西南石油大学学报(自然科学版)  2018, Vol. 40 Issue (4): 61-68
三种端元气δ13C1-Ro模型建立与应用    [PDF全文]
程付启 , 朱亚杰, 金强, 洪国郎    
中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580
摘要: 端元气δ13C1-Ro模型是天然气成因判识、气源对比及混源气定量判识的重要工具。为了满足Ⅱ型有机质生成天然气识别及评价的需要,根据母质类型将有机热成因天然气划分为Ⅰ、Ⅱ和Ⅲ型等3种端元气,并利用126组实测天然气数据得到3种端元气的δ13C1-Ro模型。Ⅰ型,δ13C1=27.55 lg Ro-47.20;Ⅱ型,δ13C1=25.55 lg Ro-40.76;Ⅲ型,δ13C1=48.77 lg Ro-34.10(Ro < 0.9%),δ13C1=22.42 lg Ro-34.80(Ro ≥ 0.9%)。为了方便模型应利用建模样品的δ13C1、δ13C2数据,绘制了三端元气及其混源气的别图版。根据该图版,济阳拗陷坨165、车571与孤东9井天然气分别为Ⅰ和Ⅱ型端元气混源、Ⅱ型端元气与Ⅰ型端元气。
关键词: 端元气     δ13C1-Ro模型     类型判识     济阳拗陷    
Development and Application of Three End-member Gas δ13C1-Ro Models
CHENG Fuqi , ZHU Yajie, JIN Qiang, HONG Guolang    
School of Geosciences, China University of Petroleum, Shandong, Qingdao 266580, China
Abstract: End-member gas δ13C1-Ro modeling is an important tool for natural gas origin identification, gas-source correlation, and mixed-source gas quantitative processing. In order to identify and evaluate type Ⅱ natural gas generated by organic matter, organic thermogenic gas is broken down into the following three types of end-member gas according to the type of parent material:Type Ⅰ, Ⅱ, and Ⅰ. δ13C1 -Ro models for the three types of end-member gas were then developed using 126 endmember gas were then developed using 126 data sets obtained from natural om natural Ⅰ:δ1313C1=27.55 lg Ro -47.2; Type Ⅱ:δ13C1=25.55 lg Ro -40.76; Type Ⅲ:δ13C1=48.77 lg Ro -34.1, if Ro < 0.9%, and δ13C1=22.42 lg Ro -34.8, if Ro > 0.9%. To facilitate application of the models, a chart was generated to identify the δ13C113C2 values of the three end-member gases and their mixtures using δ13C1 and δ13C2 data obtained from the samples for modeling. from the samples for modeling. According to the chart, the natural gases from Jiyang Depression Tuo 165, Che 571, and Gudong 9 wells are mixture of Type Ⅰ and Ⅱ end-member gas, Type Ⅱ end-member gas, and Type Ⅰ end-member gas, respectively.
Key words: end-member gas     δ13C1-Ro model     type recognition     Jiyang Depression    
引言

天然气组分与稳定同位素组成常被作为天然气成因鉴别[1-3]、混源气判识[4-5]、天然气成藏过程恢复[6-7],甚或煤层/页岩气解析行为研究的重要依据[8-9]。然而,由于成气母质的组构随热演化程度变化而变化,即使同种母质不同演化阶段生成的天然气,其组分组成与同位素组成也会发生变化[4]

端元气是指单一类型的有机母质在单一成因机制下生成的天然气,目前常用的端元气类型有煤成气和油型气,前者是Ⅲ型、Ⅱ2型母质在热力作用下生成的天然气,后者是Ⅰ型和Ⅱ1有机质在热力作用下生成的天然气[10-12]。受生烃动力学制约,端元气的组分组成与同位素组成均随母质热演化程度增加而发生规律性变化,变化特征可用其与有机质镜质体反射率(Ro)的关系式表征,这些关系式反映了天然气生成的化学动力学行为,常被称为端元气地球化学模型(简称端元气模型)。端元气模型,特别是δ13C1-Ro模型在成熟度估算、气源对比、天然气成因判识中具有重要作用[5],也是混源气动态定量研究的主要内容[13-14],一直是天然气地球化学界研究的热点。自从Stahl等[15-16]提出δ13C1-Ro的关系之后,Faber等[17]、James[18]、徐永昌等[19-20]、戴金星等[21-22]、沈平等[23-24]、Galimov[2]}、Berner等[26-2]}、陈安定等[28]、刘文汇等[29]、李剑等[30]等也根据不同地区天然气特征,建立了不同的模型。

