畜牧兽医学报  2021, Vol. 52 Issue (4): 967-975. DOI: 10.11843/j.issn.0366-6964.2021.04.012    PDF    
microRNA-146a通过靶向MAPK4和Myosin Va基因调控羊驼黑色素细胞增殖、迁移
刘学贤, 杜斌, 郭湘, 薛骥轩, 于雷涛, 范瑞文     
山西农业大学动物医学学院, 太谷 030801
摘要:旨在研究microRNA-146a(miR-146a)对羊驼黑色素细胞增殖和迁移的调控及其分子机制。本研究使用双荧光素酶试验验证MAPK4和Myosin Va是miR-146a的靶基因;利用荧光定量PCR和蛋白质免疫印迹试验检测在羊驼黑色素细胞中过表达miR-146a对相关下游基因表达的影响;利用CCK8和Transwell检测miR-146a过表达对羊驼黑色素细胞增殖和迁移的影响。结果显示,与对照组相比,将miR-146a和MAPK4或Myosin Va共转染293T细胞,双荧光素酶活性分别极显著下降36%和30%(P < 0.001);MAPK4和Myosin Va基因转录水平分别极显著下调67%和47%(P < 0.001,P < 0.01);蛋白质水平的表达量分别显著或极显著下调38%和69%(P < 0.05,P < 0.01);增殖和迁移相关的基因CREBMITFMLPHRab27a在转录水平和蛋白水平的表达均极显著下调(P < 0.01,P < 0.001);CCK8和Transwell结果显示,过表达miR-146a使羊驼黑色素细胞的增殖和迁移能力极显著下调(P < 0.01)。综上所述,miR-146a通过靶向调控MAPK4和Myosin Va,使增殖和迁移相关的基因MEK1、CREB、MITF、MLPHRab27a的表达下调,从而对羊驼黑色素细胞的增殖和迁移起抑制作用。
关键词miR-146a    MAPK4    Myosin Va    增殖    迁移    
microRNA-146a Regulates the Proliferation and Migration of Alpaca Melanocytes by Targeting MAPK4 and Myosin Va Genes
LIU Xuexian, DU Bin, GUO Xiang, XUE Jixuan, YU Leitao, FAN Ruiwen     
College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
Abstract: This study aimed to explore the regulatory role of miR-146a on the proliferation and migration of alpaca melanocytes and its molecular mechanism. The dual luciferase assay was used to verify that MAPK4 and Myosin Va were the target genes of miR-146a by co-transfection with MAPK4 or Myosin Va in 293T cells; Quantitative real-time PCR and Western blotting were used to detect the expression of downstream genes in alpaca melanocytes after overexpressing miR-146a; CCK8 and Transwell were used to detect the proliferation and migration of alpaca melanocytes after overexpressing miR-146a. The results showed that, compared to the negative control, dual luciferase activity extremely significantly decreased by 36% or 30% in 293T cells co-transfected with miR-146a and MAPK4 or Myosin Va, respectively (P < 0.001); In alpaca melanocytes, with the overexpression of miR-146a, the mRNA expression of MAPK4 and Myosin Va were extremely significantly down-regulated by 67% and 47%(P < 0.001, P < 0.01), and the protein expression of MAPK4 and Myosin Va were significantly down-regulated by 38% and 69%(P < 0.05, P < 0.01), respectively; The expression of genes related to proliferation and migration(CREB, MITF, MLPH, Rab27a) were extremely significantly down-regulated at the transcriptional and translational levels(P < 0.01, P < 0.001); CCK8 and Transwell results showed that overexpression of miR-146a extremely significantly down-regulated the proliferation and migration ability of alpaca melanocytes (P < 0.01). In summary, miR-146a targeting MAPK4 and Myosin Va inhibited the proliferation and migration of alpaca melanocytes through downregulating the expression of MEK1, CREB, MITF, MLPH, Rab27a.
Key words: miR-146a    MAPK4    Myosin Va    proliferation    migration    

