
目前对注采井网解析法求解流线分布都默认井网存在于无限大地层中[1],而对于交叉封闭边界区域的流动研究较少,主要研究对象为流场或井壁的压力变化及分布,研究方法主要局限在以下3种方法:(1)镜像反映法,由镜像反映原理可知,求解交叉封闭边界内势、流场分布及某任意源(汇)的产量,其计算公式中的
为方便计算,将交叉封闭边界的平分线置于
$ z=x+{\rm i}y=r{{{\rm e}}^{{\rm i}\theta }} $ | (1) |
![]() |
图1
|
式中:
保角变换能够将边界映射到另一复平面并对夹角角度进行缩放,且不会改变映射前后两坐标系内对应点的复势函数及点源(汇)流量的值[18],将映射前的复平面称为原始复平面,将映射后的复平面称为目标复平面。选用恰当的变换函数,将原始复平面内封闭边界的夹角
$ \zeta ={{z}^{\frac{{\rm{π }} }{{{\alpha }_{{0}}}}\cdot \frac{{{\alpha }_{1}}}{{\rm{π }} }}}={{z}^{\frac{{{n}_{0}}}{{{n}_{1}}}}}, {\kern 10pt} {{n}_{1}}=\dfrac{{\rm{π }} }{{{\alpha }_{1}}} $ | (2) |
$ \zeta =\xi +{\rm i}\eta =\rho \cdot {{{\rm e}}^{{\rm i}\vartheta }} $ | (3) |
式中:
由保角变换性质,目标复平面与原始复平面内的场点坐标变换如式(4)所示,点源(汇)半径的变换如式(5)所示。
$ \left\{ \begin{array}{l} \rho = {r^{\frac{{{n_0}}}{{{n_1}}}}}\\ \vartheta = \dfrac{{{n_0}}}{{{n_1}}}\theta \end{array} \right. $ | (4) |
$ {{\rho }_{{\rm w}}}=\left| {{\zeta }}\left( {{z}_{0}} \right) \right|\cdot {{r}_{{\rm w}}} $ | (5) |
式中:
若某平面封闭边界的夹角为
![]() |
图2
|
直线封闭边界附近一口井为常见形式,文献[16]给出了此情形的产量公式,如式(6)所示。
$ q=\dfrac{2{\rm{π }} Kh\left( {{p}_{{\rm e}}}-{{p}_{{\rm w}}} \right)}{\mu \ln \dfrac{\rho _{{\rm e}}^{2}}{2b{{\rho }_{{\rm w}}}}} $ | (6) |
式中:
根据保角变换性质[18],变换前后两个复平面内对应场点的流函数、势函数及点源(汇)的流量不变。因此,
$ q=\dfrac{2{\rm{π }} Kh\left( {{p}_{{\rm e}}}-{{p}_{{\rm w}}} \right)}{\mu \ln \dfrac{{{\rho}_{{\rm e}}}^{{{n}_{0}}}}{2{{ {{r}_{{\rm 0}}} }^{{{n}_{0}}-1}}\cos \left( \dfrac{{{n}_{0}}}{2}{{\theta }_{{\rm 0}}} \right)\dfrac{{{n}_{0}}}{2}{{\rho}_{{\rm w}}}}} $ | (7) |
式中:
对于多井情况,渗流场内的复势函数符合叠加原理,如式(8)所示。流函数是复势函数中虚数部分。在
$ W\left( \omega \right)=-\dfrac{1}{2{\rm{π }} }\sum\limits_{{}}^{{}}{{{q}_{{\rm h}i}}}\ln \left( \omega -{{\omega }_{i}} \right) $ | (8) |
$ \varphi =\arctan \left( \dfrac{v-{{v}_{i}}}{u-{{u}_{i}}} \right) $ | (9) |
式中:
下标
利用式(9)求解辅角方法判断
![]() |
图3 无限大地层单井流场与流线 Fig. 3 the flow field and streamline in infinite formation with one well |
绘制流线采用的原理和方法为:流场中流函数相等的点之间不存在流动,所以流函数场的等值线即为流线轨迹,而等间值等值线代表的流线之间的流量是相等的,因此,对流函数场绘制等间值的等值线即为流线轨迹,且流线的疏密直接代表流量大小。从图 3可见,在点汇
由流函数性质可知,两点间流函数差值代表流量,而流函数是辅角的函数,所有场点相对某个点源(汇)的辅角计算都要以某一确定的辅角为基准;再由流函数性质,流函数加上任一常数而不影响对流体运动的描述,可理解为对流动规律的描述只受控于流函数的相对值,因此,相对于每个源(汇)的基准辅角可任意选取,无需强制相同。为使基准辅角可取任意值,方便后续对流函数求解,重新定义
以点
$ \left\{ \begin{array}{l} \varphi = {\rm{arccos}}\left( {\dfrac{{\bf {{\boldsymbol{\lambda } _0}} \cdot \bf \boldsymbol{\lambda } }}{{\left| {\bf {{\boldsymbol{\lambda } _0}} } \right| \cdot \bf {\left| \boldsymbol{\lambda } \right|} }}} \right) + {\varphi _0}, {\kern 8pt} \left( {\bf {{\boldsymbol{\lambda } _0}} \times \bf \boldsymbol{\lambda } } \right) \cdot \boldsymbol{\tau }_{\rm u} > 0\\ \varphi = {\rm{arccos}}\ {\dfrac{{\bf {{\boldsymbol{\lambda } _0}} \cdot \bf \boldsymbol{\lambda } }}{{\left| {\bf {{\boldsymbol{\lambda } _0}} } \right| \cdot \bf {\left| \boldsymbol{\lambda } \right|} }}} + {\rm{π }} + {\varphi _0}, {\kern 8pt} \left( {\bf {{\boldsymbol{\lambda } _0}} \times {\bf \boldsymbol{\lambda }} } \right) \cdot \boldsymbol{\tau }_{\rm u} < 0\\ \varphi = {\varphi _0}, {\kern 6pt} \left({ {{\boldsymbol{\lambda } _0}} \cdot \bf \boldsymbol{\lambda } }\right) > 0 \cap \left( {\bf {{\boldsymbol{\lambda } _0}} \times \bf \boldsymbol{\lambda } } \right) \cdot \boldsymbol{\tau }_{\rm u} = 0\\ \varphi = {\rm{π }} + {\varphi _0}, {\kern 8pt} \left( { {{\boldsymbol{\lambda } _0}} \cdot {\boldsymbol{\lambda }} } \right) < 0 \cap \left( {\bf {{\boldsymbol{\lambda } _0}} \times \bf \boldsymbol{\lambda } } \right) \cdot \boldsymbol{\tau }_{\rm u} = 0\\ {\rm{arccos}}~x \in \left[ {0, {\rm{π }} } \right], {\kern 8pt} x \in \left[ { - 1, 1} \right] \end{array} \right. $ | (10) |
![]() |
图4
|
式中:
![]() |
图5
|
为使跳变区域在研究区域的外侧,对于封闭边界右侧的原井点
![]() |
图6
|
将
![]() |
图7
z平面交叉封闭边界流场、流线
Fig. 7
The flow field and streamline in |
流速为某一场点所具备的属性,流量为某一截面所具有的属性。由于保角变换前后的势函数与流函数不变,根据复势函数速度定义式,原始
$ W\left( \zeta \right)=\dfrac{-1}{2{\rm{π }} }\left[ \sum\limits_{i=1}^{2m}{{{q}_{{\rm h}i}}}\ln \left( \zeta -{{\zeta }_{i}} \right) \right]=\\{\kern 40pt}\dfrac{-1}{2{\rm{π }} }\left[ \sum\limits_{i=1}^{2m}{{{q}_{{\rm h}i}}}\ln \left( {{z}^{{{n}_{0}}/2}}-z_{i}^{{{n}_{0}}/2} \right) \right] $ | (11) |
$ \dfrac{{\rm d}W\left( \zeta \right)}{{\rm d}z}=\dfrac{{\rm d}W\left( \zeta \right)}{{\rm d}\zeta }\dfrac{{\rm d}\zeta }{{\rm d}z}=\\ {\kern 40pt}\dfrac{-1}{2{\rm{π }} } \dfrac{{{n}_{0}}}{2} {{r}^{{{n}_{0}}/2-1}} {{\rm e}^{{\rm i}\left( {{n}_{0}}/2-1 \right)\theta }} \sum\limits_{i=1}^{2m}{\dfrac{{{q}_{{\rm h}i}}}{{{\rho }_{i}}}}{{\rm e}^{-{\rm i}{{\vartheta }_{i}}}} $ | (12) |
$ {{V}_{x}}=\dfrac{1}{2{\rm{π }} } \dfrac{{{n}_{0}}}{2} {{r}^{{{n}_{0}}/2-1}} \cdot \\ {\kern 40pt} \sum\limits_{i=1}^{2m}{\dfrac{{{q}_{{\rm h}i}}\cos \left[ -{{\vartheta }_{i}}+\left( \dfrac{{n}_{0}}{2}-1 \right)\theta \right]}{{{\rho }_{i}}}} $ | (13) |
$ {{V}_{y}}=\dfrac{-1}{2{\rm{π }} } \dfrac{{{n}_{0}}}{2} {{r}^{{{n}_{0}}/2-1}} \sum\limits_{i=1}^{2m}{\dfrac{{{q}_{{\rm h}i}}\sin \left[ -{{\vartheta }_{i}}+\left( \dfrac{{n}_{0}}{2}-1 \right)\theta \right]}{\rho _{i}^{{}}}} $ | (14) |
$ V=\sqrt{V_{x}^{2}+V_{y}^{2}} $ | (15) |
式中:
相对于网格化处理的数值计算方法,解析法由于函数的连续性在理论上不存在误差;相对于基于压力场的间接求流场的方式,解析法能够直接计算流函数。图 8为渤海油田XX18-1油田某井区的夹角封闭断层内1注3采井网由某商业软件求解的流线分布。该图虽然经过了样条处理,但由于网格尺寸的限制,流线出现了Jack-Knife现象,且流线密度也不均匀。
![]() |
图8 某商业软件生成的流线分布图 Fig. 8 Streamline distribution calculated by commertial simulation software |
