畜牧兽医学报  2020, Vol. 51 Issue (6): 1219-1228. DOI: 10.11843/j.issn.0366-6964.2020.006    PDF    
miR-106b-5p靶向KLF4调控山羊肌内前体脂肪细胞分化
杜宇1,2, 赵越1, 林亚秋1,2, 朱江江2, 王永1, 马洁琼1,2, 谢光杰2     
1. 西南民族大学 青藏高原动物遗传资源保护与利用教育部/四川省重点实验室, 成都 610041;
2. 西南民族大学 生命科学与技术学院, 成都 610041
摘要:旨在明确miR-106b-5p对山羊肌内前体脂肪细胞分化的影响,并确定这种作用是通过靶向KLF4来实现的。本研究利用实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)技术检测miR-106b-5p在山羊肌内前体脂肪细胞分化过程中的表达模式,通过脂质体转染技术将miR-106b-5p mimic和miR-106b-5p inhibitor转入体外培养的山羊肌内前体脂肪细胞,油红O染色法从形态学验证miR-106b-5p对脂肪细胞中脂滴积聚的影响,qRT-PCR检测预测的靶标基因KLF4和脂肪分化标志基因的表达情况,利用双荧光素酶报告系统鉴定miR-106b-5p与KLF4的靶标关系。qRT-PCR结果显示,miR-106b-5p在山羊肌内前体脂肪细胞诱导分化第3天时表达量最高。在山羊肌内脂肪细胞中干扰miR-106b-5p后油红O染色显示脂滴聚积减少,过表达miR-106b-5p后脂滴聚积增加。在山羊肌内前体脂肪细胞中转染miR-106b-5p inhibitor后PPARγ表达量显著降低(P < 0.05),而KLF4表达量极显著升高(P < 0.01);转染miR-106b-5p mimic后LPLPPARγ表达量极显著升高(P < 0.01)。荧光素酶活性试验结果显示,过表达miR-106b-5p可显著抑制KLF4荧光活性。miR-106b-5p通过靶向并负调节KLF4的表达促进山羊肌内脂肪细胞分化。
关键词山羊    miR-106b-5p    KLF4    脂肪细胞    荧光素酶活性试验    
miR-106b-5p Regulates the Differentiation of Goat Intramuscular Preadipocytes by Targeting KLF4
DU Yu1,2, ZHAO Yue1, LIN Yaqiu1,2, ZHU Jiangjiang2, WANG Yong1, MA Jieqiong1,2, XIE Guangjie2     
1. Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China;
2. College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China
Abstract: This study aimed to explore the effect of miR-106b-5p on the differentiation of goat intramuscular preadipocytes, and to confirm whether miR-106b-5p played its roles via targeting KLF4. The quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of miR-106b-5p during the differentiation of goat intramuscular preadipocytes. The miR-106b-5p mimic and miR-106b-5p inhibitor were transfected into goat intramuscular preadipocytes cultured in vitro by liposome transfection. The effect of miR-106b-5p on lipid droplet accumulation was verified using the Oil Red O Staining. The expression levels of predicted target gene KLF4 targeting miR-106b-5p and adipogenic marker genes were detected using qRT-PCR. The target relationship between miR-106b-5p and KLF4 was detected by dual luciferase reporter system. The result of qRT-PCR showed that the highest expression level of miR-106b-5p was at day 3 of induced differentiation of goat intramuscular preadipocytes. The Oil Red O staining result showed that lipid droplet accumulation was decreased after treated by miR-106b-5p inhibitor, however, it had an opposite result after treated by miR-106b-5p mimic in goat intramuscular adipocytes. The expression level of PPARγ was significantly decreased (P < 0.05) and the expression level of KLF4 was extremely significantly increased (P < 0.01) in the miR-106b-5p inhibitor treatment. The expression levels of LPL and PPARγ were extremely significantly increased (P < 0.01) in the miR-106b-5p mimic treatment. The luciferase activity assay result showed that luciferase activity of KLF4 was significantly inhibited in the miR-106b-5p mimic treatment. miR-106b-5p promotes the differentiation of goat intramuscular preadipocytes via targeting and negatively regulating the expression of KLF4.
Key words: goat    miR-106b-5p    KLF4    adipocyte    luciferase activity assay    

