畜牧兽医学报  2021, Vol. 52 Issue (1): 195-201. DOI: 10.11843/j.issn.0366-6964.2021.020    PDF    
禽腺病毒血清4型感染鸡组织中NLRP3基因转录水平的实时荧光定量PCR分析
郭慧芳, 李宁, 王白玉, 乔麒龙, 黄庆, 李永涛, 王增, 赵军     
河南农业大学牧医工程学院, 郑州 450046
摘要:旨在分析禽腺病毒血清4型(FAdV-4)感染鸡组织中NLRP3基因的转录水平,本研究设计鸡NLRP3特异性引物,利用RT-PCR扩增NLRP3基因180 bp片段并克隆至pMD-18T载体,制备重组质粒pMD-18T-NLRP3。以pMD-18T-NLRP3质粒作为标准品进行荧光定量PCR并建立标准曲线。通过反应条件优化,成功建立了检测NLRP3基因的实时荧光定量PCR方法,并利用该方法对致病性FAdV-4感染鸡组织中NLRP3基因的转录水平进行了分析。结果显示,所设计的NLRP3引物可特异性扩增鸡NLRP3基因,建立的实时荧光定量PCR对鸡NLRP3标准质粒的扩增曲线良好,标准品的拷贝数与Cq值呈现良好的线性关系。与对照组相比,NLRP3分子在FAdV-4感染鸡肝和脾中的转录水平极显著高于对照组(P < 0.001),在盲肠扁桃体和法氏囊的表达显著高于对照组(P < 0.01)。本研究所建立的鸡NLRP3基因SYBR Green Ⅰ实时荧光定量PCR可以检测FAdV-4感染鸡不同组织中NLRP3的转录水平;致病性FAdV-4感染所造成的组织炎症损伤与NLRP3分子密切相关。
关键词禽腺病毒血清4型    NLRP3基因    实时荧光定量PCR    组织炎症    转录水平    
Analysis of the Transcription Level of NLRP3 Gene in Fowl Adenovirus Serotype 4 Infected Chicken Tissues by a Real-time Fluorescence Quantitative PCR
GUO Huifang, LI Ning, WANG Baiyu, QIAO Qilong, HUANG Qing, LI Yongtao, WANG Zeng, ZHAO Jun     
College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
Abstract: To analyze the transcription level of NLRP3 gene in chickens infected with FAdV-4, a pair of NLRP3 specific primers was designed, and the 180 bp NLRP3 gene was amplified by RT-PCR and cloned into the pMD-18T vector to create a recombinant plasmid pMD-18T-NLRP3. Using the constructed pMD-18T-NLRP3 plasmid as standards, a standard curve assay for SYBR Green I real-time PCR was established. After optimization of reaction conditions, a real-time fluorescent quantitative PCR was successfully established to detect NLRP3, and it was applied to measure the transcription level of NLRP3 gene in the organs of chickens infected with pathogenic FAdV-4. The results indicated that the primers designed for this assay were specific to chicken NLRP3 gene; the established assay was able to provide a well-defined quantification standard curve for the chicken NLRP3 standard plasmid, and a linear correlation was observed between the copy numbers of the standard plasmid pMD-18T-NLRP3 and the Cq values. Comparing to the control group, the transcription level of NLRP3 was significantly higher in the liver and spleen (P < 0.001) and higher in the cecal tonsils and bursa of Fabricius (P < 0.01) of the infected chickens. The chicken NLRP3 SYBR Green I real-time PCR established in this study was able to detect the transcription level of NLRP3 in different organs of chickens infected with FAdV-4, and the inflammation induced by FAdV-4 infection is highly related to NLRP3.
Key words: fowl adenovirus serotype 4    chicken NLRP3 gene    real-time fluorescence quantitative PCR    tissue inflammation    transcription level    