microRNA (miRNAs)是一种非编码小RNA分子,对动植物的发育生理等相关基因的表达有调节作用[1-2]。miRNAs在哺乳动物如小鼠、山羊和绵羊以及羊驼皮肤中具有多种调控作用,可以通过调节色素颗粒的合成参与毛发颜色的调控[3-6]。先前的研究表明,miR-146a靶向酪氨酸相关蛋白1(tyrosinase related protein 1,TYRP1)抑制小鼠黑素细胞黑色素的生成[7]。有研究表明,miR-146a对小鼠自身免疫、骨髓增生和癌症具有显著的抑制作用[8]。此外,miR-146a对胰腺癌细胞的生长和转移有不同的影响[9]

羊驼是重要的毛用型经济动物,毛纤维具有22种天然色,是研究毛色形成分子机制的理想模型。在黑色素细胞中,miRNAs的功能是多样性的,虽然已发现miR-146a可以抑制小鼠黑色素的生成,但是否对其他生物学功能起调控作用还未见报道。本研究通过生物信息学软件预测丝裂原活化蛋白激酶4(mitogen-activated protein kinase 4,MAPK4)和肌浆球蛋白Va (Myosin Va)也是miR-146a的靶基因,其中,MAPK4是丝裂原激活蛋白激酶激酶(mitogen-activated protein kinase,MAPK)家族的典型成员(也称ERK4,p63 MAPK),参与了很多疾病包括肿瘤转移等的发生过程[10-11]。MAPK信号通路涉及很多生物进程,也是影响细胞增殖的通路之一,同时也参与细胞的增殖、分化等生理过程[12]。当MAPK被激活后可相应地激活一些下游因子,如cAMP反应元件结合蛋白(cAMP-responsive-element binding protein,CREB)和丝裂原活化蛋白激酶1(mitogen activated protein kinase kinase 1,MEK1),活化的CREB可调控小眼畸形转录因子MITF(microphthalmia-associated transcription factor)的转录[13],当MAPK信号通路被激活后,MEK1可被磷酸化,磷酸化的MEK1可调控细胞的增殖和分化[14-15]。Myosin Va属于V类肌凝蛋白,在细胞内囊泡沿肌动蛋白丝运输到膜对接点的过程中起重要作用[16]。在黑色素细胞的黑素体运输和神经内分泌细胞的颗粒分泌中,Myosin Va已被证明是至关重要的[17-18],是黑素小体转运机制的重要组成部分[19],且被认为是与突出结合蛋白黑色素亲和素(melanophilin,MLPH)和ras相关蛋白结合27a (Ras-related protein binding 27a,Rab27a)形成复合体的关键蛋白,在捕获和短距离传递黑素体到黑色素细胞外周的过程中起重要作用[20-23]。因此,为了探求miR-146a在羊驼黑色素细胞中通过与其靶基因MAPK4和Myosin Va靶向结合后可能调控其下游基因并影响羊驼黑色素细胞的增殖和迁移的功能。本试验通过在羊驼黑色素细胞中脂质体转染miR-146a,从而揭示miR-146a对羊驼黑色素细胞增殖和迁移的影响。

1 材料与方法 1.1 试验材料

羊驼黑色素细胞和293T细胞由山西农业大学羊驼生物工程实验室提供。miR-146a mimic、inhibitor和NC (大小为20 bp的置位序列,与其他miRNA没有同源性)由广州锐博生物科技有限公司合成。Nhe I、Xba I、Xho I(TaKaRa公司),pmirGL0-luciferase miRNA Target Expression Vector(Promega,美国),Dual Luciferase Reporter Assay System(Promega,美国),胶回收试剂盒(康为世纪),兔抗MAPK4、Myosin Va、MEK1、p-MEK1、CREB、MITF、MLPH、Rab27a多克隆抗体(北京博奥森),抗兔、抗鼠二抗(武汉博士德), Trizol(Invitorgen,美国),氨苄霉素、转染试剂(Invitorgen,美国),SYBR Prime Script TMRT PCR KIT(TaKaRa公司),蛋白marker(Thermo,美国),Cell Counting Kit-8(上海生工生物工程有限公司)。