microRNAs(miRNAs)是一种18~25个核苷酸长度的单链非编码小RNA。现有研究证明,miRNAs一般情况下与靶基因的3′非翻译区(3′UTR)结合以抑制翻译或将其降解的方式对靶基因的转录后调控发挥作用,而与5′非翻译区(5′UTR)结合可以促进其翻译[1-4]。目前,对miRNAs调控脂肪形成和脂质代谢等方面已有很多报道,Shi等[5]发现,miR-148a通过抑制其靶标的脂肪生成内源性抑制剂Wnt1来促进人脂肪细胞的增殖和分化;Chen等[6]证明,内源性miR-146b在脂肪细胞增殖分化过程中通过直接靶标并负调节KLF7(Krüppel样转录因子成员)来抑制人内脏前体脂肪细胞的增殖并促进其分化。Ma等[7]研究表明,miR-25通过直接靶标PGC-1beta(过氧化物酶体增殖激活受体γ辅激活物1)抑制一些脂肪形成基因的表达进而来调节在山羊乳腺上皮细胞的脂质代谢;Zhang等[8]证明了牛前体脂肪细胞中miR-224与LPL之间的负靶向调控关系,过表达miR-224可降低成脂标志基因(如C/EBPαC/EBPβPPARγFASNPLIN1)的表达进而抑制牛前体脂肪细胞的成脂分化。

miR-106b-5p是miR-106b~25簇的一员(包括miR-106b、miR-93和miR-25)[9-10]。现有研究结果提示,miR-106b-5p在脂质代谢中具有重要的作用,如Ren等[11]发现,冠状动脉粥样硬化性心脏病患者血浆中miR-106b-5p的表达量显著高于正常水平;此外,张静等[12]采用共表达网络对动脉粥样硬化患者血浆中miRNAs的表达谱进行筛查发现,与对照组相比,miR-106b-5p共表达差异最显著,并且利用KEGG信号转导通路数据库对人脐静脉内皮细胞中miR-106b-5p靶向调控的信号通路富集性分析发现,miR-106b-5p可靶向多个与动脉粥样硬化斑块形成有关的信号通路;Tsukita等[13]研究证明,在胰岛素缺乏型糖尿病小鼠模型中,miR-106b-5p和miR-222-3p可通过促进胰腺β细胞增殖的方式改善该模型小鼠的高血糖症;研究表明,miR-106b~25簇是miR-17~92簇的旁系同源物,此外,miR-17~ 92簇可负向靶标Rb2/p130(肿瘤抑制因子)来促进脂肪细胞分化,还显著抑制miR-106b和miR-93诱导的褐色脂肪特异性基因的表达,从而促进褐色脂肪细胞中的脂滴聚积[14-16]。但尚未见miR-106b-5p调控脂肪细胞分化的直接相关报道。

因此,本试验拟通过合成山羊miR-106b-5p成熟序列的mimic和inhibitor,利用细胞转染技术将miR-106b-5p mimic和miR-106b-5p inhibitor转入体外培养的山羊肌内前体脂肪细胞,通过油红O染色方法从形态学确定miR-106b-5p对脂肪细胞脂滴积聚的影响,利用qRT-PCR技术检测miR-106b-5p对脂肪分化标志基因和KLF4表达的影响,最后利用双荧光素酶报告试验确定miR-106b-5p与KLF4的靶标关系。

1 材料与方法 1.1 试验材料

于TaKaRa公司购得3′-Full RACE Core Set试剂盒、Mir-XTM miRNAs First-Strand Synthesis Kit反转录试剂盒、I-5TM2×High-Fidelity Master Mix酶、pMDTM19-T Vector Cloning Kit载体、TB GreenTM Premix Ex TaqTM Ⅱ和TRIzol;于Thermo- Fisher Scientific公司购得反转录试剂盒Revert Aid First Strand cDNA Synthesis Kit;于擎科梓熙生物技术有限公司购得TreliefTM5α感受态细胞;于天根生化科技有限公司购得胶回收试剂盒和2×Taq PCR Master Mix酶;于Gemini公司购得血清;于Hyclone公司购得青链霉素、DME/F12培养基和0.25%胰酶;于Sigma公司购得油酸;于Carlsbad公司购得转染试剂Lipofectamine 3000;于Promega公司购得Dual-Luciferase Reporter Assay System和pmir-GLO双荧光素酶载体。