禽腺病毒血清4型(fowl adenovirus serotype 4,FAdV-4)是属于禽腺病毒科、禽腺病毒属的双链DNA病毒,是引起肝炎-心包积液综合征(hepatitis-hydropericardium syndrome,HHS)的主要病原[1]。HHS于1987年最早发生于巴基斯坦,随后在印度、科威特、伊拉克、日本、韩国、墨西哥等国家以及中美洲、南美洲等地区发生。自2015年5月份以来,由FAdV-4新基因型导致的HHS在我国主要养禽地区流行,给我国养禽业造成了巨大损失[2-4]。目前,FAdV-4的致病机制尚不明了。现有的研究显示,致病性FAdV-4感染后诱导鸡天然免疫应答,肝中白介素1β(IL-1β)的表达量显著升高[5-6]

IL-1β的表达和分泌与NLRP3炎症小体密切相关。多种刺激原可以激活胞质天然免疫信号受体NLRP3,激活后的NLRP3使NLRP3炎性小体组装活化,从而引发IL-1β的分泌[7-9]。NLRP3是宿主细胞的核苷酸结合寡聚结构域(nucleotide binding oligomerization domain, NOD)样受体(NLRs)病原模式识别受体(pattern recognition receptors, PRRS)识别病原相关分子模式(pathogen-associated molecular patterns, PAMPS)或危险相关分子模式(danger associated molecular patterns, DAMPS)后,再与凋亡相关斑点样蛋白(apoptosis associated speck-like protein containing a C-terminal caspase recruitment domain, ASC)及Caspase-1(cysteine requiring aspartate protease-1, Caspase-1)共同组成的多聚蛋白复合体[10-13]。NLRP3炎性小体是天然免疫系统的重要组成部分,可响应病原刺激和细胞损伤,介导Caspase-1激活和促炎细胞因子IL-1β和IL-18等炎性因子的成熟和分泌,从而引发炎症反应[14-16]

鉴于NLRP3炎症小体的活化与IL-1β的表达和分泌密切相关,本研究尝试建立检测鸡NLRP3的实时荧光定量PCR方法,对FAdV-4感染鸡组织中NLRP3基因的转录水平进行分析,以期为解析NLRP3在FAdV-4致病机制中的作用奠定基础。

1 材料与方法 1.1 材料

致病性禽腺病毒4型(FAdV-4)毒株CH/HNJZ/2015(GenBank登录号:KU558760)由河南农业大学传染病实验室保存;总RNA提取试剂盒购自TIANGEN;反转录试剂购自TOYOBO;质粒提取和DNA胶回收试剂盒购自生工生物工程(上海)股份有限公司;常规PCR试剂、pMD-18T vector、SYBR Green Ⅰ染料和DNA Marker均购自TaKaRa。

1.2 方法

1.2.1 鸡NLRP3基因的RT-PCR扩增和标准质粒的制备   根据GenBank数据库中鸡NLRP3基因序列(GenBank登录号:KF318520.1),设计鸡NLRP3荧光定量特异性引物,qNLRP3-F:5′-TGAGGATTTGGACACCTTCCACCT-3′和qNLRP3-R:5′-TGCTTGATGCAGAAGCAAAGAGCC-3′。利用总RNA提取试剂盒,提取4周龄SPF鸡肝总RNA,并反转录成cDNA。使用特异性引物进行RT-PCR扩增180 bp的NLRP3基因片段。将扩增片段连接到pMD-18T载体,构建pMD-18T-NLRP3重组质粒,测定质粒浓度并根据换算公式计算出重组质粒的拷贝数:拷贝数(copies·μL-1)=[6.02×1023×(质粒浓度ng·μL-1×10-9)]/[DNA长度(bp)×660]。

1.2.2 鸡NLRP3荧光定量PCR的建立   以标准质粒pMD-18T-NLRP3为模板,利用SYBR Green Ⅰ染料和鸡NLRP3荧光定量PCR特异性引物,进行荧光定量PCR扩增。以出现荧光的Cq值最小和相对荧光强度(RFU)最大及熔解曲线不出现非特异性扩增峰为标准,分别对引物终浓度、退火温度和循环数进行优化。将标准质粒pMD-18T-NLRP3进行10倍倍比稀释,取1.0×103~1.0×107 copies·μL-1稀释度的标准质粒作为模板,以最佳反应条件建立鸡NLRP3实时荧光定量PCR标准曲线。