1.2 试验方法

1.2.1 pmirGL0-MAPK4-3′ UTR和pmirGL0-Myosin Va-3′ UTR双荧光报告载体的构建   从羊驼黑色素细胞中提取总RNA,以反转录cDNA为模板,进行PCR扩增。PCR扩增纯化产物和pmirGL0载体分别用Nhe I、Xba I和Nhe I、Xho I于37 ℃双酶切3 h,产物4 ℃连接后转化大肠杆菌DH5α,挑取菌斑,摇菌后提取质粒测序。

1.2.2 293T和羊驼黑色素细胞的转染   将293T细胞和羊驼黑色素细胞从液氮中取出置于37 ℃水浴复苏,完全融化后放在低速离心机4 ℃离心10 min, 接种于6孔板(每孔1×106个细胞), 在37 ℃,5% CO2细胞培养箱中培养。细胞密度达到75%左右时,用miR-146a mimic、inhibitor和NC转染细胞,每组设置3个重复。

1.2.3 双荧光素酶活性试验检测miR-146a与MAPK4、Myosin Va的靶向关系   终止转染72 h的羊驼黑色素细胞用PBS洗涤3次,按照先前检测双荧光素酶的步骤[6]检测荧光素酶活性:每孔加100 μL的PLB置于混匀仪上15 min,在96孔加样孔中每孔加入50 μL上述所得溶液,加入100 μL LAR-Ⅱ试剂读取萤火虫荧光素酶反应强度值,然后再加入100 μL Stop&Glo试剂,最后读取海肾萤火虫荧光素酶反应强度值。结果用萤火虫萤光素酶值/海肾萤光素酶值来表示。

1.2.4 qPCR检测相关基因的表达   转染的细胞收样后,Trizol法提取细胞总RNA。测定浓度后使用TaKaRa反转录试剂盒进行反转录,反应条件:37 ℃ 15 min,85 ℃ 5 s。通过Premier Premier 5.0软件设计相关基因的荧光定量引物,送北京华大基因公司合成。引物序列见表 1

表 1 引物序列及作用 Table 1 The sequences and application of primers

按照AceQqPCR SYBR Green Master Mix试剂盒说明书进行荧光定量PCR, 通过2-△△CT方法计算目的基因的相对表达量变化。

1.2.5 Western blotting检测相关基因的蛋白表达   获取转染细胞的总蛋白,计算上样浓度,进行SDS-PAGE电泳。37 ℃孵育1 h(所有一抗稀释比例均为1∶3 000)。回收一抗,室温孵育二抗(二抗稀释比例为1∶30 000)1 h。ECL发光试剂盒显色后获得图像。

1.2.6 CCK8检测羊驼黑色素细胞增殖能力   以每孔2 000个细胞接种在96孔细胞培养板上。待细胞贴壁后,每孔加入10 μL Cell Counting Kit-8(CCK8)试剂后,分别于0、12、24、36、48、60、72 h在酶标仪450 nm处检测细胞增殖情况。

1.2.7 Transwell检测羊驼黑色素细胞侵袭能力   每孔1×105个细胞种植于Transwell 24孔板小室中,设立3个重复组,培养24 h。取出小室,清除小室内侧的细胞后甲醇固定30 min,结晶紫染色30 min,自来水洗涤。显微镜观察迁移细胞数,随机挑选选5个视野计数,计算细胞平均数。

1.3 统计学方法

实时荧光定量PCR、Western blotting等结果以“平均值±标准差(Mean±SD)”表示,用GraphPad Prism 8.0软件分析数据,采用One-Way ANOVA进行单因素方差分析,并采取Duncan’s法进行多重比较。