1.2 试验方法

1.2.1 山羊肌内前体脂肪细胞的培养及miR-106b-5p的转染   取出本实验室保存的山羊肌内前体脂肪细胞,37 ℃恒温水浴锅复苏细胞后接种于25 cm2的细胞培养瓶中,加入含10% FBS和0.1%青链霉素的完全培养基后放入37 ℃含5% CO2的细胞恒温培养箱,将F3代细胞接种至12孔板中,细胞铺板到80%时换油酸诱导液诱导分化,分别在诱导0~5 d后加TRIzol收集细胞,提取细胞RNA;另外接种于12孔板的F3代细胞待细胞密度达80%~90%时开始转染,转染前4 h弃掉完全培养基后每孔加入450 μL的Opti-MEM饥饿细胞,转染试剂过表达组(3个重复)按照每孔3 μL Lipofectamine® RNAiMAX Reagent、2 μL miRNAs mimic和50 μL Opti-MEM的量配置预混液;干扰组(3个重复)按照每孔3 μL Lipofectamine® RNAiMAX Reagent、2 μL miRNAs inhibitors和50 μL Opti-MEM的量配置预混液,预混液在冰上静置10 min。将miR-106b-5p mimic和miR-106b-5p inhibitor预混液转入体外培养的山羊肌内前体脂肪细胞6 h后,更换为100 μmol·L-1油酸的完全培养基诱导48 h后收集细胞。

1.2.2 油红O染色   用于染色的细胞接种于24孔板,处理方式同1.2.1。固定细胞之前用PBS缓冲液缓慢清洗2次,10%甲醛固定细胞30 min后再用PBS缓冲液清洗2次,加入油红O工作液适量,染色30 min弃去油红工作液后用PBS清洗数次,显微镜下观察脂滴积聚情况并拍照。

1.2.3 qRT-PCR检测   采用TRIzol法提取细胞总RNA,按照Mir-XTM miRNAs First-Strand Synthesis Kit反转录试剂盒反转录cDNA,qRT-PCR技术检测miRNAs的干扰和过表达效率;RevertAid First Strand cDNA Synthesis Kit反转录试剂盒反转录cDNA,qRT-PCR检测miR-106b-5p在山羊肌内前体脂肪细胞分化过程中的表达模式以及脂肪分化标志基因和KLF4基因的表达情况。miR-106b-5p及脂肪分化标志基因引物信息见表 1;根据Mir-XTM miRNAs First-Strand Synthesis Kitq说明书设定qRT-PCR反应体系及运行程序。

表 1 qRT-PCR引物信息 Table 1 The information of qRT-PCR primers

1.2.4 miR-106b-5p靶基因预测和山羊KLF4基因3′UTR克隆   利用TargetScan和mirBase等在线数据库预测发现,KLF4可能为miR-106b-5p的靶标基因,根据NCBI中登录号为KU041754.1的山羊KLF4基因序列设计巢式PCR引物,利用Primer premir5.0设计引物,依据3′-Full RACE Core Set说明书进行克隆,由于山羊KLF4基因3′UTR中包含一段poly A结构,试验采用分段(A、B两段)克隆法,横跨3′UTR中间段poly A结构区另设计1条特异性引物(表 2),以肌内脂肪细胞RNA为模板按照3′-Full RACE Core Set试剂盒说明书反转录cDNA;A段克隆引物为KLF4-Outer和KLF4-middle,B段克隆引物为KLF4-Inner和KLF4-middle,PCR反应体系:cDNA 1 μL,上、下游引物(10 μmol·L-1)各1 μL,2×Taq PCR Master Mix酶12 μL,补充ddH2O至25 μL。PCR扩增条件:94 ℃预变性3 min;94 ℃变性30 s,55 ℃退火30 s,72 ℃延伸1 min,72 ℃延伸10 min,30个循环。获得A、B片段产物后将这两个扩增产物混合在一起作为模板cDNA,用KLF4-Inner和3′RACE Inner Primer为引物拼接KLF4基因3′UTR序列(C),PCR反应体系:cDNA 1 μL,上、下游引物(10 μmol·L-1)各1 μL,I-5TM2×High- Fidelity Master Mix酶12 μL,补充ddH2O至25 μL。扩增条件:98 ℃预变性2 min;98 ℃变性10 s,58 ℃退火15 s,72 ℃延伸15 s,72 ℃延伸5 min,30个循环。胶回收试剂盒回收目的片段后连接到pMDTM19-T Vector Cloning Kit载体,转化于TreliefTM5α感受态细胞,培养12 h后挑取单菌落后PCR鉴定,将菌液送至成都擎科梓熙生物技术有限公司测序。

