畜牧兽医学报  2021, Vol. 52 Issue (4): 976-986. DOI: 10.11843/j.issn.0366-6964.2021.04.013    PDF    
艾纳香油对NF-κB及Nrf2/HO-1信号通路的作用研究
王万林1,2, 高月1,2, 廖加美1,2, 彭俊超1,2, 蔡亚玲1,2, 易琼1,3, 王鲁1,3     
1. 贵州省生化工程中心, 贵阳 550025;
2. 贵州大学药学院, 贵阳 550025;
3. 西南特色药用生物资源开发利用教育部工程研究中心, 贵阳 550025
摘要:旨在通过研究NF-κB、Nrf2/HO-1通路来揭示艾纳香油(Blumea balsamifera(L.)DC Oil,BBO)发挥抗炎效果的作用机制。本研究利用LPS诱导的RAW264.7巨噬细胞炎症模型,试验分为空白组、LPS模型组、BBO组(低、中、高剂量)、BBO阴性对照组,每组3个重复,采用Hoechst 33342和PI双染检测BBO对细胞凋亡的影响;采用ELISA和分光光度法检测BBO对LPS诱导巨噬细胞后分泌IL-1β、TNF-α、PGE2、LTB4、NO含量及iNOS活力的影响;采用RT-PCR检测BBO对TNF-αIL-1β的mRNA表达水平的影响;采用Western blotting检测BBO对NF-κB及Nrf2/HO-1信号通路关键蛋白水平的影响。结果显示,BBO在80 μg·mL-1剂量范围内可以扭转LPS导致的巨噬细胞形态变化及细胞凋亡发生;与LPS模型组相比,BBO 60~80 μg·mL-1剂量下可以极显著抑制LPS诱导的细胞炎性因子和炎症介质IL-1β、TNF-α、PGE2、LTB4、NO的分泌及iNOS活力(P < 0.01),并极显著抑制LPS导致的细胞IL-1β、TNF-α mRNA表达(P < 0.01);同时,BBO 60~80 μg·mL-1剂量下极显著下调LPS导致的COX-2、5-LOX、p-IKKα、p-P65、p-IκB-α、胞质Nrf2蛋白表达(P < 0.01),极显著促进HO-1、核Nrf2蛋白表达(P < 0.01),并呈现剂量依赖性关系。结果提示,艾纳香油有良好的抑制细胞炎性和抗凋亡效果,其可能通过抑制NF-κBB通路中关键蛋白磷酸化和炎症因子的产生从而促进Nrf2/HO-1通路中主要抗炎基因表达最终发挥抗炎作用。
关键词艾纳香油    脂多糖    RAW264.7细胞    NF-κB    Nrf2/HO-1通路    
Effect of Blumea balsamifera (L.) DC Oil on NF-κB and Nrf2/HO-1 Signal Pathway
WANG Wanlin1,2, GAO Yue1,2, LIAO Jiamei1,2, PENG Junchao1,2, CAI Yaling1,2, YI Qiong1,3, WANG Lu1,3     
1. Guizhou Provincial Biochemical Engineering Center, Guiyang 550025, China;
2. School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China;
3. Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest of Ministry of Education, Guiyang 550025, China
Abstract: The purpose of this study was to reveal the mechanism of anti-inflammatory effect of BBO by studying NF-κB and Nrf2/HO-1 pathway. RAW264.7 macrophage inflammation model induced by LPS was used. The control group, LPS model group, BBO group (low, middle and high dose) and BBO negative control group were set up in this experiment, with 3 repeats in each group. The effect of BBO on apoptosis was detected by Hoechst 33342 and PI double staining. The contents of IL-1β, TNF-α, PGE2, LTB4, NO and the activity of iNOS in LPS-induced macro-phage were detected by ELISA and spectrophotometry. The effect of BBO on the mRNA expression of TNF-α and IL-1β was detected by RT-PCR. The effect of BBO on the key proteins expression in NF-κB and Nrf2/HO-1 signal pathway was detected by Western blotting. The results showed that BBO could reverse the morphological changes and apoptosis of macrophages induced by LPS within the dose range of 80 μg·mL-1. Compared with LPS model group, BBO of 60-80 μg·mL-1 could extremely significantly inhibit the secretion of LPS-induced cellular inflammatory factors and inflammatory mediators IL-1β, TNF-α, PGE2, LTB4, NO and iNOS activity(P < 0.01); BBO could also extremely significantly inhibit the expression of IL-1β and TNF-α mRNA(P < 0.01) induced by LPS. At the same time, BBO of 60-80 μg·mL-1 could extremely significantly down-regulate the protein expression of COX-2, 5-LOX, p-IKKα, p-P65, p-IκB-α and cytoplasmic Nrf2 induced by LPS(P < 0.01), and extremely significantly promote the protein expression of HO-1 and nuclear Nrf2 in a dose-dependent manner(P < 0.01). The results suggest that BBO has good effects on anti-inflammatory and anti-apoptotic. It may play an anti-inflammatory role by inhibiting the phosphorylation of key proteins and the production of inflammatory factors in NF-κB pathway and promote the expression of major anti-inflammatory genes in Nrf2/HO-1 pathway.
Key words: Blumea balsamifera(L.) DC Oil    LPS    RAW264.7 cell    NF-κB    Nrf2/HO-1 pathway    