图 9为对应的本方法计算的流线,可以见到在断层夹角的位置与某商业软件形成了鲜明的对比,本方法显示夹角位置几乎没有流线存在,流动性较差,而商业软件仍然显示该位置有流动性,这是由于现有软件通常采用的流线追踪法形成的,流线分布密度并不能表示流速的大小。
![]() |
图9 本文方法生成的流线分布图 Fig. 9 Streamline distribution calculated by this method |
(1) 利用保角变换法改进了传统利用镜像反映法求解夹角封闭边界内复势函数对边界夹角取值的限制,本方法能够处理多源(汇)的情况,相对于格林方程法只能求解区域内单源汇的局限,具有较大的优势。
(2) 流函数为辅角的函数,采用相对基准角增量的方式计算辅角,能够将流函数跳跃位置放置于非关注区域,使关注区域流函数连续。
(3) 通过对交叉封闭边界内绘制流线,能够认清流体滞留区(剩余油富集区),为下一步挖潜提供帮助。
[1] |
许寒冰, 李相方, 石德佩, 等. 注采井网生产井含水率解析计算方法[J]. 石油学报, 2010, 31(3): 471-474. XU Hanbing, LI Xiangfang, SHI Depei, et al. An analytical method for calculating water cut of producers in injection-production pattern[J]. Acta Petrolei Sinica, 2010, 31(3): 471-474. doi: 10.7623/syxb201003022 |
[2] |
李晓军, 张琪, 路智勇. 断块油藏水平井与直井组合井网渗流解析解及其应用[J]. 中国石油大学学报(自然科学版), 2010, 34(3): 84-88. LI Xiaojun, ZHANG Qi, LU Zhiyong. Analytic solution of horizontal-vertical composed well pattern seepage in fault-block reservoir and its application[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(3): 84-88. doi: 10.3969/j.issn.1673-5005.2010.-03.018 |
[3] |
LARSEN L. A simple approach to pressure distributions in geometric shape[C]. SPE 10088-PA, 1985. doi: 10.2118/-10088-PA http://www.researchgate.net/publication/250090892_A_Simple_Approach_to_Pressure_Distributions_in_Geometric_Shapes
|
[4] |
YAXLEY L M. New stablized inflow equations for rectangular and wedge shaped drainage system[C]. SPE 17082-MS, 1987. http://www.onepetro.org/general/SPE-17082-MS
|
[5] |
马水龙, 黎福长, 李星军, 等. 裂缝性油藏交叉断层条件下的压力特征[J]. 大庆石油学院学报, 1998, 22(2): 67-69. MA Shuilong, LI Fuchang, LI Xingjun, et al. Study of pressure behavior in fractured reservoir with intersecting faults[J]. Journal of Daqing Petroleum Institute, 1998, 22(2): 67-69. |
[6] |
PRASAD R K. Pressure transient analysis in the presence of two intersecting boundaries[J]. Journal of Petroleum Technology, 1975, 27(1): 89-96. doi: 10.2118/4560-PA |
[7] |
CHEN C C, RAGHAVAN R. Computing pressure distributions in wedges[J]. SPE Journal, 1995, 2(1): 24-32. doi: 10.2118/30555-PA |
[8] |
王晓东, 穆立婷. 两任意夹角断层的井壁压力计算方法[J]. 油气井测试, 1997, 6(2): 13-16. WANG Xiaodong, MU Liting. Algorithms for pressure transient analysis in the presence of two intercept faults with an arbitrary angle[J]. Well Testing, 1997, 6(2): 13-16. |
[9] |
赵秀才, 衣艳静, 姚军. 两夹角不渗透断层对油井压力及压力导数的影响研究[J]. 断块油气田, 2005, 12(6): 41-43. ZHAO Xiucai, YI Yanjing, YAO Jun. Study on the influence of two interacting sealing faults on oil wells pressure and its derivative[J]. Fault Block Oil & Gas Field, 2005, 12(6): 41-43. doi: 10.3969/j.issn.1005-8907.2005.06.013 |
[10] |