1.2.3 致病性禽腺病毒4型(FAdV-4)感染鸡不同组织中NLRP3基因转录水平的检测   60只4周龄SPF鸡(购自山东昊泰实验动物繁育有限公司)被随机平均分成2组,FAdV-4感染组鸡用105TCID50致病性FAdV-4毒株CH/HNJZ/2015经口服途径感染,对照组口服PBS。FAdV-4感染鸡在感染后4~6 d,相继发病死亡。分别取发病/死亡鸡和对照鸡的心、肝、肺、脾、肾、腺胃和盲肠扁桃体等组织样品,立即冻存于-80 ℃。利用RNA提取试剂盒提取各组织的总RNA,定量1 μg RNA反转录成cDNA。以cDNA为模板,利用建立的NLRP3荧光定量PCR检测鸡组织中NLRP3基因的转录水平。再利用GraphPad Prism5.0软件进行单因子方差(One-way ANOVA)分析和t检验统计分析。**表示差异显著(P < 0.01),***表示差异极显著(P < 0.001)。

2 结果 2.1 鸡NLRP3基因扩增和标准质粒的制备

以鸡肝总RNA反转录得到的cDNA为模板,使用常规PCR扩增NLRP3目的基因。扩增产物经2%琼脂糖凝胶进行检测,可观察到180 bp目的条带,大小与预期相符合(图 1)。将PCR产物胶回收纯化后连接至pMD-18T载体,经测序鉴定成功得到pMD-18T-NLRP3重组质粒。测定pMD-18T-NLRP3标准质粒浓度为233 ng·μL-1,利用计算公式计算出该标准品拷贝数约为7.5×1010 copies·μL-1

M. DL2000 DNA相对分子质量标准;1.扩增的NLRP3基因;2.空白对照 M. DL2000 DNA marker; 1.Amplified NLRP3 gene; 2.Blank control 图 1 NLRP3基因的扩增 Fig. 1 Amplification of NLRP3 gene
2.2 鸡NLRP3荧光定量PCR的建立

经过一系列荧光定量反应条件的筛选,最终的反应体系为总体系20 μL,其中,SYBR Prexim Ex TaqTM Ⅱ 10 μL,无菌DEPC水6 μL,qNLRP3-F/R(10 μmol·L-1)各1 μL,模板2 μL。最佳反应条件:95 ℃ 1 min;95 ℃ 5 s,60 ℃ 30 s,72 ℃ 8 s,共40个循环;95 ℃ 10 s;65 ℃ 5 s;95 ℃ 5 s。在该条件下熔解曲线单峰,表明设计的引物特异性良好(图 2)。

A.扩增曲线;B.标准曲线(X为拷贝数);C.熔解曲线;1~5.1.0×107~1.0×103 copies·μL-1 A. Amplification curve; B. Standard curve (X.Copies number); C. Melting curve; 1-5.1.0×107-1.0×103 copies·μL-1 图 2 NLRP3 SYBR Green Ⅰ实时荧光定量PCR标准曲线建立 Fig. 2 Establishment of standard curve of chicken NLRP3 SYBR Green Ⅰ real-time PCR

利用1.0×107、1.0×106、1.0×105、1.0×104、1.0×103 copies·μL-1稀释度的标准品为模板进行荧光定量PCR。荧光定量结果显示,以相对荧光强度(RFU)为纵坐标,循环数(cycle)为横坐标建立的扩增曲线光滑,扩增效率好;荧光定量标准曲线显示,以Cq值为Y、拷贝数为X建立的标准曲线方程为Y=-3.434lgX+37.777,相关系数R2为0.999,扩增效率E为95.5%,满足R2>0.999,110%>E>90%。标准曲线显示质粒标准品拷贝数与Cq值之间具有良好的线性关系(图 2)。