2 结果 2.1 miR-146a与MAPK4、Myosin Va靶关系的验证

利用miRBase、Targetscan软件进行生物信息学分析,发现MAPK4和Myosin Va mRNA存在miR-146a的潜在靶点(图 1A)。与野生型3′UTR相比,MAPK4-wt+miR-146a组双荧光素酶活性极显著降低36%(P < 0.001),而Myosin Va-wt+miR-146a组极显著降低30%(P < 0.001),突变组的双荧光素酶活性无明显变化(图 1BC)。

A. miR-146a与MAPK4、Myosin Va的3′UTR结合位点(方框标注);B、C. 与NC相比,与miR-146a +MAPK4 3′UTR (wt)和miR-146a +Myosin Va-3′UTR (wt)或MAPK4-3′UTR (mut)、Myosin Va-3′UTR (mut)共转染36 h的293T细胞的荧光素酶活性。*.P < 0.05; **.P < 0.01;***. P < 0.001,下同 A. The 3′UTR binding sites of miR-146a with MAPK4 and Myosin Va (marked with box); B, C. The luciferase activity in 293T cells co-transfected with miR-146a +MAPK4 3′UTR (wt) and miR-146a +Myosin Va-3′UTR (wt) or MAPK4-3′UTR (mut), Myosin Va-3′UTR (mut) for 36 h, compared to NC. *.P < 0.05; **.P < 0.01;***. P < 0.001, the same as below 图 1 MAPK4、Myosin Va与miR-146a靶标关系的验证 Fig. 1 The verification of target relationship of miR-146a with MAPK4 and Myosin Va
2.2 过表达miR-146a对MAPK4、Myosin Va mRNA和蛋白表达水平的影响

实时荧光定量PCR和蛋白免疫印迹法检测过表达miR-146a的羊驼黑色素细胞中MAPK4、Myosin Va基因mRNA和蛋白的表达水平。结果显示,转染miR-146a mimic后,羊驼黑色素细胞中MAPK4、Myosin Va基因在转录水平上的表达量比NC组分别极显著或显著下调67% 和47%(P < 0.001,P < 0.01,图 2A),蛋白质水平的表达量分别显著或极显著下调38%和69%(P < 0.05;P < 0.01,图 2B2C)。

A. inhibitor、NC和miR-146a质粒转染羊驼黑色素细胞后MAPK4和Myosin Va mRNA表达水平;B. 蛋白印迹检测MAPK4、Myosin Va的蛋白表达水平;C.灰度值分析inhibitor组、NC组和miR-146a组中MAPK4和Myosin Va相对蛋白水平 A. The mRNA expression levels of MAPK4 and Myosin Va in melanocytes transfected with inhibitor, NC and miR-146a plasmids; B. Western blotting detection of protein expression levels of MAPK4 and Myosin Va; C. The relative protein levels of MAPK4 and Myosin Va in inhibitor, NC and miR-146a groups by gray analysis 图 2 过表达miR-146a对MAPK4和 Myosin Va mRNA和蛋白表达的影响 Fig. 2 The effect of overexpressing miR-146a on the mRNA and protein of MAPK4 and Myosin Va
2.3 过表达miR-146a对相关基因mRNA和蛋白质表达水平的影响

实时荧光定量PCR和免疫印迹蛋白质检测结果显示,过表达miR-146a后,CREBMITFMLPHRab27a较NC组mRNA和蛋白质水平表达量均显著降低(图 3A-C),其中CREB蛋白质水平降低最为显著,达70%(P < 0.001),抑制组则相反。在羊驼黑色素细胞中过表达miR-146a使CREBMITFMLPHRab27a基因在mRNA和蛋白质水平表达量均极显著降低(P < 0.01)。