通过目前中外δ13C1-Ro模型的对比,发现同一端元气(煤成气或油型气),相同成熟阶段,其地球化学特征也存在很大差别。其原因除盆地演化史差异之外[25-31],更重要的还是母质类型的影响。以煤成气为例,由于Ⅲ型和Ⅱ2型有机质的显微组分存在很大差别,生气过程中组分、同位素分馏特征也不同[32-33],从而导致δ13C1-Ro模型的差异,油型气亦然[34]。如果把Ⅱ型有机质生成的天然气作为独立的端元气类型,按母质类型建立Ⅰ型、Ⅱ型和Ⅲ型端元气模型,将能更好地解决天然气的成因分析、气源对比与成熟度计算问题。此外,三端元气模型的建立,还有助于Ⅱ型有机质生成天然气定量判识和资源评价。为此,本文利用大量的实测资料,尝试性地建立了Ⅰ型、Ⅱ型和Ⅲ型端元气的δ13C1-Ro模型,并以济阳拗陷为例,介绍了其在判识天然气成因中的应用。

1 端元气模型建立 1.1 数据的收集和整理

本次研究共收集、整理各类天然气δ13C1、δ13C2数据126组,其中,煤成气61组(表 1},包括塔里木、鄂尔多斯、吐哈盆地等),油型气65组(表 2,包括济阳拗陷、四川盆地和塔里木盆地)。数据主要来自公开发表的文献与油田内部分析报告,且对涉及的每个天然气样品,均对其成藏条件与成藏过程进行了分析,以查清天然气母质类型、落实源岩成熟度(Ro),并确定为单一气源供气。

表1 中国主要含气盆地煤成气甲、乙烷碳同位素与Ro数据表 Table 1 δ13C1 and δ13C2 of coal-type natural gas and vitrinite reflectance in Chinese oil-gas-bearing basins
表2 中国主要含气盆地油型气甲、乙烷碳同位素与Ro数据表 Table 2 δ13C1 and δ13C2 of oil-type natural gas and vitrinite reflectance in Chinese oil-gas-bearing basins
1.2 模型的建立

利用表 1表 2中的δ13C1Ro数据作散点图,可以看出δ13C1Ro的变化特征(图 1)。从图 1可以看出,传统方法划分的煤成气与油型气,均分布在较宽的区带内,其中,煤成气区带位于油型气上部,反映相同成熟度下煤成气同位素较油型气重的规律。此外,煤成气区带与油型气区带在Ro为0.5% ~3.0%时有重叠,对重叠区样品的源岩条件进行分析后发现,这个区带的样品其母质类型均具有Ⅰ-Ⅲ型过渡特征,能够代表Ⅱ型端元气,重叠区δ13C1-Ro关系能够代表Ⅱ型端元气δ13C1的演化趋势。由此,可将图 1划分为3个带,分别代表Ⅰ、Ⅱ和Ⅲ型端元气区带(图 1中①、②、③)。如图 1所示,Ⅲ型端元气可以R=0.9%为界分为两段,在Ro < 0.9%时,δ13C1Ro增加快,Ro≥0.9%时,δ13C1Ro增加缓慢,这一特征与前人提出的煤成气的两阶段演化模式一致[29]。而Ⅰ、Ⅱ型端元气δ13C1-Ro关系在整个成熟度范围内无明显变化。

图1 三种端元气的δ13C1-Ro关系图 Fig. 1 Relationships of δ13C1 and Ro of Ⅰ-type, Ⅱ-type, Ⅲ-type end-member gases

根据3个区带的数据分别作趋势线,可得到Ⅰ、Ⅱ和Ⅲ型端元气的δ13C1-Ro模型。

Ⅰ型端元气:

${\delta ^{13}}{{\rm{C}}_1} = 27.55\lg{R_{\rm{o}}} - 46.60,0.5\% < {R_{\rm{o}}} < 3.5\% $

Ⅱ型端元气:

${\delta ^{13}}{{\rm{C}}_1} = 25.55\lg {R_{\rm{o}}} - 40.76$,0.5%$<R_{\text{o}}<3.5$%。

Ⅲ型端元气:

${\delta ^{{\rm{13}}}}{{\rm{C}}_1} = 48.77\lg {R_{\rm{o}}} - 34.10$$R_{\text{o}}<0.9$%;