2.3 致病性FAdV-4感染鸡不同组织中NLRP3基因转录水平的检测

利用建立的鸡NLRP3 SYBR Green Ⅰ荧光定量PCR方法,对致病性FAdV-4感染鸡和未感染对照鸡各组织中NLRP3的转录水平进行测定。结果显示,该方法能检测出鸡不同组织中NLRP3基因的转录,各组织中NLRP3的转录水平有所差异。FAdV-4感染鸡肝和脾中NLRP3的转录水平极显著(P < 0.001)高于对照组,盲肠扁桃体和法氏囊中NLRP3的转录水平显著(P < 0.01)高于对照组(图 3)。在致病性FAdV-4感染鸡的心、肝和脾组织中NLRP3的转录水平极显著(P < 0.001)高于法氏囊、肺、肾、腺胃和盲肠扁桃体,而心、肝、脾组织中NLRP3的转录水平差异不显著。法氏囊中NLRP3的转录水平极显著(P < 0.001)高于肺、肾、腺胃和盲肠扁桃体,且盲肠扁桃体中NLRP3的转录水平极显著(P < 0.001)高于肺、肾和腺胃,肾中NLRP3的转录水平极显著(P < 0.001)高于肺和腺胃,肺和腺胃组织中NLRP3的转录水平差异不显著。

组间比较,**.差异显著(P < 0.01);***.差异极显著(P < 0.001)。感染组组织间比较,不同字母表示差异极显著(P < 0.001). Comparison between groups, **. Significant difference (P < 0.01); ***. Extremely significant difference (P < 0.001). Comparison among organizations of infected group, different letters indicate significant differences (P < 0.001) 图 3 SYBR Green Ⅰ实时荧光定量PCR检测FAdV-4感染鸡组织中的NLRP3基因转录水平 Fig. 3 SYBR Green I real-time PCR for quantitative detection of NLRP3 gene in FAdV-4-infected chicken tissues
3 讨论

炎症小体既是宿主天然免疫应答的重要组成部分,同时也在病毒致病机制中发挥重要作用[17]。NLRP3炎性小体是天然免疫系统的重要调节剂,在正常细胞中保持较低的水平,然而,一些病原的刺激会引起NLRP3炎性小体的过度活化,从而诱发细胞炎性因子风暴导致机体的病理损伤[18-19],NLRP3分子是NLRP3炎症小体复合物的重要组成成分[20-21],很多病毒感染与NLRP3炎症小体的激活相关[22]。参与激活过程的病毒组分主要包括病毒核酸、离子通道蛋白和非结构蛋白等。如人腺病毒感染巨噬细胞可以导致IL-1β的快速释放,这种反应依赖于NLRP3炎症小体的形成和Caspase-1的活化[23-24];流感病毒的RNA和M2通道蛋白均可激活炎症小体[25-26];脑心肌炎病毒的通道蛋白2B可以激活NLRP3炎症小体[27];猪瘟病毒的p7通道蛋白可激活猪巨噬细胞炎症小体[28];猪繁殖与呼吸综合征病毒通过NLRP3炎症小体活化诱导巨噬细胞表达IL-1β[29-30]。丙型肝炎病毒感染会刺激肝巨噬细胞中NLRP3炎症小体活化产生IL-1β进而造成肝炎症[31]。迄今为止,与病毒感染相关的NLRP3炎症小体的研究报道主要集中在哺乳动物模型,而与禽类病毒感染相关的禽NLRP3炎症小体的研究相对较少,主要原因是受限于禽类NLRP3炎症小体相关分子的检测方法和研究材料。Ye等[32]首次研究了中国三黄鸡体内NLRP3的组织特异性表达图谱和组织分布。陶志云等[33]开展了鸡小肠上皮细胞的分离培养和NLRP3在该细胞中的表达研究。Wang等[34]证明新城疫病毒(NDV)可以激活小鼠和人巨噬细胞中的NLRP3和增加IL-1β的表达。Gao等[35]首次证实了NDV在感染的鸡细胞中通过活化NLRP3/Caspase-1炎症小体诱导IL-1β的高表达。建立鸡NLRP3分子的检测技术有助于研究其在禽病发生中的作用。目前国内外尚未见有关鸡NLRP3分子实时荧光定量PCR检测方法的报道。

