管斜角641组水平井气水两相管流流型实验,归纳水平气井的5种流型及其典型特征。引用Duns&Ros定义的无因次气液速度准数,增加管斜角为X轴,绘制了描述水平气井气液两相管流的三维流型图,给出了BP神经网络模型预测水平气井井筒流型的方法。川西气田20口水平气井测压数据验证表明,该流型图预测正确率达90%。
关键词: 水平气井     气液两相管流     管斜角     三维流型图     BP神经网络    
Prediction of Gas-liquid Two-phase Flow Patterns in Horizontal Gas Wells
LIU Yonghui1 , LUO Chengcheng1, LIU Tong2, REN Guirong2, WANG Zhongwu3    
1. School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
2. Research Institute for Engineering Technology, Sinopec Southwest Branch Company, Deyang, Sichuan 610800, China;
3. Luliang Oilfield Operation Area, Xinjiang Oilfield Company, PetroChina, Karamay, Xinjiang 834000, China
Abstract: An accurate estimation of the flow pattern of a horizontal gas well that produces water is the key to predicating the pressure drop of the wellbore and establishing a sensible water-drainage production plan. The angle of a horizontal well constantly varies from 90 ° to 0 according to the flow direction. A unified flow pattern map that describes the two-phase flow of horizontal wells has not yet been discovered. Therefore, three separate flow pattern maps are used to describe the horizontal, slanted, and vertical pipes individually. These maps are obtained under extremely different experimental conditions. In addition, the gas wells may produce extremely low water output. In such cases, the gas-liquid ratio may exceed the valid coordinate range of the commonly used gas-liquid two-phase flow pattern map leading to significant errors in the prediction results. Considering all these drawbacks, this study has developed an air-water two-phase flow simulation experimental device for horizontal, slanted, and vertical pipes. Provided the extremely high gas-liquid ratio of the gas well with water production, this study has conducted a gas-water two-phase flow pattern experiment using 7 slanted pipes and 641 horizontal pipes. It has summarized five flow patterns and the typical characteristics of horizontal gas wells. This work has used the dimensionless gas velocity number defined by Duns and Ros and the pipe inclination angle as the X-axis. A three-dimensional flow pattern map has been constructed to describe the gas-liquid two-phase pipe flow in the horizontal gas well. This study has also proposed a method to predict the flow pattern based on the back propagation neural network model. The pressure measurement results from 20 horizontal gas wells in the gas fields at Western Sichuan indicate that the flow map demonstrates an accuracy of 90% in prediction.
Keywords: horizontal gas well     gas-liquid two-phase flow     pipe angle     three-dimensional flow pattern map     BP neural network    
引言

水平井能增大泄气面积,提高气藏动用程度,已逐渐成为页岩气、致密气的主要开发手段。然而大量的压裂液返排和储层自身产水导致气井开采之初就见水,井筒中出现气液两相流。正确预测水平井井筒气液两相流流型是水平井井筒压降预测、井下工况诊断、排水采气设计的先决条件。

目前气液两相流流型实验参数(管斜角,管径等)统计如表 1所示。

表1 气液两相流流型实验 Tab. 1 Experimental studies on gas–liquid two-phase flow patterns

根据实验的管斜角,可分为单一水平管、倾斜管和垂直管的3类流型图,没有描述水平井气液两相流动的统一流型图。水平井由垂直段、倾斜段和水平段组成,沿流向上,井斜角从90°到0连续变化[1-2],当采用上述的3类流型图进行分段处理时,由于绘制流型图的实验条件不同,流型图的适应范围也不同,缺乏通用性;又由于产水气井气液比极高,极易超出工程常用两相流型图的范围,导致预测水平气井气液两相流型误差大。