表 2 引物序列信息 Table 2 Primer sequences information

1.2.5 山羊miR-106b-5p成熟序列合成   利用mirBase检索获得山羊miR-106b-5p的成熟序列:UAAAGUGCUGACAGUGCAGAU (登录号为MIMAT0035908);为阐明miR-106b-5p对山羊肌内前体脂肪细胞分化的影响,于上海吉玛制药技术有限公司合成miRNA mimic与miRNA inhibitor(表 3)。

表 3 miRNA mimic和inhibitor序列 Table 3 Sequences of miRNA mimic and inhibitor

1.2.6 293T细胞的培养与共转染   37 ℃水浴锅复苏冻存的293T细胞使用高糖培养基培养,培养方式同1.2.1;F2代细胞铺板于48孔板中,铺板至60%~70%左右加入高糖无血清培养基饥饿细胞4 h后开始共转染。设置4个试验组分别为空白组、空载体组、miR-106b-5p NC和miR-106b-5p mimic组,按照每孔50 ng质粒DNA、1 μL转染试剂、过表达组每孔1 μL miRNA mimic和对照组每孔1 μL miRNA NC的量配制共转染液,室温孵育10 min后分别加到对应的孔内,37 ℃、5% CO2细胞恒温培养箱培养6 h后更换高糖完全培养基。

1.2.7 双荧光素酶报告试验   弃掉高糖完全培养基,PBS清洗2遍后每孔加50 μL 1×PLB,180 r·min-1摇床放置30 min以裂解细胞,将裂解好的上清液在避光条件下按照每孔20 μL加入到不透光96孔板中,立即测定数据(萤火虫荧光蛋白光强度,RLU1);再迅速按每孔20 μL加Stop & GLoRSubstrate溶液,摇匀立即测定数据(海肾荧光蛋白光强度,RLU2);计算两者比值,并用双样本等方差t检验进行数据处理。

1.2.8 数据统计分析   qRT-PCR数据采用2-ΔΔCt法分析,使用GraphPad Prism 5绘图,利用Excel数据分析中双样本t-检验方法分析数据结果,参照单因素方差分析结果对数据进行差异显著性标记。

2 结果 2.1 miR-106b-5p对山羊肌内前体脂肪细胞的影响

2.1.1 miR-106b-5p在山羊肌内前体脂肪细胞中的时序表达   为探究miR-106b-5p对山羊肌内前体脂肪细胞的调控作用,利用qRT-PCR技术分别检测山羊肌内前体脂肪细胞分化0~5 d的miR-106b-5p表达情况(图 1),结果显示,miR-106b-5p在诱导分化第3天的表达量最高,显著高于第0天的表达量(P < 0.05)。

*.P < 0.05,下同 *.P < 0.05, the same as below 图 1 miR-106b-5p在山羊肌内前体脂肪细胞分化过程中的相对表达 Fig. 1 Relative expression of miR-106b-5p during intramuscular preadipocytes differentiation in goat

2.1.2 miR-106b-5p在山羊肌内脂肪细胞中的干扰和过表达效率以及油红O染色观察   利用qRT-PCR检测山羊肌内脂肪细胞中miR-106b-5p的干扰和过表达效率(图 2A),数据显示,肌内脂肪细胞中miR-106b-5p干扰效率为59.5%(P < 0.05),过表达效率246%(P < 0.01);形态学观察(图 2B)结果显示,转染miR-106b-5p inhibitor后抑制山羊肌内脂肪细胞脂滴的聚积,而转染miR-106b-5p mimic后促进了脂滴聚积。