炎症是动物机体中一种最重要的保护和防御性反应,大多数动物疾病都与炎症有关,特别是一些感染性疾病,例如仔猪肠炎、牛乳腺炎等,尽管病因不同,但发病学基础是一致的。研究表明,核转录因子NF-κB活化与炎症的发生密切相关,其诱导炎性因子IL-1β、TNF-α、COX-2[1]、NO和炎症介质PGE2等的表达[2],放大炎症反应、打破花生四烯酸平衡[3]以促进5-LOX产生LTB4,引起机体红肿热痛和氧化应激异常[4],而机体对炎症的调节可以通过转录因子Nrf2/HO-1实现细胞免受炎症和氧化损伤[5],该过程增加表达会使血红素产生胆绿素,同时增加Fe2+和低浓度CO来缓和促炎因子TNF-α和IL-1β表达,目前,Nrf2/HO-1的免疫调节性使其成为治疗炎症性疾病的重要药物靶点。在动物疾病治疗中,中药比化药更健康和安全,同时中药更加符合绿色经济发展,艾纳香油是植物艾纳香(Blumea balsamifera (L.)DC)提取的精油(BBO),多产于中国西南部,据《现代本草纲目》记载,其具有清热明目、解毒消肿等功效[6],目前的研究表明,BBO在预防皮肤老化[7]、抗菌[8-9]、抗炎[10]等方面有不错的效果,其可以缓解炎症发生,但对于BBO的抗炎作用机制未见深入研究,特别是涉及的炎性信号通路方面未见报道。

本研究采用LPS诱导的巨噬细胞炎性模型,考察炎性因子以及NF-κB和Nrf2/HO-1通路相关基因的表达来深入探究BBO的抗炎效果,并首次解释其可能的抗炎机制,为BBO在兽用抗炎药上的合理开发打下基础。

1 材料与方法 1.1 主要材料

BBO由贵州艾力康中草药开发有限公司惠赠(前期利用GC-MS分析了其化学组成[8],主要成分及占比为左旋龙脑25.382%、反式石竹烯24.439%、石竹烯氧化物5.843%、花椒素3.968%、芳樟醇1.655%等);RAW264.7细胞购于昆明细胞库(编号: KCB200603YJ);LPS (血清型O11:B4) 购自Sigma公司;胎牛血清购自Gibco公司(货号:21100-212);DMEM购自Hyclone公司(货号:11965092);细胞凋亡试剂盒C1056、细胞核蛋白与细胞浆蛋白抽提试剂盒P0027和PMSF100 mM本甲磺酰胺试剂(ST506)均购于碧云天试剂公司;PGE2(YM0603Mo)、LTB4(JYM0535Mo)、IL-1β(JYM0531Mo)和TNF-α(JYM0218Mo)ELISA试剂盒均购自武汉基因美生物科技公司;NO(A012-1-2)和iNOS (A014-1-1)试剂盒均购自南京建成生物工程研究所;RNApure、FastKing gDNA RT逆转录试剂盒均购于天根试剂公司;细胞总蛋白提取裂解液(10×RIPA buffer)和p-p65(93H1)、p-IKKα/β(16A6)、IKKα(3G12)、HO-1(E3F4S)、COX-2(DH5H) 抗体均购于美国CST生物科技公司;p65(YT3107)、5-LOX(YT0027)、p-IκB-α(YP0151)、IκB-α(YP2417)、Nrf2(YT3189)、β-actin(YM3138)、内参组蛋白H3(K80)、HRP标记二抗抗体均购自ImmunoWay生物技术公司;ECL发光试剂购自BIO-RAD公司。

1.2 主要仪器

Multiscan GO酶标仪(美国Thermo公司);PowerUp SYBRTM Green荧光定量PCR仪(赛默飞公司);UVP Touch System化学发光成像仪(德国耶拿Analytik jena);IX-71倒置相差荧光显微镜(日本Olympus公司)。