自2015年5月份以来,由FAdV-4导致的鸡HHS给我国养禽业造成了巨大损失。研究显示,致病性FAdV-4感染鸡的肝、肺、脾和法氏囊等组织存在严重的淋巴细胞变性、坏死等炎症损伤,而且这些组织中IL-1β的表达量与未感染对照鸡相比显著升高[5-6]。鉴于NLRP3炎症小体的活化与IL-1β的表达和分泌密切相关,本研究设计鸡NLRP3特异性引物,建立了检测鸡NLRP3的SYBR Green Ⅰ荧光定量PCR方法,并利用该方法对致病性FAdV-4感染鸡组织中NLRP3基因的转录水平进行了分析。结果显示,所建立方法对鸡NLRP3标准质粒的扩增曲线良好,标准品的拷贝数与Cq值呈现良好的线性关系,所设计的NLRP3引物可特异性扩增鸡NLRP3基因。

应用所建立的SYBR Green Ⅰ荧光定量PCR对致病性FAdV-4感染鸡和正常鸡组织中NLRP3基因的转录水平进行了检测。结果显示,该方法能检测出不同组织中NLRP3基因的转录。与对照组比对发现,NLRP3分子在致病性FAdV-4感染鸡肝、脾中的转录水平极显著高于对照组,在盲肠扁桃体和法氏囊的表达显著高于对照组,提示这些器官是致病性FAdV-4的主要靶器官。致病性FAdV-4感染发病鸡的心、肝、脾和法氏囊组织中NLRP3的转录水平显著高于其他组织,这也与笔者前期研究结果显示的致病性FAdV-4感染鸡的心、肝、脾和法氏囊组织中IL-1β的高水平表达,以及这些组织的严重炎症损伤病变相一致。鉴于NLRP3炎症小体在IL-1β成熟和分泌过程中扮演重要角色,而IL-1β又是炎症反应的重要介质,笔者推测致病性FAdV-4的致病过程是通过激活NLRP3炎症小体,进而导致炎症因子IL-1β的过量表达和分泌,最终导致机体组织的组织炎症损伤。

4 结论

本研究建立了一种检测禽腺病毒血清4型(FAdV-4)感染鸡组织中NLRP3基因转录水平的实时荧光定量PCR方法,该方法能检测鸡不同组织中NLRP3基因的转录,检测结果表明各组织中NLRP3的转录水平有所差异。致病性FAdV-4感染发病鸡肝、脾、盲肠扁桃体和法氏囊中NLRP3的转录水平显著高于未感染对照组(P < 0.01);NLRP3分子在致病性FAdV-4感染鸡的心、肝、脾和法氏囊组织中的转录水平极显著高于其他组织(P < 0.001)。本研究可为进一步研究鸡NLRP3分子在FAdV-4致病机制中的作用提供方法和技术支持。