${\delta ^{{\rm{13}}}}{{\rm{C}}_1}=22.42\lg R_{\text{o}}-34.80$$R_{\text{o}}\geqslant 0.9$%。

由于以前未划分出Ⅱ型端元气,在收集的数据中,能够确定为Ⅱ型端元气的数据很少。因此,对Ⅱ型端元气的判识,还利用了不同类型有机质生气过程的同位素分馏效应。

2 模型在判识天然气成因中的应用 2.1 应用图版绘制

天然气成因类型的判识是气源对比、混源气定量切割及资源量精确计算的基础,端元气模型的建立应满足准确、便捷确定天然气成因类型的需要。对于已发现的天然气,利用同位素质谱仪很容易得到甲、乙烷碳同位素组成,而其成熟度Ro却只能间接测定。为了能够充分利用天然气常规分析的δ13C1、δ13C2数据识别Ⅰ、Ⅱ、Ⅲ型端元气,需要将端元气模型转化为实用的δ13C113C2图版。

以δ13C1为纵坐标、δ13C2为横坐标,利用表 1表 2中的数据作散点图,与图 1对应,Ⅰ、Ⅱ和Ⅲ型端元气分布在不同的区带,并可根据数据的分布特点确定各端元气δ13C113C2趋势线(图 2中曲线Ⅰ、Ⅱ、Ⅲ。参考前人划分不同类型热解气的成熟度界线[11-12, 22-24],还可以在图 2各端元气分布区带划分出生物-过渡带气、原油伴生气、凝析油伴生气及高温裂解气区域,以实现天然气成因类型的确定。

图2 Ⅰ、Ⅱ和Ⅲ型端元气δ13C113C2判识图 Fig. 2 δ13C1, δ13C2 plate for identifying Ⅰ-type, Ⅱ-type, Ⅲ-type end-member gases
2.2 应用实例

济阳拗陷沙河街组既发育Ⅰ型母质烃源岩(沙四上为主),又发育Ⅱ型母质烃源岩(沙三段为主)[35-36]。钻探结果证明,该区既存在Ⅰ型端元气,又存在Ⅱ型端元气,还存在两者的混源气[37]。端元气类型及混源气混合比例确定,对该区天然气成藏研究及资源量估算具有重要意义。这里以东营凹陷坨165井、车镇凹陷车571井及沾化凹陷孤东9井天然气为例进行研究。将坨165井、车59井等3口井天然气甲、乙烷碳同位素数据(表 2)投到判识图上,它们均分布在原油伴生气区(图 2)。坨165井处在Ⅰ、Ⅱ型趋势线之间,结合成藏条件分析确定为Ⅰ、Ⅱ型端元气的混合;车571井在Ⅱ型趋势线附近,主要是Ⅱ型端元气;孤东9井靠近Ⅰ型趋势线,应主要来自类型最好的Ⅰ型有机质。

另外,曲线Ⅰ、Ⅲ之外的区域还能指示天然气的混合作用。例如,塔中地区石炭、奥陶系油型气落在曲线Ⅰ左侧,推测是来自烃源岩的天然气与原油裂解气混合作用的结果(图 2),该区存在原油裂解气已被证实[38-39]。此外,Ⅰ型母质生成的天然气与Ⅲ型母质生成的天然气发生混合成藏作用,数据点会分布在曲线Ⅱ附近。因此,应用图版时应先从成藏的角度分析是否有混合气存在的可能性。

3 结论

(1) 根据母质类型将有机热成因天然气细分为Ⅰ、Ⅱ、Ⅲ型3种端元气,结合它们的δ13C1演化规律及实测δ13C1Ro值,建立了相应的δ13C1-Ro模型。

(2) 为了方便三端元气δ13C1-Ro模型的应用,将其转化为δ13C113C2判识图版,应用该图版能够充分利用天然气常规分析的δ13C1、δ13C2数据对三端元气及其混源气进行判识。