1.3 MTS法检测BBO的细胞毒性

RAW264.7细胞使用含10% FBS胎牛血清、1% 双抗的DMEM高糖培养基在37 ℃、5% CO2培养箱中培养。试验取对数生长的RAW264.7细胞以1×104个·mL-1密度铺于96孔板,每孔加入100 μL细胞,正常贴壁培养6 h后,设立BBO终浓度分别为0、20、40、60、80、120 μg·mL-1的各组作为不加LPS共培养剂量组(其中BBO配制:BBO 100 mg加入50 mg吐温-80 ℃涡旋,用灭菌水溶解为100 mg·mL-1母液)、设立BBO终浓度分别为0、20、40、60、80、120 μg·mL-1的各组+LPS终浓度500 ng·mL-1共培养作为加LPS共培养试验组,共12组,每组设立3个重复孔。加入药物正常培养24 h,加入20 μL MTS后继续37 ℃培养4 h,用酶标仪在490 nm波长处测量各孔吸光值,检测细胞毒性。

1.4 Hoechst 33342和PI双染检测BBO对细胞凋亡的影响

按参考文献[11]操作,将RAW264.7细胞以6×105个·mL-1密度进行12孔板铺板,正常培养6 h后加药。试验分组:空白对照组、80 μg·mL-1终浓度BBO阴性对照组、500 ng·mL-1终浓度LPS+(40、60、80 μg·mL-1)终浓度BBO治疗组、500 ng·mL-1的LPS模型组,每组重复3个孔,正常培养16 h后进行试验。当细胞生长至汇合度80%时,将每组用冰冷的PBS洗涤细胞2次,4 ℃下将细胞置于5 μg·mL-1 Hoechst 33342和2 μg·mL-1 PI中避光染色15 min之后,在10×倒置荧光显微镜下捕获荧光激发图像,同时将每组的复孔细胞用20×倒置相差显微镜观察记录细胞形态变化。

1.5 ELISA和分光光度法检测BBO对LPS诱导巨噬细胞分泌IL-1β、TNF-α、PGE2、LTB4、NO含量及iNOS活力的影响

细胞处理和分组同上,收集各孔细胞上清液。根据ELISA试剂盒的操作说明依次检测各组细胞上清液中PGE2、LTB4、TNF-α、IL-1β含量,采用分光光度计法检测各组细胞上清液中NO含量及iNOS活力,每孔3个重复。评价BBO对炎性RAW264.7细胞分泌PGE2、LTB4、TNF-α、IL-1β、NO水平及iNOS活力的影响。

1.6 RT-PCR检测BBO对细胞TNF-αIL-1β mRNA表达水平的影响

参考“1.4”中操作, 用6孔板培养细胞和分组。根据RNApure组织细胞试剂盒提取总RNA,测定浓度后,用FastKing gDNA RT逆转录试剂盒合成cDNA,RT-PCR检测目的基因mRNA水平。每组设置3个重复孔,GAPDH为内参。PCR反应体系:PCR Master Mix 12.0 μL, Primer1 1.8 μL, Primer2 1.8 μL,cDNA模板3 μL,ddH2O补至30 μL。PCR反应程序:95 ℃预变性2 min;95 ℃变性15 s,60 ℃退火延伸30 s,共40个循环;12 ℃保温40 min。各基因相对表达量用2-ΔΔCt表示,实时定量PCR的引物序列如表 1所示。

表 1 RT-PCR引物序列 Table 1 Primer sequences of RT-PCR
1.7 Western blotting检测BBO对NF-κB及Nrf2/HO-1信号通路中关键蛋白水平的影响

细胞分组和处理同上,用含有PMSF的裂解缓冲液从细胞中提取总蛋白,细胞核蛋白按Beyotime核浆提取试剂盒说明书进行提取,用BCA蛋白分析试剂盒测定蛋白质浓度。试验以每孔40~100 μg蛋白量上样电泳,经120 V电压转移到0.22 μm PVDF膜上后用5%脱脂牛奶在室温下持续摇晃封闭膜1 h。然后用5%脱脂牛奶及5% BSA分别稀释p-P65/P65抗体(1∶1 000)、p-IKKα/β/IKKα抗体(1∶1 000)、COX-2抗体(1∶1 000)、5-LOX抗体(1∶1 000)、p-IκB-α/IκB-α抗体(1∶1 000)、HO-1抗体(1∶500)、Nrf2抗体(1∶1 000)、β-actin抗体(1∶2 000)、组蛋白H3抗体(1∶1 000),并与膜在4 ℃过夜孵育16 h。TBST中洗涤6 min × 3次后将膜与二抗室温孵育1 h,TBST中洗涤6 min×3次后ECL试剂显色,在Analytik Jena UVP ChemStudio工作站记录曝光条带灰度值A。细胞质和总蛋白以β-actin为内参,核蛋白以组蛋白H3为内参,计算相对表达量,试验重复3次。