A.转染效率:**. P < 0.01,下同; B.油红O染色 A. Transfection efficiency: **. P < 0.01, the same as below; B. Oil Red O staining 图 2 miR-106b-5p在山羊肌内脂肪细胞中的干扰和过表达效率与油红O染色结果 Fig. 2 Knockdown and overexpression efficiency of miR-106b-5p in goat intramuscular adipocytes and Oil Red O staining results

2.1.3 干扰和过表达miR-106b-5p对山羊肌内脂肪细胞分化标志基因表达的影响   qRT-PCR检测结果发现,山羊肌内脂肪细胞中干扰miR-106b-5p(图 3A),PPARγAP2的表达量显著降低(P < 0.05),而KLF4的表达量极显著升高(P < 0.01);过表达miR-106b-5p(图 3B),LPLPPARγ表达量极显著升高(P < 0.01),AP2表达量极显著降低(P < 0.01)。

A.转染miR-106b-5p inhibitor;B.转染miR-106b-5p mimic A. Transfected with miR-106b-5p inhibitor; B. Transfected with miR-106b-5p mimic 图 3 山羊肌内脂肪细胞中干扰和过表达miR-106b-5p对脂肪分化标志基因表达的作用 Fig. 3 The effects of the knockdown and overexpression of miR-106b-5p on the expression of adipogenic marker genes in goat intramuscular adipocytes
2.2 山羊KLF4基因3′UTR克隆与miRNAs预测

本研究通过3′RACE法成功获得山羊KLF4基因3′UTR序列924 bp,提交GenBank获得登录号:MN514783;克隆所得序列与GenBank登录号为XM_018052560.1的预测序列比对结果显示相似性为98.69%(图 4A);TargetScan牛数据库预测结果显示,miR-106与KLF4可能存在靶标关系(图 4B)。

A.序列相似性比对;B. miRNA预测 A. Sequence similarity alignment; B.Prediction of miRNA 图 4 山羊KLF4基因3′UTR序列比对与miRNAs预测 Fig. 4 3′UTR sequence alignment and miRNAs prediction of goat KLF4
2.3 双荧光素酶报告试验

双荧光素酶报告试验检测结果见图 5,利用Excel双样本等方差t检验分析数据发现,与NC组相比,miR-106b-5p mimic的相对荧光强度显著降低(P < 0.05),根据双荧光素酶报告试验作用原理,可说明miR-106b-5p可靶向结合到KLF4的3′UTR区域,试验结果显示miR-106b-5p对KLF4的荧光素酶活性有显著抑制作用。

图 5 双荧光素酶活性检测结果 Fig. 5 The results of dual-luciferase activity assay
3 讨论

microRNA是生物体内重要的调控因子,研究表明,在哺乳动物中蛋白质编码基因约50%的活性受到miRNAs控制,并且miRNAs参与了几乎所有细胞过程的调控[17-19]。在脂肪形成过程中,miRNAs及其靶标基因可通过促进或抑制与脂肪细胞分化各个阶段相关的基因表达对脂肪生成进行调控[20-22]。例如,Ling等[23]发现,miR-375可通过ERK-PPARγ2-aP2途径促进3T3-L1前体脂肪细胞分化;Qi等[24]研究表明,miR-425通过降低多种脂肪生成抑制剂(例如P38和Wnt)的表达促进脂肪生成,并且miR-425可控制多向靶标(例如Mapk4/P38和Cab39/AMPK)在脂肪细胞中发生脂解作用;此外,miR-103 [25]、miR-199a-5p[26]和miR-128-3p[27]等均与脂代谢密切相关。为进一步了解与脂肪细胞分化相关的miRNAs,本试验就miR-106b-5p对山羊肌内前体脂肪细胞分化的调控作用展开了研究。