卢德唐, 孔祥言. 扇形区域内有井储和表皮的井底压力[J]. 油气井测试, 1996, 5(2): 5-10. LU Detang, KONG Xiangyan. The well bottle pressure is affected with wellbore storage coefficient and skin factorin the sector area[J]. Well Testing, 1996, 5(2): 5-10. |
[11] |
CHARLES D D, PURUSHOTHAMAN R. Well test characterization of wedge-shaped, faulted reservoirs[C]. SPE 56685, 1999. doi: 10.2118/56685-MS http://dx.doi.org/10.2118%2f56685-MS
|
[12] |
CHARLES D D, RIEKE H H, PURUSHOTHAMAN R. Well-test characterization of wedge-shaped faulted reservoirs[C]. SPE 72098, 2001. doi: 10.2118/72098-PA http://www.researchgate.net/publication/250089478_Well-Test_Characterization_of_Wedge-Shaped_Faulted_Reservoirs
|
[13] |
侯健, 王玉斗, 陈月明. 复杂边界条件下渗流场流线分布研究[J]. 计算力学学报, 2003, 20(3): 335-338. HOU Jian, WANG Yudou, CHEN Yueming. Research on streamline distribution of flow through porous media with complex boundary[J]. Chinese Journal of Computational Mechanics, 2003, 20(3): 335-338. doi: 10.3969/j.issn.-1007-4708.2003.03.015 |
[14] |
何应付, 尹洪军, 刘莉, 等. 复杂边界非均质渗流场流线分布研究[J]. 计算力学学报, 2007, 24(5): 708-712. HE Yingfu, YIN Hongjun, LIU Li, et al. Research on streamline distribution of flow through heterogeneous porous media with complex boundary[J]. Chinese Journal of Computational Mechanics, 2007, 24(5): 708-712. doi: 10.3969/j.issn.1007-4708.2007.05.031 |
[15] |
徐联玉, 尹洪军, 何应付, 等. 不渗透区域对渗流场流线分布影响研究[J]. 大庆石油地质与开发, 2006, 25(4): 57-59. XU LianYu, YIN HongJun, HE Yingfu. Effect of impermeable area on distribution of flow path in seepage flow field[J]. Petroleum Geology & Oilfield Development In Daqing, 2006, 25(4): 57-59. doi: 10.3969/j.issn.1000-3754.2006.04.020 |
[16] |
马春晓, 尹洪军, 唐鹏飞, 等. 基于有限元的压裂水平井渗流场分析[J]. 大庆石油地质与开发, 2015, 34(2): 90-94. MA Chunxiao, YIN HongJun, Tang Pengfei, et al. Seepage field analyses of the fractured horizontal well by finite element method[J]. Petroleum Geology & Oilfield Development In Daqing, 2015, 34(2): 90-94. doi: 10.3969/J.-ISSN.1000-3754.2015.02.017 |
[17] |
郑伟, 姜汉桥, 陈民锋, 等. 水平井注采井网合理井间距研究[J]. 西南石油大学学报(自然科学版), 2011, 33(1): 120-124. ZHENG Wei, JIANG Hanqiao, CHEN Minfeng, et al. Study on well spacing of horizontal well pattern[J]. Journal of Southwest University (Science & Technology Edition), 2011, 33(1): 120-124. doi: 10.3863/j.isan.1674-5086.2011.01.021 |
[18] |
程林松. 高等渗流力学[M]. 北京: 石油工业出版社, 2011: 46-60.
|
[19] |
李根. 考虑重力的直线边水单井波及面积计算模型[J]. 大庆石油地质与开发, 2016, 35(2): 48-51. LI Gen. Calculating model of the swept area for the individual well with the straight edge water considering the gravity[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(2): 48-51. doi: 10.3969/J.ISSN.1000-3754.2016.02.008 |