1.8 统计学分析

所有数据3次独立试验,以“平均数±标准差(x±s)”表示,采用SPSS 22.0软件(ANOVA;IBM,USA)进行单因素方差分析,P<0.05表示差异显著,P<0.01表示差异极显著。

2 结果 2.1 BBO对RAW264.7细胞毒性的确定

图 1A所示,0~120 μg·mL-1浓度范围内的BBO分别添加或不添加LPS(500 ng·mL-1)共培养时,BBO对RAW264.7细胞均无明显毒性或毒性不显著(P>0.05)。以此作为标准,后续BBO选择40、60、80 μg·mL-1作为试验浓度。

A. MTS检测细胞毒性;B.损伤细胞与总细胞的比率;C.显微镜显示细胞形态(20×);D.荧光显微镜显示细胞PI和Hochest染色(10×)。与空白组相比,*.P < 0.05,**.P < 0.01;与LPS组相比,#.P < 0.05,##.P < 0.01,下同 A. MTS detection of cytotoxicity; B. The ratio of apoptotic cells to total cells; C. The cell morphology (20×); D. The result of cell PI and Hochest staining (10×). Compared to control group, *.P < 0.05, **.P < 0.01; Compared to LPS group, #.P < 0.05, ##.P < 0.01, the same as follows 图 1 BBO对LPS刺激RAW264.7细胞增殖及细胞形态变化和凋亡的影响 Fig. 1 Effects of BBO on proliferation, morphological changes and apoptosis of RAW264.7 cells stimulated by LPS
2.2 BBO对炎性RAW264.7细胞形态及凋亡的影响

通过荧光倒置显微镜检测细胞形态以及细胞凋亡情况,如图 1C1D显示,在LPS刺激细胞16 h后,RAW264.7细胞的形态发生改变,损伤细胞(PI)与总细胞(Hochest33342)的比率与对照组相比极显著增加(P<0.01);如图 1B所示,在0~80 μg·mL-1浓度范围内BBO治疗细胞后以剂量依赖的方式显著降低了这一比率,其中BBO中高剂量可以极显著降低该比率(P<0.01),并扭转LPS导致的细胞变形。总体来说,图 1结果表明,BBO在40~80 μg·mL-1剂量对LPS刺激的RAW 264.7细胞凋亡和形变有明显的抑制作用。

2.3 BBO对炎性RAW264.7细胞分泌PGE2、LTB4、TNF-α、IL-1β、NO水平及iNOS活力的影响

PGE2、IL-1β、NO、TNF-α等是炎症发生的重要标志性产物。如图 2所示,相对于空白对照组,LPS刺激会使RAW264.7细胞极显著的增加PGE2、LTB4、IL-1β、NO、TNF-α分泌水平及iNOS活力(P<0.01);与LPS模型组相比,60~80 μg·mL-1中高剂量BBO可以极显著降低PGE2、LTB4、IL-1β、TNF-α、NO的产生量(P<0.01),并呈现浓度依赖性关系,并极显著抑制iNOS活力(P<0.01)。

图 2 BBO对RAW264.7细胞PGE2、LTB4、IL-1β、TNF-α、NO水平及iNOS活力的影响 Fig. 2 Effects of BBO on the secretion of PGE2, LTB4, IL-1β, TNF-α, NO and iNOS activity in RAW264.7 cells
2.4 BBO对炎性RAW264.7细胞IL-1β、TNF-α mRNA表达的影响

图 3所示,与空白对照组相比较,LPS诱导细胞后IL-1β、TNF-α mRNA表达极显著增加(P<0.01);与LPS模型组相比,中高剂量的BBO可以极显著抑制IL-1β、TNF-α mRNA表达(P<0.01)。

图 3 BBO对RAW264.7细胞IL-1β、TNF-α mRNA表达的影响 Fig. 3 Effect of BBO on the expression of IL-1β and TNF-α mRNA in RAW264.7 cells
2.5 BBO抑制炎性RAW264.7细胞中COX-2、5-LOX和NF-κB相关蛋白表达

图 4所示,与空白对照组相比,LPS处理细胞后细胞中p-P65、p-IKKα/β、p-IκB-α、COX-2、5-LOX蛋白相对水平极显著增加(P<0.01),IκB-α蛋白相对水平极显著下调(P<0.01);与LPS模型组相比,60~80 μg·mL-1剂量的BBO可以极显著抑制IKKα/β(4B)、IκB-α(4C)、P65(4D)蛋白的磷酸化和COX-2(4F)、5-LOX(4G)蛋白表达(P<0.01),并极显著抑制IκB-α(4E)蛋白的降解(P<0.01)。