本文研制了由水平段、倾斜段(可变井斜角)、垂直段组成可视化水平井两相流模拟实验装置,开展了7组管斜角下的641组气水两相管流流型实验,采用摄像仪捕捉气液界面形态及其流动特征,基于前人研究成果,归纳得出水平气井的5种流型及其典型特征。引用Duns & Ros定义的无因次气液速度准数,绘制了描述水平气井气液两相管流的三维流型图,给出了BP神经网络模型预测水平气井井筒流型的方法。经川西20口水平气井测压数据验证,该流型图预测正确率达90%。

1 实验

本文采用的模拟水平井气液两相流动模拟实验装置见图 1

图1 模拟水平井气液两相流型实验装置 Fig. 1 Experimental facility of observing gas–liquid two-phase flow pattern for modeling horizontal wells

实验装置由水平段、倾斜段、垂直段组成,3段采用软管连接,使倾斜段管斜角从0到90°变化,与水平井实际井眼轨迹一致。考虑水平气井产液量小、气液比极高的特点,实验设计气量为1$\sim$200 m$^{{\rm 3}}$/h,水量为0.1$\sim$1.0 m$^{{\rm 3}}$/h。采用10 000帧高速摄像仪以极慢的速度捕捉水平井垂直段、斜井段、水平段内气液两相流型,观察不同气、液流量下井筒内气水界面分布情况,分析相同参数下水平管、倾斜管、垂直管内流型的内在联系;并实时记录气量、水量、倾斜段和垂直段压力,以及倾斜段和垂直段差压。

2 水平气井气液两相管流流型

为了充分考虑斜井段井斜角对流型的影响,实验设计7组管斜角:15°、20°、30°、45°、60°、70°、80°,与水平段(管斜角为0)和垂直段(管斜角为90°)共计9组管斜角。

水平段以分层流为主,随着气体表观流速的增加,空气与水的界面逐渐向波状发展。倾斜段和垂直段主要有塞状气泡流、段塞流、搅动流、环状流4种流型,如图 2~图 6所示(其中,$\theta$—倾斜角,(°);$v_{\rm sg}$—气相折算速度,m/s;$v_{\rm sl}$—液相折算速度,m/s)。

图2 分层流($\theta$ = 0) Fig. 2 Stratified flow ($\theta$ = 0)
图3 塞状气泡流($v_{{\rm sg}}$=0.09 m/s,$v_{{\rm sl}}$=0.05 m/s) Fig. 3 Plug flow ($v_{{\rm sg}}$=0.09 m/s, $v_{{\rm sl}}$=0.05 m/s)
图4 段塞流($v_{{\rm sg}}$=4.89 m/s,$v_{{\rm sl}}$=0.05 m/s) Fig. 4 Slug flow($v_{{\rm sg}}$=4.89 m/s, $v_{{\rm sl}}$=0.05 m/s)
图5 搅动流($v_{{\rm sg}}$=9.23 m/s,$v_{{\rm sl}}$=0.05 m/s) Fig. 5 Churn flow($v_{{\rm sg}}$=9.23 m/s, $v_{{\rm sl}}$=0.05 m/s)
图6 环状流($v_{{\rm sg}}$=21.79 m/s,$v_{{\rm sl}}$=0.05 m/s) Fig. 6 Annular flow($v_{{\rm sg}}$=21.79 m/s, $v_{{\rm sl}}$=0.05 m/s)

随着管斜角的增加,气水重力分离减弱,倾斜管下部液膜厚度减小,上部液膜厚度增加。

为综合考虑气液流速、密度、黏度、表面张力对流型的影响,引入Duns & Ros定义的无因次气液速度准数,拟合建立实验时各管斜角下的流型图,并对实验各管斜角之间的流型采用插值处理,绘制了水平井三维流型图,如图 7所示。

图7 水平气井井筒气液两相流三维流型图 Fig. 7 3-D two-phase flow pattern map for horizontal gas wells
3 水平气井气液两相管流流型预测

与常规气液两相二维流型图相比,水平井三维流型图新增管斜角一项,采用常规曲线拟合误差大,为此,引入BP神经网络进行流型预测[14-17]