(3) 济阳拗陷坨165井、车571井与孤东9井分别为Ⅰ和Ⅱ型端元气混源、Ⅱ型端元气与Ⅰ型端元气;塔中地区天然气应为源岩与原油裂解气的混合。

参考文献
[1]
DAI Jinxing, NI Yunyan, ZOU Caineng. Stable carbon and hydrogen isotopes of natural gases sourced from the Xujiahe Formation in the Sichuan Basin, China[J]. Organic Geochemistry, 2011, 43(2): 103-111. doi: 10.1016/j.-orggeochem.2011.10.006
[2]
韩中喜, 李剑, 垢艳侠, 等. 甲、乙烷碳同位素用于判识天然气成因类型的讨论[J]. 天然气地球科学, 2016, 27(4): 665-671.
HAN Zhongxi, LI Jian, GOU Yanxia, et al. The application of methane and ethane carbon isotopes as an identification index for gas origin study[J]. Natural Gas Geoscience, 2016, 27(4): 665-671. doi: 10.11764/j.issn.1672-1926.2016.04.0665
[3]
沙威, 翟志伟, 杨红梅, 等. 柴东三湖地区天然气成因及成藏特征研究[J]. 天然气技术与经济, 2016, 10(3): 21-23.
SHA Wei, ZHAI Zhiwei, YANG Hongmei, et al. Origin and accumulation characteristics of natural gas in Sanhu Region, eastern Qaidam Basin[J]. Natural Gas Technology, 2016, 10(3): 21-23. doi: 10.3969/j.issn.2095-1132.-2016.03.005
[4]
XIA Xinyu, CHEN J, BRAUN R, et al. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J]. Chemical Geology, 2012, 339(2): 205-212. doi: 10.1016/j.chemgeo.-2012.07.025
[5]
DAI Jinxing, NI Yunyan, HU Guoyi, et al. Stable carbon and hydrogen isotopes of gases from the large tight gas fields in China[J]. Science China Earth Sciences, 2014, 57(1): 88-103. doi: 10.1007/s11430-013-4701-7
[6]
DAI Jinxing, ZOU Caineng, LI Jian, et al. Carbon isotopes of middle-lower Jurassic coal-derived alkane gases from the major basins of northwestern China[J]. International Journal of Coal Geology, 2009, 80(2): 124-134. doi: 10.-1016/j.coal.2009.08.007
[7]
林会喜, 程付启, 金强. 天然气组分、同位素分馏机理及实例分析[J]. 天然气地球科学, 2011, 22(2): 1-6.
LIN Huixi, CHENG Fuqi, JIN Qiang. Fractionation mechanism of natural gas components and isotopic compositions and simple analysis[J]. Natural Gas Geoscience, 2011, 22(2): 1-6.
[8]
WU Wei, DONG Dazhong, YU Cong, et al. Geochemical characteristics of shale gas in Xiasiwan Area, Ordos Basin[J]. Energy Exploration & Exploitation, 2015, 33(1): 25-42. doi: 10.1260/0144-5987.33.1.25
[9]
MENG Qian, WANG Xiaofeng, WANG Xiangzeng, et al. Variation in the carbon isotopic composition of alkanes during shale gas desorption process and its geological significance[J]. Journal of Natural Gas Geoscience, 2016, 1(2): 139-146. doi: 10.1016/j.jnggs.2016.05.004
[10]
戴金星, 戚厚发, 宋岩. 鉴别煤成气和油型气等指标的初步探讨[J]. 石油学报, 1985, 6(2): 31-38.
DAI Jinxing, QI Houfa, SONG Yan. On the indicators for identifying gas from oil and gas from coal measure[J]. Acta Petrolei Sinica, 1985, 6(2): 31-38. doi: 10.7623/-syxb198502005
[11]
徐永昌. 天然气成因理论及应用[M]. 北京: 科学出版社, 1994.
XU Yongchang. Theory and application of natural gas cause[M]. Beijing: Science Press, 1994.
[12]
宋岩, 徐永昌. 天然气成因类型及其鉴别[J]. 石油勘探与开发, 2005, 32(4): 4-29.
SONG Yan, XU Yongchang. Origin and identification of natural gases[J]. Petroleum Exploration and Development, 2005, 32(4): 4-29. doi: 10.3321/j.issn:1000-0747.2005.-04.004
[13]
程付启, 金强. 两元混合天然气定量研究新方法[J]. 沉积学报, 2005, 23(3): 554-558.
CHENG Fuqi, JIN Qiang. A novel approach for quantitative study on two-source-mixed natural gas reservoirs[J]. Acta Sedimentologica Sinica, 2005, 23(3): 554-558. doi: 10.3969/j.issn.1000-0550.2005.03.025