A.COX-2、5-LOX和NF-κB相关蛋白表达;B. p-IKKα/β相对表达水平;C.p-IκB-α相对表达水平;D. IκB-α相对表达水平; E.p-P65相对表达水平; F.COX-2相对表达水平; G. 5-LOX相对表达水平 A. Expression of COX-2, 5-LOX and NF-κB related proteins; B. p-IKKα/β relative expression level; C. p-IκB-α relative expression level; D. IκB-α relative expression level; E.p-P65 relative expression level; F. COX-2 relative expression level; G.5-LOX relative expression level 图 4 BBO对RAW264.7细胞COX-2、5-LOX和NF-κB相关蛋白表达的影响 Fig. 4 Effect of BBO on the expression of COX-2, 5-LOX and NF-κB related proteins in RAW264.7 cells
2.6 BBO促进炎性RAW264.7细胞的Nrf2/HO-1相关蛋白表达

图 5所示,与空白组相比,LPS处理后细胞质中Nrf2极显著增加(P<0.01),细胞核中Nrf2少量减少,HO-1蛋白表达未见明显变化;与LPS组相比,60~80 μg·mL-1剂量BBO可以极显著减少细胞质中Nrf2的蛋白水平(P<0.01),并极显著增加细胞核中Nrf2以及总HO-1蛋白表达(P<0.01);与0 h相比,24 h内BBO以时间依赖性增加HO-1蛋白表达,其中4~8 h为显著增加(P<0.05),12~24 h为极显著增加(P<0.01)。

A.总HO-1、细胞质Nrf2、细胞核Nrf2蛋白表达; B.细胞质和细胞核Nrf2相对表达水平; C.不同时间HO-1相对表达水平; D. HO-1相对表达水平 A. Total HO-1, cytoplasm Nrf2, nuclear Nrf2 protein expression; B. Cytoplasm and nuclear Nrf2 relative expression level; C. HO-1 relative expression level at different time; D. HO-1 relative expression level 图 5 BBO对RAW264.7细胞Nrf2/HO-1相关蛋白表达的影响 Fig. 5 Effect of BBO on the expression of Nrf2/HO-1 related proteins in RAW264.7 cells
3 讨论

炎症是机体对外源物引起的感染和刺激做出的正常防御性免疫反应,多数情况下,当机体在接触病原体后,细胞会通过程序性死亡来阻止病原体在细胞内的复制增殖,同时细胞死亡会启动炎症放大反应[12],释放细胞膜破裂和内源性危险信号,使转录因子如NF-κB活化并诱导促炎因子表达,从而导致炎症发展[13]。花生四烯酸限速酶COX-2、5-LOX[14]控制白三烯LTs、前列腺素PGs、血栓素TXs等炎症介质的产生[15],它们广泛参与机体的炎症及癌症发展[16]和呼吸系统[17]等的调节,最近,网络药理学研究发现,5-LOX与炎症相关基因P65等相互作用[18],其可能会促进NF-κB的激活,而目前5-LOX/COX-2双重抑制剂在有效控制炎症方面发挥着很大的作用。当受到刺激时,免疫细胞如巨噬细胞会从规则的圆形变成不规则的分支形状[19],加速导致细胞凋亡和坏死。本研究中,不同浓度BBO可以减轻LPS诱导的细胞形态学改变,并缓解细胞凋亡的发生比例,还能有效抑制LPS诱导的COX-2、5-LOX蛋白表达,以减少炎症介质PGE2、LTB4产生。

NF-κB途径的紊乱激活是许多自身免疫性、炎症性疾病[20]、癌症[21]的发病机制之一,并调节凋亡相关基因的转录[22],抑制该途径可实现抗炎作用[23]。NF-κB信号传递以P65磷酸化入核引起炎症因子IL-1β、TNF-α、COX-2、iNOS等的转录启动,增加NO及LTB4、PGE2的分泌,加剧炎症。IκBα是P65磷酸化的抑制基因,IκBα磷酸化会释放P65入核。而IKKα负责IκBα的激活和非经典NF-κB途径激活[24],控制炎症和恶性肿瘤发生[25]。本研究发现,LPS刺激后RAW264.7细胞中NF-κB相关基因明显激活磷酸化,导致炎性因子和炎症介质过度分泌,在BBO干预下能显著抑制LPS诱导的IKKα、IκBα、P65磷酸化,并阻止IκBα的解离,进而控制NF-κB核转录及下游炎症因子的启动,减少IL-1β、TNF-α、COX-2的产生及iNOS的激活。