(1) 输入、输出参数的设计

输入参数为气相无因次速度准数、液相无因次速度准数、倾斜角。

输出参数为分层流、塞状气泡流、段塞流、搅动流、环状流,分别标定为1、2、3、4、5,对应向量(1, 0, 0, 0, 0)$^{{\rm T}}$、(0, 1, 0, 0, 0)$^{{\rm T}}$、(0, 0, 1, 0, 0)$^{{\rm T}}$、(0, 0, 0, 1, 0)$^{{\rm T}}$、(0, 0, 0, 0, 1)$^{{\rm T}}$

(2) 训练样本和检验样本的设计

采用641组流型实验数据作为训练样本和检验样本。各类样本的数量分布如表 2所示。

表2 训练样本和检验样本设计 Tab. 2 Number of training samples for validating and testing

(3) 隐含层的设计

采用单个隐含层且神经元数为5时,对641组水平气井井筒流型实验数据进行训练,得到各层之间的权值、阈值,如表 3表 4所示。

表3 输入层到隐含层权值、阈值 Tab. 3 Weights and thresholds of the input-hidden layers
表4 隐含层到输出层权值、阈值 Tab. 4 Weights and thresholds of the hidden-output layers
4 模型验证

收集了川西气田20口水平气井的测压数据,其产气量范围为(0.039 2$\sim$5.842 5)$\times$10$^{{\rm 4}}$ m$^{{\rm 3}}$/d,产水量0.04$\sim$10.00 m$^{{\rm 3}}$/d,油压0.20$\sim$18.89 MPa,流压2.50$\sim$25.84 MPa。因无法获得流型数据,采用Taitel[2]、Tengesdal[18]、Gill[19-20]等建立的两相流流型和持液率对应关系(表 5),通过持液率来间接验证模型的正确性。

表5 持液率与流型的关系 Tab. 5 Relationships between flow pattern and liquid holdup

20井次实测井筒流型分布与BP网络模型流型预测结果对比如表 6所示。仅2井次流型预测结果与实测流型不符,即模型预测准确率为90%。

表6 实测井筒流型与BP模型预测结果对比 Tab. 6 Comparison between actual flow patterns and predicted flow patterns
5 结论