参考文献
[1] MAZAHERI A, PRUSAS C, VOŁ M, et al. Some strains of serotype 4 fowl adenoviruses cause inclusion body hepatitis and hydropericardium syndrome in chickens[J]. Avian Pathol, 1998, 27(3): 269–276. DOI: 10.1080/03079459808419335
[2] YE J Q, LIANG G C, ZHANG J J, et al. Outbreaks of serotype 4 fowl adenovirus with novel genotype, China[J]. Emerg Microbes Infect, 2016, 5(5): e50.
[3] ZHANG T, JIN Q Y, DING P Y, et al. Molecular epidemiology of hydropericardium syndrome outbreak-associated serotype 4 fowl adenovirus isolates in central China[J]. Virol J, 2016, 13(1): 188. DOI: 10.1186/s12985-016-0644-x
[4] LIU Y K, WAN W Y, GAO D S, et al. Genetic characterization of novel fowl aviadenovirus 4 isolates from outbreaks of hepatitis-hydropericardium syndrome in broiler chickens in China[J]. Emerg Microbes Infect, 2016, 5(11): e117.
[5] NIU Y J, SUN Q Q, LIU X P, et al. Mechanism of fowl adenovirus serotype 4-induced heart damage and formation of pericardial effusion[J]. Poult Sci, 2019, 98(3): 1134–1145. DOI: 10.3382/ps/pey485
[6] NIU Y J, SUN Q Q, ZHANG G H, et al. Fowl adenovirus serotype 4-induced apoptosis, autophagy, and a severe inflammatory response in liver[J]. Vet Microbiol, 2018, 223: 34–41. DOI: 10.1016/j.vetmic.2018.07.014
[7] 潘徐彪, 李向玉, 王志鑫, 等. NLRP3-(Caspase-1)/IL-1β信号通路的研究进展[J]. 中国医药导报, 2019, 16(1): 41–44.
PAN X B, LI X Y, WANG Z X, et al. Progress in the research of NLRP3-(Caspase-1)/IL-1β signal pathway[J]. China Medical Herald, 2019, 16(1): 41–44. (in Chinese)
[8] MANGAN M S J, OLHAVA E J, ROUSH W R, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018, 17(9): 688.
[9] SHAO B Z, XU Z Q, HAN B Z, et al. NLRP3 inflammasome and its inhibitors:a review[J]. Front Pharmacol, 2015, 6: 262.
[10] SCHRODER K, ZHOU R B, TSCHOPP J. The NLRP3 inflammasome: a sensor for metabolic danger?[J]. Science, 2010, 327(5963): 296–300. DOI: 10.1126/science.1184003
[11] KIM J K, JIN H S, SUH H W, et al. Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling[J]. Immunol Cell Biol, 2017, 95(7): 584–592. DOI: 10.1038/icb.2017.23
[12] GROSLAMBERT M, PY B F. Spotlight on the NLRP3 inflammasome pathway[J]. J Inflamm Res, 2018, 11: 359–374. DOI: 10.2147/JIR.S141220
[13] ELLIOTT E I, SUTTERWALA F S. Initiation and perpetuation of NLRP3 inflammasome activation and assembly[J]. Immunol Rev, 2015, 265(1): 35–52. DOI: 10.1111/imr.12286
[14] LAROCK C N, NIZET V. Inflammasome/IL-1β responses to streptococcal pathogens[J]. Front Immunol, 2015, 6: 518.
[15] JO E K, KIM J K, SHIN D M, et al. Molecular mechanisms regulating NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2016, 13(2): 148–159. DOI: 10.1038/cmi.2015.95
[16] KELLEY N, JELTEMA D, DUAN Y H, et al. The NLRP3 Inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. DOI: 10.3390/ijms20133328
[17] LATZ E, XIAO T S, STUTZ A. Activation and regulation of the inflammasomes[J]. Nat Rev Immunol, 2013, 13(6): 397–411. DOI: 10.1038/nri3452
[18] COMPAN V, BAROJA-MAZO A, LÓPEZ-CASTEJÓN G, et al. Cell volume regulation modulates NLRP3 inflammasome activation[J]. Immunity, 2012, 37(3): 487–500. DOI: 10.1016/j.immuni.2012.06.013