Nrf2是氧化应激的关键调节因子,炎症会加剧氧化应激,导致细胞凋亡和受损发生[26]。暴露于应激源时,Nrf2解离并迁移到细胞核促进抗氧化酶HO-1的表达[27],而HO-1在抗氧化和炎症刺激的细胞防御机制中参与促炎因子iNOS、NO和COX-2等的产生,增加HO-1的表达可以抑制细胞损伤和凋亡[28],并阻断NF-κB依赖的转录机制[29]。研究证明,双氢青蒿素可通过Nrf2调节LPS引起氧化应激[30],同时,最近的研究证实,乌司他丁[31]、哌泊索仑[32]、邻苯二酚[33]、Sageretia[34]等药物也可通过增加Nrf2/HO-1水平来抑制NF-κB激活[35]而减少促炎因子和炎症介质的分泌。本试验发现,BBO可上调Nrf2进入细胞核,进而以剂量和时间依赖的方式启动HO-1的表达,减少氧化应激对炎症的促进作用,实现减少细胞炎症和细胞死亡发生。但是,Nrf2/HO-1是否为关键抗炎途径还需要进一步基因沉默验证,同时BBO中成分复杂,主要包括左旋龙脑、反式石竹烯、樟脑、石竹烯氧化物、香树烯、花椒素、芳樟醇[36]、有机酸[37]等,这使我们对BBO中发挥抗炎作用的成分归属问题产生兴趣,而据文献报道,芳樟醇有潜在抗炎活性[38],但其是否就是BBO发挥抗炎效果的主要成分也有待进一步成分加减配方验证,由于体内代谢的复杂性使得BBO抗炎效果也需要进一步在动物模型试验中验证。

4 结论

本研究结果表明,作为中药艾纳香提取物的BBO,其一定剂量内可以抑制细胞炎性和凋亡发生,并抑制NF-κB中关键蛋白磷酸化,同时促进抗炎基因Nrf2/HO-1的蛋白表达,减少炎性因子及炎症介质的释放。本研究结果为BBO抗炎的细胞机制提供了全新的研究途径,也为其临床预防LPS所引起的炎症性疾病提供了理论依据,在其兽用抗炎方面也提供了基础数据。