(1) 基于由水平段、倾斜段、垂直段组成的水平井可视化模拟实验装置,实验观测到水平井气井的5种流型:塞状气泡流、段塞流、搅动流、环状流、分层流。

(2) 绘制了水平气井两相管流三维流型图,实现了一幅流型图对0$\sim$90°全管斜角两相流的流型描述。

(3) 基于三层BP神经网络建立了水平气井气液两相管流流型预测新模型。川西气田20口水平气井测压数据验证表明,该流型图预测正确率达90%。

参考文献
[1]
AL_DUAIS M S, YAAKUB A R, YUSOFF N, et al. A novel strategy for speed up training for back propagation algorithm via dynamic adaptive the weight training in artificial neural network[J]. Research Journal of Applied Sciences, Engineering and Technology, 2015, 9(3): 189-200. doi: 10.19026/rjaset.9.1394
[2]
TAITEL Y, BARNEA D, DUKLER A E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. Aiche Journal, 1980, 26(3): 345-354. doi: 10.1002/aic.690260304
[3]
GOVIER G W, AZIZ K. The flow of complex mixtures in pipes[M]. New York: Van Nostrand Reinhold, 1972.
[4]
LIN P Y, HANRATTY T J. Effect of pipe diameter on flow patterns for air-water flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1987, 13(4): 549-563. doi: 10.1016/0301-9322(87)90021-8
[5]
李丹, 王瑞. 水平气液两相管流流型转变实验研究[J]. 中国石油和化工标准与质量, 2013(20): 159.
LI Dan, WANG Rui. Experimental study on flow pattern transition of horizontal gas-liquid two-phase flow[J]. China Petroleum and Chemical Standard and Quality, 2013(20): 159. doi: 10.3969/j.issn.1673-4076.2013.20.-132
[6]
李银朋. 向上倾斜管道内气液两相流的实验研究[D]. 大庆: 大庆石油学院, 2010.
LI Yinpeng. Experimental study of gas-liquid two-phase flow in upward inclined pipes[D]. Daqing:Daqing Petroleum Institute, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10220-2010156364.htm
[7]
韩洪升, 张雪, 徐学考, 等. 倾斜管内两相流流型的实验研究[J]. 当代化工, 2015, 44(4): 709-710.
HAN Hongsheng, ZHANG Xue, XU Xuekao, et al. Experimental study on the flow pattern of two-phase flow in inclined pipe[J]. Contemporary Chemical Industry, 2015, 44(4): 709-710. doi: 10.3969/j.issn.1671-0460.2015.04.-015
[8]
GOULD T L. Vertical two-phase steam-water flow in geothermal wells[J]. Journal of Petroleum Technology, 1974, 26(8): 833-842. doi: 10.2118/4961-PA
[9]
BEGGS D H, BRILL J P. A study of two phase flow in inclined pipes[J]. Journal of Petroleum Technology, 1973, 25(5): 607-617. doi: 10.2118/4007-PA
[10]
DUNS H Jr, ROS N C J. Vertical flow of gas and liquid mixtures in wells[C]. The 6th World Petroleum Congress, Frankfurt am Main, Germany, 1963.
[11]
HEWITT G F, ROBERTS D N. Studies of two-phase flow patterns by simultaneous X-ray and flash photography[R]. Atomic Energy Research Establishment, Harwell, UK, 1969.
[12]
WEISMAN J, KANG S Y. Flow pattern transitions in vertical and upwardly inclined lines[J]. International Journal of Multiphase Flow, 1981, 7(3): 271-291. doi: 10.1016/-0301-9322(81)90022-7
[13]
高庆华, 李天太, 赵亚杰, 等. 井筒气液两相流流动特性模拟试验研究[J]. 长江大学学报(自科版), 2014, 11(14): 84-87.
GAO Qinghua, LI Tiantai, ZHAO Yajie, et al. Simulated experiment of flow characteristics with gas-liquid twophase flow in wellbore[J]. Journal of Yangtze University(Natural Science Edition), 2014, 11(14): 84-87. doi: 10.-16772/j.cnki.1673-1409.2014.14.028
[14]
VOGL T P, MANGIS J K, RIGLER A K, et al. Accelerating the convergence of the back-propagation method[J]. Biological Cybernetics, 1988, 59(4-5): 257-263. doi: 10.-1007/BF00332914
[15]
ZIPSER D, ANDERSEN R A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons[J]. Nature, 1988, 331(6158): 679-684. doi: 10.1038/331679a0
[16]
YOON K, SHIN C, MARFURT K J. Waveform inversion using time-windowed back propagation[J]. SEG 2003-0690, 2003. doi: 10.1190/1.1818027
[17]
MI Y, ISHII M, TSOUKALAS L H. Flow regime identification methodology with neural networks and two-phase flow models[J]. Nuclear Engineering and Design, 2001, 204(1/3): 87-100. doi: 10.1016/S0029-5493(00)00325-3
[18]
TENGESDAL J Ø, KAYA A S, SARICA C. Flow-pattern transition and hydrodynamic modeling of churn flow[J]. SPE Journal, 1999, 4(4): 342-348. doi: 10.2118/57756-PA
[19]
GILL L E, HEWITT G F, LACEY P M C. Sampling probe studies of the gas core in annular two-phase flow-Ⅱ:studies of the effect of phase flow rates on phase and velocity distribution[J]. Chemical Engineering Science, 1964, 19(9): 665-682. doi: 10.1016/0009-2509(64)85054-5
[20]
GILL L E, HEWITT G F, LACEY P M C. Data on the upwards annular flow of air-water mixtures[J]. Chemical Engineering Science, 1965, 20(2): 71-88. doi: 10.1016/-0009-2509(65)85001-1