本研究利用qRT-PCR技术确定了miR-106b-5p在诱导分化第3天的山羊肌内脂肪细胞中表达量最高,推测其可能起正调控作用。为进一步确定miR-106b-5p对山羊肌内脂肪细胞分化的调控作用,本研究将miR-106b-5p inhibitor和miR-106b-5p mimic转染到山羊肌内脂肪细胞,结果显示,转染miR-106b-5p inhibitor后脂滴聚积被抑制,转染miR-106b-5p mimic后促进了脂滴聚积。Yu等[28]研究表明,在人肝癌(HCC)细胞中过表达miR-106b-5p可通过直接靶标FOG2抑制其表达,促进HCC细胞的增殖和侵袭。同时,在山羊肌内脂肪细胞中转染miR-106b-5p inhibitor后,利用qRT-PCR技术检测发现,KLF4表达量极显著升高,PPARγ(peroxisome proliferators-activated receptors)表达量显著降低。林森[29]研究证明,过表达KLF4可抑制山羊肌内脂肪细胞中脂滴的积聚。PPARγ作为白色和棕色脂肪细胞的主要调节剂,主要参与脂质存储、分配以及炎症介质的调节等作用,促进PPARγ活性可加速脂肪的生成[30-32];转染miR-106b-5p mimic后发现LPL(lipoprotein lipase)和PPARγ的表达量均极显著升高。研究表明,LPL是一种在脂肪组织中广泛分布的限速酶,在脂肪组织、骨骼肌、心脏和某些神经元类型细胞中含量很高,在棕色脂肪组织中,LPL与机体产热有关,在白色脂肪组织中LPL的活性升高有助于脂质储存[33-35]。Pérez-Torres等[36]研究证明,LPL可调节脂肪细胞中甘油三酯的积累,LPL细胞活性增加有利于脂肪细胞肥大并促进脂肪生成。本试验中,过表达miR-106b-5p对KLF4表达量几乎无影响,这一结果提示,miR-106b-5p可能具有多向靶标功能,并非单一靶标KLF4。Chen等[27]研究表明,在3T3-L1前体脂肪细胞中,miR-128-3p通过靶向Pparg抑制3T3-L1前体脂肪细胞的分化,以及靶向结合Sertad2从而推动甘油三酸酯水解和脂解进而阻止3T3-L1的脂肪生成。双荧光素酶报告试验结果显示,miR-106b-5p mimic相对荧光强度显著低于对照组,说明miR-106b-5p对KLF4的荧光素酶活性有显著抑制作用,此结果表明,miR-106b-5p与KLF4的3′UTR有靶向结合关系。此外,miR-106b-5p与KLF4基因3′UTR的具体结合位点需通过构建野生型与突变型重组双荧光素酶报告质粒来进一步探索。

4 结论

本研究利用qRT-PCR技术确定了miR-106b-5p在诱导分化第3天的山羊肌内脂肪细胞中表达量最高;山羊肌内脂肪细胞中转染miR-106b-5p inhibitor后发现脂滴聚积被抑制,而转染miR-106b-5p mimic后促进了脂滴聚积,推测miR-106b-5p可能对脂滴聚积起正向调控作用;山羊肌内脂肪细胞中转染miR-106b-5p inhibitor后KLF4表达量极显著升高,PPARγ表达量显著降低,转染miR-106b-5p mimic后LPLPPARγ表达量均极显著升高;本试验通过双荧光素酶报告初步证实了miR-106b-5p与KLF4的靶标关系,为进一步研究miR-106b-5p在脂肪细胞中的作用机制提供了试验基础。