参考文献
[1] 张建, 徐芬, 郝华. 脂加氧酶表达与肿瘤及炎症性疾病关系的研究进展[J]. 临床与实验病理学杂志, 2017, 33(6): 666–668.
ZHANG J, XU F, HAO H. Research progress on the relationship between lipoxygenase expression and tumor and inflammatory diseases[J]. Chinese Journal of Clinical and Experimental Pathology, 2017, 33(6): 666–668. (in Chinese)
[2] WU Y B, KANG J J, ZHANG L, et al. Ubiquitination regulation of inflammatory responses through NF-κB pathway[J]. Am J Transl Res, 2018, 10(3): 881–891.
[3] 宋一萌, 李明真, 马潞林. 花生四烯酸代谢产物与肿瘤发生和发展的研究进展[J]. 临床泌尿外科杂志, 2017, 32(3): 236–240.
SONG Y M, LI M Z, MA L L. Research advances in the association between arachidonic acid metabolites and tumorigenesis[J]. Journal of Clinical Urology, 2017, 32(3): 236–240. (in Chinese)
[4] 陶磊, 傅淑霞. 花生四烯酸与氧化应激的研究进展[J]. 中国病理生理杂志, 2011, 27(11): 2233–2236.
TAO L, FU S X. Progress on arachidonic acid and oxidative stress[J]. Chinese Journal of Pathophy-siology, 2011, 27(11): 2233–2236. DOI: 10.3969/j.issn.1000-4718.2011.11.039 (in Chinese)
[5] LOBODA A, DAMULEWICZ M, PYZA E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17): 3221–3247. DOI: 10.1007/s00018-016-2223-0
[6] 袁媛, 庞玉新, 王文全, 等. 中国艾纳香属植物资源与民族药学研究[J]. 热带农业科学, 2011, 31(4): 22–27.
YUAN Y, PANG Y X, WANG W Q, et al. Medical ethnobotany of the genus of Blumea. in China[J]. Chinese Journal of Tropical Agriculture, 2011, 31(4): 22–27. DOI: 10.3969/j.issn.1009-2196.2011.04.006 (in Chinese)
[7] ZHANG B, TANG M H, ZHANG W H, et al. Chemical composition of Blumea balsamifera and Magnolia sieboldii essential oils and prevention of UV-B radiation-induced skin photoaging[J/OL]. Natural Product Research, 2020, doi: 10.1080/14786419.2020.1809401.
[8] SAKEE U, MANEERAT S, CUSHNIE T P T, et al. Antimicrobial activity of Blumea balsamifera (Lin.) DC. extracts and essential oil[J]. Nat Prod Res, 2011, 25(19): 1849–1856. DOI: 10.1080/14786419.2010.485573
[9] HE C L, YANG P Y, WANG L, et al. Antibacterial effect of Blumea balsamifera DC. essential oil against Haemophilus parasuis[J]. Arch Microbiol, 2020, 202(9): 2499–2508. DOI: 10.1007/s00203-020-01946-4
[10] 谢雪艳, 李天珍, 王万林, 等. 不同产源艾纳香油化学成分及其抗炎活性研究[J]. 中药新药与临床药理, 2019, 30(9): 1069–1076.
XIE X Y, LI T Z, WANG W L, et al. Analysis of chemical constituents and anti-inflammatory activity of Blumea balsamifera oil from different sources[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2019, 30(9): 1069–1076. (in Chinese)
[11] HE C L, ZHAO Y, JIANG X L, et al. Protective effect of Ketone musk on LPS/ATP-induced pyroptosis in J774A.1 cells through suppressing NLRP3/GSDMD pathway[J]. Int Immunopharmacol, 2019, 71: 328–335. DOI: 10.1016/j.intimp.2019.03.054
[12] LAMKANFI M, DIXIT V M. Manipulation of host cell death pathways during microbial infections[J]. Cell Host Microbe, 2010, 8(1): 44–54. DOI: 10.1016/j.chom.2010.06.007
[13] SALEH D, DEGTEREV A. Emerging roles for RIPK1 and RIPK3 in pathogen-induced cell death and host immunity[J]. Curr Top Microbiol Immunol, 2017, 403: 37–75.
[14] POECKEL D, BERRY K A Z, MURPHY R C, et al. Dual 12/15- and 5-lipoxygenase deficiency in macro-phages alters arachidonic acid metabolism and attenuates peritonitis and atherosclerosis in ApoE knock-out mice[J]. J Biol Chem, 2009, 284(31): 21077–21089. DOI: 10.1074/jbc.M109.000901
[15] JOSHI V, VENKATESHA S H, RAMAKRISHNAN C, et al. Celastrol modulates inflammation through inhibition of the catalytic activity of mediators of arachidonic acid pathway: Secretory phospholipase A2 group ⅡA, 5-lipoxygenase and cyclooxygenase-2[J]. Pharmacol Res, 2016, 113: 265–275. DOI: 10.1016/j.phrs.2016.08.035
[16] PURATCHIKODY A, UMAMAHESWARI A, IRFAN N, et al. A novel class of tyrosine derivatives as dual 5-LOX and COX-2/mPGES1 inhibitors with PGE2 mediated anticancer properties[J]. New J Chem, 2019, 43(2): 834–846. DOI: 10.1039/C8NJ04385J
[17] BRUNO F, SPAZIANO G, LIPARULO A, et al. Recent advances in the search for novel 5-lipo-xygenase inhibitors for the treatment of asthma[J]. Eur J Med Chem, 2018, 153: 65–72. DOI: 10.1016/j.ejmech.2017.10.020
[18] WU B L, BAI C Y, DU Z P, et al. The arachidonic acid metabolism protein-protein interaction network and its expression pattern in esophageal diseases[J]. Am J Transl Res, 2018, 10(3): 907–924.
[19] KWON D H, CHA H J, CHOI E O, et al. Schisandrin A suppresses lipopolysaccharide-induced inflammation and oxidative stress in RAW 264.7 macrophages by suppressing the NF-κB, MAPKs and PI3K/Akt pathways and activating Nrf2/HO-1 signaling[J]. Int J Mol Med, 2018, 41(1): 264–274.