A. 在inhibitor、NC和miR-146a质粒转染的黑素细胞中MEK1、CREBMITFMLPHRab27a的mRNA表达水平;B. 蛋白印迹检测p-MEK1、MEK1、CREB、MITF、MLPH和Rab27a的蛋白表达水平;C. 灰度分析inhibitor组、NC组和miR-146a组中p-MEK1、MEK1、CREB、MITF、MLPH和Rab27a的相对蛋白水平。mRNA和蛋白表达分别以18S rRNA和β-actin为内参 A. The mRNA expression levels of MEK1, CREB, MITF, MLPH and Rab27a in melanocytes transfected by inhibitor, NC and miR-146a plasmids; B. Western blotting detection of protein expression levels of p-MEK1, MEK1, CREB, MITF, MLPH and Rab27a; C. The relative protein levels of p-MEK1, MEK1, CREB, MITF, MLPH and Rab27a in inhibitor, NC and miR-146a groups by gray analysis. The abundance of mRNAs was normalized to 18S rRNA, the level of protein expression was normalized to β-actin 图 3 过表达miR-146a对MEK1、CREBMITFMLPHRab27a mRNA和蛋白表达的影响 Fig. 3 The effect of overexpressing miR-146a on mRNA and protein levels of MEK1, CREB, MITF, MLPH and Rab27a in melanocytes
2.4 miR-146a对羊驼黑色素细胞增殖能力的影响

miR-146a mimic转染黑色素细胞后,CCK8试验用分光光度计(450 nm)分别在0、12、24、36、48、60、72 h检测细胞增殖,结果显示,miR-146a转染组的OD值在72 h前明显低于NC组和Inhibitor组(图 4)。

图 4 miR-146a对羊驼黑色素细胞增殖的影响 Fig. 4 Effect of miR-146a on the proliferation of alpaca melanocytes
2.5 miR-146a对羊驼黑色素细胞迁移能力的影响

通过Transwell小室培养法检测羊驼黑色素细胞迁移能力,结果显示,miR-146a mimic转染黑色素细胞后,穿膜细胞数以及迁移能力极显著低于对照组(P < 0.01); 而miR-146a Inhibitor转染黑色素细胞后,穿膜细胞数以及迁移能力极显著高于对照组(P < 0.01,图 5)。

A. 不同转染组的穿膜细胞;B. 不同转染组迁移细胞的数量 A. The cells transmitted through membrane of transwell; B. The number of migrating cells 图 5 miR-146a对羊驼黑色素细胞迁移的影响 Fig. 5 Effect of miR-146a on migration of alpaca melanocytes
3 讨论

miRNA是重要的细胞调节因子,在细胞分化、增殖和重编程过程中都发挥至关重要的作用[24]。在黑色素细胞中,越来越多的miRNAs参与多个分子通路以调控黑色素细胞的生物学过程[25-26]。miR-146a通过抑制酪氨酸酶家族基因的表达而对小鼠黑色素细胞中黑色素的生成起调控作用[7]。在进一步挖掘miR-146a的功能时发现,MAPK4和Myosin Va是其靶基因,且有关报道显示,miR-146a对癌细胞的增殖有影响[8-9],因此,miR-146a可能参与羊驼黑色素细胞的增殖等生物学过程。

本研究通过双荧光素报告基因发现,miR-146a以序列特异性的方式与MAPK4和Myosin Va的3′UTR结合,在羊驼黑色素细胞中过表达miR-146a使MAPK4、Myosin Va基因在mRNA和蛋白质水平的表达量下调,结果验证了羊驼MAPK4和Myosin Va是miR-146a的靶基因。