参考文献
[1] ZHOU P, XU W Y, PENG X L, et al. Large-scale screens of miRNA-mRNA interactions unveiled that the 3'UTR of a gene is targeted by multiple miRNAs[J]. PLoS One, 2013, 8(7): e68204. DOI: 10.1371/journal.pone.0068204
[2] CHI S W, ZANG J B, MELE A, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps[J]. Nature, 2009, 460(7254): 479–486. DOI: 10.1038/nature08170
[3] HAFNER M, LANDTHALER M, BURGER L, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP[J]. Cell, 2010, 141(1): 129–141. DOI: 10.1016/j.cell.2010.03.009
[4] 张莹姣, 乔利英, 景炅婕, 等. miR-194-5p靶向调控BCKDHA基因的表达[J]. 畜牧兽医学报, 2017, 48(8): 1416–1423.
ZHANG Y J, QIAO L Y, JING J J, et al. miR-194-5p targets BCKDHA gene to regulate its expression[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(8): 1416–1423. (in Chinese)
[5] SHI C M, ZHANG M, TONG M L, et al. miR-148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through Wnt signaling[J]. Sci Rep, 2015, 5: 9930. DOI: 10.1038/srep09930
[6] CHEN L, DAI Y M, JI C B, et al. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity[J]. Mol Cell Endocrinol, 2014, 393(1-2): 65–74. DOI: 10.1016/j.mce.2014.05.022
[7] MA L, QIU H L, CHEN Z, et al. miR-25 modulates triacylglycerol and lipid accumulation in goat mammary epithelial cells by repressing PGC-1beta[J]. J Anim Sci Biotechnol, 2018, 9: 48. DOI: 10.1186/s40104-018-0262-0
[8] ZHANG Y Y, WANG Y N, WANG H B, et al. MicroRNA-224 impairs adipogenic differentiation of bovine preadipocytes by targeting LPL[J]. Mol Cell Probes, 2019, 44: 29–36. DOI: 10.1016/j.mcp.2019.01.005
[9] NI S J, WENG W W, XU M D, et al. miR-106b-5p inhibits the invasion and metastasis of colorectal cancer by targeting CTSA[J]. Onco Targets Ther, 2018, 11: 3835–3845. DOI: 10.2147/OTT.S172887
[10] ZHUANG M, ZHAO S L, JIANG Z, et al. MALAT1 sponges miR-106b-5p to promote the invasion and metastasis of colorectal cancer via SLAIN2 enhanced microtubules mobility[J]. EBioMedicine, 2019, 41: 286–298. DOI: 10.1016/j.ebiom.2018.12.049
[11] REN J Y, ZHANG J, XU N, et al. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease[J]. PLoS One, 2013, 8(12): e80738. DOI: 10.1371/journal.pone.0080738
[12] 张静, 李素芳, 陈红, 等. miR-106b-5p在调节内皮细胞基因表达谱中的作用[J]. 北京大学学报:医学版, 2019, 51(2): 221–227.
ZHANG J, LI S F, CHEN H, et al. Role of miR-106b-5p in the regulation of gene profiles in endothelial cells[J]. Journal of Peking University:Health Sciences, 2019, 51(2): 221–227. (in Chinese)
[13] TSUKITA S, YAMADA T, TAKAHASHI K, et al. MicroRNAs 106b and 222 improve hyperglycemia in a mouse model of insulin-deficient diabetes via pancreatic β-Cell Proliferation[J]. EBioMedicine, 2017, 15: 163–172. DOI: 10.1016/j.ebiom.2016.12.002
[14] WANG Q, LI Y C, WANG J H, et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130[J]. Proc Natl Acad Sci U S A, 2008, 105(8): 2889–2894. DOI: 10.1073/pnas.0800178105
[15] SHI C M, HUANG F Y, GU X H, et al. Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity[J]. Oncotarget, 2016, 7(26): 40830–40845. DOI: 10.18632/oncotarget.8518
[16] YE D, LOU G H, ZHANG T B, et al. MiR-17 family-mediated regulation of Pknox1 influences hepatic steatosis and insulin signaling[J]. J Cell Mol Med, 2018, 22(12): 6167–6175. DOI: 10.1111/jcmm.13902
[17] KROL J, LOEDIGE I, FILIPOWICZ W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9): 597–610. DOI: 10.1038/nrg2843
[18] SON Y H, KA S, KIM A Y, et al. Regulation of adipocyte differentiation via MicroRNAs[J]. Endocrinol Metab (Seoul), 2014, 29(2): 122–135. DOI: 10.3803/EnM.2014.29.2.122
[19] HA M, KIM V N. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Biol, 2014, 15(8): 509–524.