[20] STOHL W, JACOB N, GUO S H, et al. Constitutive overexpression of BAFF in autoimmune-resistant mice drives only some aspects of systemic lupus erythe-matosus-like autoimmunity[J]. Arthritis Rheum, 2010, 62(8): 2432–2442. DOI: 10.1002/art.27502
[21] JOSHI M, REDDY N D, KUMAR N, et al. Cinnamyl sulfonamide hydroxamate derivatives inhibited LPS-stimulated NF-kB expression in RAW 264.7 cells in vitro and mitigated experimental colitis in wistar rats in vivo[J]. Curr Pharm Des, 2020, 26(38): 4934–4943. DOI: 10.2174/1381612826666200625101442
[22] CILDIR G, LOW K C, TERGAONKAR V. Non-canonical NF-κB signaling in health and disease[J]. Trends Mol Med, 2016, 22(5): 414–429. DOI: 10.1016/j.molmed.2016.03.002
[23] 任改艳, 张步有, 黄剑林. 槲皮素对LPS诱导小鼠RAW264.7细胞炎症的保护作用[J]. 中成药, 2019, 41(8): 1795–1799.
REN G Y, ZHANG B Y, HUANG J L. Protective effects of quercetin on the inflammation of mice RAW264.7 cells induced by LPS[J]. Chinese Traditional Patent Medicine, 2019, 41(8): 1795–1799. DOI: 10.3969/j.issn.1001-1528.2019.08.009 (in Chinese)
[24] LIU F, XIA Y F, PARKER A S, et al. IKK biology[J]. Immunol Rev, 2012, 246(1): 239–253. DOI: 10.1111/j.1600-065X.2012.01107.x
[25] LIU B G, XIA X J, ZHU F, et al. IKKα is required to maintain skin homeostasis and prevent skin cancer[J]. Cancer Cell, 2008, 14(3): 212–225. DOI: 10.1016/j.ccr.2008.07.017
[26] 王甜甜, 陈淳媛, 杨雷, 等. Nrf2/HO-1信号轴在氧化应激性疾病中的机制[J]. 中南大学学报: 医学版, 2019, 44(1): 74–80.
WANG T T, CHEN C Y, YANG L, et al. Role of Nrf2/HO-1 signal axis in the mechanisms for oxidative stress-relevant diseases[J]. Journal of Central South University: Medical Science, 2019, 44(1): 74–80. (in Chinese)
[27] KANG K A, HYUN J W. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance[J]. Toxicol Res, 2017, 33(1): 1–5. DOI: 10.5487/TR.2017.33.1.001
[28] LOBODA A, DAMULEWICZ M, PYZA E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17): 3221–3247. DOI: 10.1007/s00018-016-2223-0
[29] KLOSKA D, KOPACZ A, PIECHOTA-POLANCZYK A, et al. Nrf2 in aging-Focus on the cardiovascular system[J]. Vascul Pharmacol, 2019, 112: 42–53. DOI: 10.1016/j.vph.2018.08.009
[30] 赵永伟, 牛玉, 何进田, 等. 双氢青蒿素对脂多糖诱导的断奶仔猪肝氧化应激的影响[J]. 畜牧兽医学报, 2019, 50(10): 2139–2146.
ZHAO Y W, NIU Y, HE J T, et al. Effects of dihydroartemisinin on oxidative stress in liver of weaned piglets induced by lipopolysaccharide[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(10): 2139–2146. DOI: 10.11843/j.issn.0366-6964.2019.10.021 (in Chinese)
[31] LI S T, DAI Q, ZHANG S X, et al. Ulinastatin attenuates LPS-induced inflammation in mouse macro-phage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway[J]. Acta Pharmacol Sin, 2018, 39(8): 1294–1304. DOI: 10.1038/aps.2017.143
[32] LIN Y H, LIN Y J, CHANG T H, et al. Pipoxolan suppresses the inflammatory factors of NF-κB, AP-1, and STATs, but activates the antioxidative factor Nrf2 in LPS-stimulated RAW 264.7 murine macro-phage cells[J]. Environ Toxicol, 2020, 35(12): 1352–1363. DOI: 10.1002/tox.23000
[33] FUNAKOSHI-TAGO M, NONAKA Y, TAGO K, et al. Pyrocatechol, a component of coffee, suppresses LPS-induced inflammatory responses by inhibiting NF-κB and activating Nrf2[J]. Sci Rep, 2020, 10(1): 2584. DOI: 10.1038/s41598-020-59380-x
[34] KIM H N, PARK G H, PARK S B, et al. Sageretia thea inhibits inflammation through suppression of NF-κB and MAPK and activation of Nrf2/HO-1 signaling pathways in RAW264.7 cells[J]. Am J Chin Med, 2019, 47(2): 385–403. DOI: 10.1142/S0192415X19500198
[35] NAIR S, DOH S T, CHAN J Y, et al. Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis[J]. Br J Cancer, 2008, 99(12): 2070–2082. DOI: 10.1038/sj.bjc.6604703
[36] BINH H T, TRI N M, QUAN N H, et al. Antibacterial activities and chemical composition of essential oil of Blumea balsamifera (L.) DC., distributed in Lamdong province, Vietnam[J]. Dalat Univ J Sci, 2020, 10(2): 3–13.
[37] 陈前袆, 曹春月, 陈伟, 等. 艾纳香油中有效成分的定性检测及含量测定[J]. 应用化工, 2020, 49(3): 788–791.
CHEN Q H, CAO C Y, CHEN W, et al. Qualitative test and content determination of active components in Blumea balsamifera oil[J]. Applied Chemical Industry, 2020, 49(3): 788–791. DOI: 10.3969/j.issn.1671-3206.2020.03.056 (in Chinese)
[38] LI Y, LV O, ZHOU F G, et al. Linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2[J]. Neurochem Res, 2015, 40(7): 1520–1525. DOI: 10.1007/s11064-015-1629-7