[14]
程付启, 金强, 刘文汇, 等. 鄂尔多斯盆地中部气田混源气成藏特征分析[J]. 石油学报, 2017, 28(1): 38-42.
CHENG Fuqi, JIN Qiang, LIU Wenhui, et al. Formation of source-mixed gas reservoir in Ordovician weathering crust in the central gas-field of Ordos Basin[J]. Acta Petrolei Sinica, 2017, 28(1): 38-42. doi: 10.7623/syxb200701007
[15]
STAHL W J, CAREY JR B D. Source-rock identification by isotope analyses of natural gases form fields in the Vol Verde and Dclaware Basins, west Texas[J]. Chemical Geology, 1975, 16(4): 257-267. doi: 10.1016/0009-2541(75)-90065-0
[16]
STAHL W J. Carbon and nitrogen isotopes in hydrocarbon research and exploration[J]. Chemical Geology, 1977, 20: 121-149. doi: 10.1016/0009-2541(77)90041-9
[17]
FABER E, GERLING P, Dumke I. Gaseous hydrocarbon of unknown origin found while drilling[J]. Organic Geochemistry, 1987, 13: 875-879. doi: 10.1016/0146-6380(88)90240-9
[18]
JAMES A T. Correlation of natural gas by use of isotopic distribution between hydrocarbon components[J]. AAPG Bulletin, 1983, 67: 1176-1191. doi: 10.1306/03B5B722-16D1-11D7-8645000102C1865D
[19]
徐永昌, 沈平. 中原-华北油气区"煤型气"地球化学特征初探[J]. 沉积学报, 1985, 3(2): 37-46.
XU Yongchang, Shen Ping. A preliminary study on the geochemical characteristics of "coal-type gas" in Zhongyuan-Huabei Oil-gas Area[J]. Acta Sedimentologica Sinica, 1985, 3(2): 37-46.
[20]
徐永昌, 傅家谟, 郑建京. 天然气成因及大中型气田形成的地学基础[M]. 北京: 科学出版社, 2000.
XU Yongchang, FU Jiamo, ZHENG Jianjing. The origin of natural gas and the geological conditions of large and medium gas fields[M]. Beijing: Science Press, 2000.
[21]
戴金星, 戚厚发. 我国煤成烃气的δ13C1-Ro关系[J]. 科学通报, 1989, 34(9): 690-692.
DAI Jinxing, QI Houfa. δ13C1-Rorelationship of coal-type hydrocarbon gas in China[J]. Chinese Science Bulletin, 1989, 34(9): 690-692. doi: 10.3321/j.issn:0023-074X.-2000.04.002
[22]
戴金星, 戚厚发, 郝石生. 中国天然气地质学(卷2)[M]. 北京: 石油工业出版社, 1989.
DAI Jinxing, QI Houfa, HAO Shisheng. China natural gas geology (Vol. 2)[M]. Beijing: Petroleum Industry Press, 1989.
[23]
沈平, 申岐祥, 王先彬, 等. 气态烃同位素组成特征及煤型气判识[J]. 中国科学(B辑), 1987, 17(6): 647-656.
SHEN Ping, SHEN Qixiang, WANG Xianbin, et al. Characteristics of gaseous hydrocarbon isotopic composition and identification of coal-type gas[J]. Science in China (Series B), 1987, 17(6): 647-656. doi: 10.1360/zb1987-17-6-647
[24]
沈平, 徐永昌, 王先彬, 等. 气源岩和天然气地球化学特征及成气机理研究[M]. 兰州: 甘肃科学技术出版社, 1991.
SHEN Ping, XU Yongchang, WANG Xianbin, et al. Studies on geochemical characteristics of gas-source rock and natural gas and mechanism of genesis of gas[M]. Lanzhou: Gansu Science and Technology Press, 1991.
[25]
GALIMOV E M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks[J]. Chemical Geology, 1988, 71(1-3): 77-95. doi: 10.1016/0009-2541(88)90107-6
[26]
BERNER U, FABER E. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes[J]. Organic Geochemistry, 1988, 13(1-3): 67-72. doi: 10.-1016/0146-6380(88)90026-5
[27]
BERNER U, FABER E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Organic Geochemistry, 1996, 24(10-11): 947-955. doi: 10.1016/S0146-6380(96)00090-3
[28]
陈安定, 张文正, 徐永昌. 沉积岩成烃热模拟试验产物的同位素特征及其应用[J]. 中国科学(B辑), 1993, 23(2): 209-217.