MAPK4是MAPK家族的一种丝裂原激活的蛋白激酶,MAPK信号通路参与多种生化级联反应[12],将信号由胞内传递到核内开始启动级联反应,从而激活相关转录因子,进一步调控下游MEK1、CREBMITF等级联反应通路上重要基因的表达[27]。本研究发现,miR-146a过表达使p-MEK1下调,而MEK1未发生变化,由此可见,MAPK4通过催化MEK1磷酸化而发生了级联反应,通过MITF调节参与黑色素合成基因的表达[28],而MITF在黑色素细胞和黑素瘤细胞中的发育、维持、存活、色素沉积、细胞浸润、细胞周期以及细胞增殖中起着不可或缺的作用[29]。MITF是很多级联反应通路重要的枢纽[30-31],其转录、翻译以及翻译后修饰等不同水平的表达和功能调控与MEK路径密切相关,抑制MEK可以降低MITF的转录[32]。MEK路径激活后可调节人黑色素细胞CREB[33],本研究也发现,miR-146a过表达可下调CREB的表达,CREB是MEK路径下游的主要调控因子,可以诱导MITF的表达[34]。由此可见,miR-146a靶向调控MAPK4后通过磷酸化MEK1而调节CREB,从而抑制MITF的表达。

在黑色素细胞中产生的黑色素颗粒需运输到树突尖部,Myosin Va、Rab27a和MLPH三者形成的三元复合物在此过程起协同作用[35]。Rab27a是膜转运的重要调控因子[36],Myosin Va需要同时与黑素体上含有Rab27a和MLPH复合物的多个组分相互作用[37]。然而,还有研究表明,Myosin Va促进黑色素瘤黏附、锚定、迁移和体外侵袭,其上调可能是促进肿瘤恶性发展的机制[38]。结合本试验对迁移试验的结果分析,在羊驼黑色素细胞中miR-146a靶向抑制Myosin Va的同时,其复合物的其他两个成员Rab27a和MLPH的表达也受到抑制,说明miR-146a在调控黑色素细胞迁移时,Myosin Va可能仍以复合物的形式发挥其功能。综上所述,miR-146a对羊驼黑色素细胞增殖和迁移的调控可得出,miR-146a抑制其靶基因MAPK4和Myosin Va的表达,从而影响MAPK级联路径中重要因子和Myosin Va/Rab27a/MLPH复合物,进而调控羊驼黑色素细胞的增殖和迁移能力。

4 结论

本研究结果表明,miR-146a通过靶向调控 MAPK4和Myosin Va,使增殖和迁移相关基因MEK1、CREBMITFMLPHRab27a的表达下调,从而对羊驼黑色素细胞的增殖和迁移起抑制作用。