[19] ZHANG X N, XU A N, LV J H, et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases[J]. Eur J Med Chem, 2020, 185: 111822. DOI: 10.1016/j.ejmech.2019.111822
[20] RANSON N, KUNDE D, ERI R. Regulation and sensing of inflammasomes and their impact on intestinal health[J]. Int J Mol Sci, 2017, 18(11): 2379. DOI: 10.3390/ijms18112379
[21] ZHAO C Y, ZHAO W. NLRP3 inflammasome— a key player in antiviral responses[J]. Front Immunol, 2020, 11: 211. DOI: 10.3389/fimmu.2020.00211
[22] HAMILTON C, ANAND P K. Right place, right time: localisation and assembly of the NLRP3 inflammasome[J]. F1000Res, 2019, 8: 676. DOI: 10.12688/f1000research.18557.1
[23] MURUVE D A, PÉTRILLI V, ZAISS A K, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response[J]. Nature, 2008, 452(7183): 103–107. DOI: 10.1038/nature06664
[24] BARLAN A U, GRIFFIN T M, MCGUIRE K A, et al. Adenovirus membrane penetration activates the NLRP3 inflammasome[J]. J Virol, 2011, 85(1): 146–155. DOI: 10.1128/JVI.01265-10
[25] ICHINOHE T, PANG I K, IWASAKI A. Influenza virus activates inflammasomes via its intracellular M2 ion channel[J]. Nat Immunol, 2010, 11(5): 404–410. DOI: 10.1038/ni.1861
[26] ALLEN I C, SCULL M A, MOORE C B, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA[J]. Immunity, 2009, 30(4): 556–565. DOI: 10.1016/j.immuni.2009.02.005
[27] ITO M, YANAGI Y, ICHINOHE T. Encephalo-myocarditis virus viroporin 2B activates NLRP3 inflammasome[J]. PLoS Pathog, 2012, 8(8): e1002857. DOI: 10.1371/journal.ppat.1002857
[28] LIN Z, LIANG W L, KANG K, et al. Classical swine fever virus and p7 protein induce secretion of IL-1β in macrophages[J]. J Gen Virol, 2014, 95(Pt 12): 2693–2699.
[29] BI J, SONG S, FANG L R, et al. Porcine reproductive and respiratory syndrome virus induces IL-1β production depending on TLR4/MyD88 pathway and NLRP3 inflammasome in primary porcine alveolar macrophages[J]. Mediators Inflamm, 2014, 2014: 403515.
[30] CHEN X X, GUO Z H, JIN Q Y, et al. Porcine reproductive and respiratory syndrome virus induces interleukin-1β through MyD88/ERK/AP-1 and NLRP3 inflammasome in microglia[J]. Vet Microbiol, 2018, 227: 82–89. DOI: 10.1016/j.vetmic.2018.10.030
[31] SHRIVASTAVA S, MUKHERJEE A, RAY R, et al. Hepatitis C virus induces interleukin-1β (IL-1β)/IL-18 in circulatory and resident liver macrophages[J]. J Virol, 2013, 87(22): 12284–12290. DOI: 10.1128/JVI.01962-13
[32] YE J H, YU M, ZHANG K Z, et al. Tissue-specific expression pattern and histological distribution of NLRP3 in Chinese yellow chicken[J]. Vet Res Commun, 2015, 39(3): 171–177. DOI: 10.1007/s11259-015-9641-6
[33] 陶志云, 朱春红, 徐文娟, 等. 鸡小肠上皮细胞分离培养及NLRP3在该细胞中的表达[J]. 中国兽医杂志, 2016, 52(4): 22–25.
TAO Z Y, ZHU C H, XU W J, et al. Isolation and culture of chicken intestinal epithelial cells and the expression of NLRP3 in these cells[J]. Chinese Journal of Veterinary Medicine, 2016, 52(4): 22–25. (in Chinese)
[34] WANG B B, ZHU J, LI D D, et al. Newcastle disease virus infection induces activation of the NLRP3 inflammasome[J]. Virology, 2016, 496: 90–96. DOI: 10.1016/j.virol.2016.05.023
[35] GAO P, CHEN L B, FAN L, et al. Newcastle disease virus RNA-induced IL-1β expression via the NLRP3/caspase-1 inflammasome[J]. Vet Res, 2020, 51(1): 53. DOI: 10.1186/s13567-020-00774-0