CHEN Anding, ZHANG Wenzheng, XU Yongchang. Isotopic characteristics of sediment rock thermal simulation test products and its application[J]. Science in China (Series B), 1993, 23(2): 209-217.
[29]
刘文汇, 徐永昌. 煤型气碳同位素演化二阶段分馏模式及机理[J]. 地球化学, 1999, 28(4): 359-365.
LIU Wenhui, XU Yongchang. A two-stage model of carbon isotopic fractionation in coal-gas[J]. Geochimica, 1999, 28(4): 359-365.
[30]
李剑, 胡国艺, 谢增业, 等. 中国大中型气田天然气成藏物理化学模拟研究[M]. 北京: 石油工业出版社, 2001.
LI Jian, HU Guoyi, XIE Zengye, et al. Study on physical and chemical simulation of natural gas reservoir formation in large and medium gas fields in China[M]. Beijing: Petroleum Industry Press, 2001.
[31]
CLAYTON C. Carbon isotope fractionation during natural gas generation from kerogen[J]. Marine and Petroleum Geology, 1991, 8(2): 232-240. doi: 10.1016/0264-8172(91)90010-X
[32]
JIMOH A Y, OJO O J. Rock-Eval pyrolysis and organic petrographic analysis of the Maastrichtian coals and shales at Gombe, Gongola Basin, Northeastern Nigeria[J]. Arabian Journal of Geosciences, 2016, 9: 1-13. doi: 10.1007/-s12517-016-2467-x
[33]
包书景, 林拓, 聂海宽, 等. 海陆过渡相页岩气成藏特征初探:以湘中坳陷二叠系为例[J]. 地学前缘, 2016, 23(1): 44-53.
BAO Shujing, LIN Tuo, NIE Haikuan, et al. Preliminary study of the transitional facies shale gas reservoir characteristics:Taking Permian in the Xiangzhong Depression as an example[J]. Earth Science Frontiers, 2016, 23(1): 44-53. doi: 10.13745/j.esf.2016.01.004
[34]
MASTALERZ M, SCHIMMELMANN A, LIS G P, et al. Influence of maceral composition on geochemical characteristics of immature shale kerogen:Insight from density fraction analysis[J]. International Journal of Coal Geology, 2012, 103(23): 60-69. doi: 10.1016/j.coal.2012.07.011
[35]
侯读杰, 张善文, 肖建新, 等. 济阳坳陷优质烃源岩特征与隐蔽油气藏的关系分析[J]. 地学前缘, 2008, 15(2): 137-146.
HOU Dujie, ZHANG Shanwen, XIAO Jianxin, et al. The excellent source rocks and accumulation of stratigraphic and lithologic traps in the Jiyang Depression, Bohai Bay Basin, China[J]. Geoscience Frontiers, 2008, 15(2): 137-146. doi: 10.3321/j.issn:1005-2321.2008.02.016
[36]
王勇, 宋国奇, 刘惠民, 等. 济阳坳陷页岩油富集主控因素[J]. 油气地质与采收率, 2015, 36(4): 20-25.
WANG Yong, SONG Guoqi, LIU Huimin, et al. The main control factors of shale oil enrichment in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2015, 36(4): 20-25. doi: 10.7623/syxb201508002
[37]
张林晔. 济阳坳陷天然气成因的判识标志[J]. 石油实验地质, 1991, 13(4): 355-369.
ZHANG Linhua. Identifying criteria of natural gases in the Jiyang Depression[J]. Petroleum Experimental Geology, 1991, 13(4): 355-369. doi: 10.11781/sysydz199104355
[38]
王祥, 张敏, 刘玉华. 塔里木盆地塔中地区天然气成因及其差异[J]. 石油与天然气地质, 2010, 31(3): 335-342.
WANG Xiang, ZHANG Min, LIU Yuhua. Origns of natural gas in Tazhong Area, the Tarim Basin and their differences[J]. Oil Gas Geol, 2010, 31(3): 335-342. doi: 10.-11743/ogg20100310
[39]
韩剑发, 梅廉夫, 杨海军, 等. 塔里木盆地塔中奥陶系天然气的非烃成因及其成藏意义[J]. 地学前缘, 2009, 16(1): 314-325.
HAN Jianfa, MEI Lianfu, YANG Haijun, et al. Nonhydrocarbon origin of ordovician natural gas in Tazhong of Tarim Basin and its implications for non-hydrocarbon accumulation[J]. Geoscience Frontiers, 2009, 16(1): 314-325.