参考文献
[1] BARTEL D P. Metazoan MicroRNAs[J]. Cell, 2018, 173(1): 20–51. DOI: 10.1016/j.cell.2018.03.006
[2] 包黎娟, 刘育含, 马毅, 等. miR-92a对奶山羊乳腺上皮细胞增殖及凋亡的调控分析[J]. 畜牧兽医学报, 2020, 51(1): 137–149.
BAO L J, LIU Y H, MA Y, et al. The Regulatory of MiR-92a on proliferation and apoptosis of dairy goat mammary epithelial cells[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1): 137–149. (in Chinese)
[3] 张利环, 马悦悦, 刘文艳, 等. microRNA-96-5p靶向调控羊驼黑色素细胞中MITF基因的表达[J]. 畜牧兽医学报, 2020, 51(6): 1229–1237.
ZHANG L H, MA Y Y, LIU W Y, et al. microRNA-96-5p targets MITF gene in alpaca melanocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1229–1237. (in Chinese)
[4] WANG J, QU J W, LI Y J, et al. miR-149-5p regulates goat hair follicle stem cell proliferation and apoptosis by targeting the CMTM3/AR axis during superior-quality brush hair formation[J]. Front Genet, 2020, 11: 529757. DOI: 10.3389/fgene.2020.529757
[5] YANG S S, FAN R W, SHI Z Q, et al. Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos)[J]. J Anim Sci, 2015, 93(4): 1622–1631. DOI: 10.2527/jas.2014-8404
[6] CORDERO R J B, CASADEVALL A. Melanin[J]. Curr Biol, 2020, 30(4): R142–R143. DOI: 10.1016/j.cub.2019.12.042
[7] 杜斌, 许冬梅, 张亚玲, 等. miR-146a抑制酪氨酸酶基因家族在小鼠黑色素细胞中表达[J]. 中国生物化学与分子生物学报, 2017, 33(1): 81–87.
DU B, XU D M, ZHANG Y L, et al. miR-146a inhibits the expression of tyrosinase gene family in mouse melanocytes cells[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(1): 81–87. (in Chinese)
[8] ZHANG Y P, DING S, YANG J, et al. Identification of miR-146a is associated with the aggressiveness and suppresses proliferation via targeting CDKN2A in breast cancer[J]. Pathol Oncol Res, 2020, 26(1): 245–251. DOI: 10.1007/s12253-018-0430-8
[9] LI Y W, VANDENBOOM Ⅱ T G, WANG Z W, et al. miR-146a suppresses invasion of pancreatic cancer cells[J]. Cancer Res, 2010, 70(4): 1486–1495. DOI: 10.1158/0008-5472.CAN-09-2792
[10] BERRIRI S, GARCIA A V, FREIDITFREY N, et al. Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling[J]. Plant Cell, 2012, 24(10): 4281–4293. DOI: 10.1105/tpc.112.101253
[11] El-AARAG S A, MAHMOUD A, HASHEM M H, et al. In silico identification of potential key regulatory factors in smoking-induced lung cancer[J]. BMC Med Genomics, 2017, 10(1): 40. DOI: 10.1186/s12920-017-0284-z
[12] REZATABAR S, KARIMIAN A, RAMESHKNIA V, et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression[J]. J Cell Physiol, 2019, 234(9): 14951–14965. DOI: 10.1002/jcp.28334
[13] CHEN T Z, ZHAO B L, LIU Y, et al. MITF-M regulates melanogenesis in mouse melanocytes[J]. J Dermatol Sci, 2018, 90(3): 253–262. DOI: 10.1016/j.jdermsci.2018.02.008
[14] ROSKOSKI JR R. ERK1/2 MAP kinases: Structure, function, and regulation[J]. Pharmacol Res, 2012, 66(2): 105–143. DOI: 10.1016/j.phrs.2012.04.005
[15] GUSTEMS M, WOELLMER A, ROTHBAUER U, et al. c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs[J]. Nucleic Acids Res, 2014, 42(5): 3059–3072. DOI: 10.1093/nar/gkt1323
[16] LANGFORD G M. Myosin-V, a versatile motor for short-range vesicle transport[J]. Traffic, 2002, 3(12): 859–865. DOI: 10.1034/j.1600-0854.2002.31202.x
[17] WU X F, BOWERS B, RAO K, et al. Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V func-tion In vivo[J]. Cell Biol, 1998, 143(7): 1899–1918. DOI: 10.1083/jcb.143.7.1899
[18] RUDOLF R, KÖGEL T, KUZNETSOV S A, et al. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells[J]. J Cell Sci, 2003, 116(7): 1339–1348. DOI: 10.1242/jcs.00317
[19] FUKUDA M, KURODA T S, MIKOSHIBA K. Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: implications of a tripartite protein com-plex for melanosome transport[J]. J Biol Chem, 2002, 277(14): 12432–12436. DOI: 10.1074/jbc.C200005200