[20] LEUNG A K L, SHARP P A. Function and localization of microRNAs in mammalian cells[J]. Cold Spring Harb Symp Quant Biol, 2006, 71: 29–38. DOI: 10.1101/sqb.2006.71.049
[21] 赵艳艳.miR-142和miR-144靶向FoxO1基因调节绵羊前体脂肪细胞分化的研究[D].晋中: 山西农业大学, 2018.
ZHAO Y Y.Study on miR-142 and miR-144 down-regulation contributions to differentiation of ovine preadipocytes by targeting FoxO1 gene[D].Jinzhong: Shanxi Agricultural University, 2018.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1019021288.nh
[22] 张莹姣.MiR-194-5p靶向BCKDHA基因调控绵羊脂肪生成机制的研究[D].晋中: 山西农业大学, 2017.
ZHANG Y J.Studies on the regulation mechanism of MiR-194-5p by targeting BCKDHA gene in ovine adipogenesis[D]. Jinzhong: Shanxi Agricultural University, 2017.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1018050425.nh
[23] LING H Y, WEN G B, FENG S D, et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling[J]. Clin Exp Pharmacol Physiol, 2011, 38(4): 239–246. DOI: 10.1111/j.1440-1681.2011.05493.x
[24] QI R L, WANG J, WANG Q, et al. MicroRNA-425 controls lipogenesis and lipolysis in adipocytes[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(5): 744–755. DOI: 10.1016/j.bbalip.2019.02.007
[25] LI M H, LIU Z J, ZHANG Z Z, et al. miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D[J]. Biol Chem, 2015, 396(3): 235–244. DOI: 10.1515/hsz-2014-0241
[26] SHI X E, LI Y F, JIA L, et al. MicroRNA-199a-5p affects porcine preadipocyte proliferation and differentiation[J]. Int J Mol Sci, 2014, 15(5): 8526–8538. DOI: 10.3390/ijms15058526
[27] CHEN C, DENG Y, HU X G, et al. miR-128-3p regulates 3T3-L1 adipogenesis and lipolysis by targeting Pparg and Sertad2[J]. J Physiol Biochem, 2018, 74(3): 381–393. DOI: 10.1007/s13105-018-0625-1
[28] YU L X, ZHANG B L, YANG M Y, et al. MicroRNA -106b-5p promotes hepatocellular carcinoma development via modulating FOG2[J]. Onco Targets Ther, 2019, 12: 5639–5647. DOI: 10.2147/OTT.S203382
[29] 林森.KLF4对山羊肌内前体脂肪细胞分化的调控作用[D].成都: 西南民族大学, 2018.
LIN S.Regulation of KLF4 on intramuscular preadipocyte differentiation in goat[D].Chengdu: Southwest Minzu University, 2018.(in Chinese)
[30] JENO Y G, LEE J H, JI Y, et al. RNF20 functions as a transcriptional coactivator for PPARγ by promoting NCoR1 degradation in adipocytes[J]. Diabetes, 2020, 69(1): 20–34.
[31] 马雪瑶.Bta-miR-130调控秦川牛前体脂肪细胞分化的作用机制研究[D].杨凌: 西北农林科技大学, 2019.
MA X Y.The molecular mechanism of Bta-MiR-130 regulates preadipocyte differentiation in Qinchuan beef cattle[D]. Yangling: Northwest A & F University, 2019.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10712-1019845664.htm
[32] SHI H B, LUO J, ZHU J J, et al. PPARγ regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats[J]. PPAR Res, 2013, 2013: 310948.
[33] TONTONOZ P, SPIEGELMAN B M. Fat and Beyond:the diverse biology of PPARγ[J]. Annu Rev Biochem, 2008, 77: 289–312. DOI: 10.1146/annurev.biochem.77.061307.091829
[34] NIMONKAR A V, WELDON S, GODBOUT K, et al. A lipoprotein lipase-GPI-anchored high-density lipoprotein-binding protein 1 fusion lowers triglycerides in mice:Implications for managing familial chylomicronemia syndrome[J]. J Biol Chem, 2020, 295(10): 2900–2912. DOI: 10.1074/jbc.RA119.011079
[35] RUPPERT P M M, KERSTEN S. A lipase fusion feasts on fat[J]. J Biol Chem, 2020, 295(10): 2913–2914. DOI: 10.1074/jbc.H120.012744
[36] PÉREZ-TORRES I, GUTIÉRREZ-ALVAREZ Y, GUARNER-LANS V, et al. Intra-abdominal fat adipocyte hypertrophy through a progressive alteration of lipolysis and lipogenesis in metabolic syndrome rats[J]. Nutrients, 2019, 11(7): 1529. DOI: 10.3390/nu11071529