[20] MATESIC L E, YIP R, REUSS A E, et al. Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice[J]. Proc Natl Acad Sci U S A, 2001, 98(18): 10238–10243. DOI: 10.1073/pnas.181336698
[21] KURODA T S, ARIGA H, FUKUDA M. The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes[J]. Mol Cell Biol, 2003, 23(15): 5245–5255. DOI: 10.1128/MCB.23.15.5245-5255.2003
[22] NAGASHIMA K, TORⅡ S, YI Z H, et al. Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions[J]. FEBS Lett, 2002, 517(1-3): 233–238. DOI: 10.1016/S0014-5793(02)02634-0
[23] DA SILVA BIZARIO J C, DA CUNHA NASCIMENTO A A, CASALETTI L, et al. Expression of constructs of the neuronal isoform of myosin-Va interferes with the distribution of melano-somes and other vesicles in melanoma cells[J]. Cell Motil Cytoskeleton, 2002, 51(2): 57–75. DOI: 10.1002/cm.10010
[24] CORDES K R, SHEEHY N T, WHITE M P, et al. mir-145 and mir-143 regulate smooth muscle cell fate and plasticity[J]. Nature, 2009, 460(7256): 705–710. DOI: 10.1038/nature08195
[25] KUNZ M. MicroRNAs in melanoma biology[M]//SCHMITZ U, WOLKENHAUER O, VERA J. MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology. Dordrecht: Springer, 2013, 774: 103-120.
[26] MIONE M, BOSSERHOFF A. MicroRNAs in melanocyte and melanoma biology[J]. Pigment Cell Melanoma Res, 2015, 28(3): 340–354. DOI: 10.1111/pcmr.12346
[27] WANG W, GAO Y, ZHENG W W, et al. Phenobarbital inhibits osteoclast differentiation and function through NF-κB and MAPKs signaling pathway[J]. Int Immunopharmacol, 2019, 69: 118–125. DOI: 10.1016/j.intimp.2019.01.033
[28] WELLBROCK C, AROZARENA I. Microphthalmia-associated transcription factor in melanoma develop-ment and MAP-kinase pathway targeted therapy[J]. Pigment Cell Melanoma Res, 2015, 28(4): 390–406. DOI: 10.1111/pcmr.12370
[29] KAWAKAMI A, FISHER D E. The master role of microphthalmia-associated transcription factor in melano -cyte and melanoma biology[J]. Lab Invest, 2017, 97(6): 649–656. DOI: 10.1038/labinvest.2017.9
[30] STEINGRÍMSSON E, COPELAND N G, JENKINS N A. Melanocytes and the microphthalmia trans-cription factor network[J]. Annu Rev Genet, 2004, 38(1): 365–411. DOI: 10.1146/annurev.genet.38.072902.092717
[31] LIM J, NAM S, JEONG J H, et al. Kazinol U inhibits melanogenesis through the inhibition of tyrosinase-related proteins via AMP kinase activation[J]. Br J Pharmacol, 2019, 176(5): 737–750. DOI: 10.1111/bph.14560
[32] WU M, HEMESATH T J, TAKEMOTO C M, et al. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi[J]. Genes Dev, 2000, 14(3): 301–312.
[33] LIU Y L, LAI F, WILMOTT J S, et al. Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells[J]. Oncotarget, 2014, 5(22): 11237–11251. DOI: 10.18632/oncotarget.2616
[34] HUBER W E, PRICE E R, WIDLUND H R, et al. A tissue-restricted cAMP transcriptional response: SOX10 modulates α-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes[J]. J Biol Chem, 2003, 278(46): 45224–45230. DOI: 10.1074/jbc.M309036200
[35] CHANG H, CHOI H, JOO K M, et al. Manassantin B inhibits melanosome transport in melanocytes by disrupting the melanophilin-myosin Va interaction[J]. Pigment Cell Melanoma Res, 2012, 25(6): 765–772. DOI: 10.1111/pcmr.12002
[36] ZERIAL M, MCBRIDE H. Rab proteins as membrane organizers[J]. Nat Rev Mol cell Biol, 2001, 2(2): 107–117. DOI: 10.1038/35052055
[37] HUME A N, COLLINSON L M, HOPKINS C R, et al. The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes[J]. Traffic, 2002, 3(3): 193–202. DOI: 10.1034/j.1600-0854.2002.030305.x
[38] ALVES C P, MORAES M H, SOUSA J F, et al. Myosin-Va contributes to manifestation of malignant-related properties in melanoma cells[J]. J Invest Dermatol, 2013, 133(12): 2809–2812. DOI: 10.1038/jid.2013.218