畜牧兽医学报  2020, Vol. 51 Issue (4): 701-712. DOI: 10.11843/j.issn.0366-6964.2020.04.006    PDF    
miR-33a靶向Lipin1和IRS2调节绵羊前体脂肪细胞分化的研究
王强, 潘洋洋, 乔利英, 刘建华, 赵弼时, 刘旭莹, 王凤, 梁煜, 刘文忠     
山西农业大学动物科技学院, 太谷 030801
摘要:旨在揭示miR-33a在绵羊前体脂肪细胞分化中的生物学功能。本研究以15日龄雄性绵羊背部皮下前体脂肪细胞为试验材料,所有的试验均设立3个重复;利用生物信息学软件预测miR-33a的靶基因,并通过双荧光素酶报告试验对预测的潜在靶基因进行验证;用qPCR和Western blotting分别检测miR-33a、Lipin1和IRS2及其编码蛋白的表达,以揭示miR-33a与其靶基因在绵羊前体脂肪细胞分化中的表达规律;慢病毒介导实现miR-33a的过表达和干扰后,检测Lipin1、IRS2和成脂标志基因的表达,并用油红O染色检测脂滴沉积能力,以解析miR-33a对其靶基因的调节机制。生物信息学分析发现,miR-33a与Lipin1和IRS2 3'-UTR都存在结合位点,miR-33a显著下调Lipin1和IRS2野生型双荧光质粒的相对荧光活性(P < 0.05);在绵羊前体脂肪细胞分化中,miR-33a与Lipin1和IRS2的表达趋势相反;过表达miR-33a后,显著下调了Lipin1(P < 0.01)和IRS2(P < 0.05)及其编码蛋白以及成脂标志基因的表达;干扰miR-33a后,这些基因和蛋白的表达则显著上调;过表达miR-33a减少了脂滴沉积,干扰miR-33a促进了脂滴沉积。在绵羊前体脂肪细胞分化中,miR-33a与Lipin1和IRS2的表达呈负相关。miR-33a靶向Lipin1和IRS2的3'-UTR抑制绵羊前体脂肪细胞分化和脂滴沉积。
关键词miR-33a    Lipin1    IRS2    绵羊    脂肪细胞分化    
miR-33a Regulates Ovine Preadipocyte Differentiation by Targeting Lipin1 and IRS2
WANG Qiang, PAN Yangyang, QIAO Liying, LIU Jianhua, ZHAO Bishi, LIU Xuying, WANG Feng, LIANG Yu, LIU Wenzhong     
College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
Abstract: The aim of this study was to reveal the biological functions of miR-33a during the differentiation of ovine preadipocytes. In this study, preadipocytes from the back fat of 15-day-old male lambs were used as research material. All the experiments in this study had 3 replicates. Bioinformatics software was used to predict the target genes of miR-33a. The potential target genes were verified by double luciferase reporter system. In order to reveal the expression pattern of miR-33a and its targeting genes during the differentiation of ovine preadipocytes, qPCR and Western blotting were used to detect the expressions of miR-33a, Lipin1, and IRS2 and proteins. In order to elucidate the regulatory mechanism of miR-33a on its target genes, miR-33a was overexpressed or interfered using lentivirus-mediated method. The expressions of Lipin1, IRS2 and adipogenic marker genes in ovine preadipocytes were detected. The lipid droplet deposition ability was measured by Oil Red O staining. The binding sites of miR-33a with 3'-UTR of Lipin1 and IRS2 were found using bioinformatics prediction. miR-33a significantly down-regulated the relative fluorescence activity of Lipin1 and IRS2 wild-type double fluorescent plasmids (P < 0.05). The expression levels of miR-33a and Lipin1, IRS2 exhibited opposite trends during ovine preadipocyte differentiation. The overexpression of miR-33a significantly down-regulated the expressions of Lipin1 (P < 0.01), IRS2 (P < 0.05) and their encoded proteins, and adipogenic marker genes. After the miR-33a was interfered, the expressions of these genes and proteins were significantly up-regulated. Overexpression of miR-33a reduced lipid droplet deposition, and interference of miR-33a promoted lipid droplet deposition. In conclusion, the expressions of miR-33a and Lipin1, IRS2 were negative correlated during ovine preadipocyte differentiation. miR-33a negatively regulates the differentiation of ovine preadipocytes and the lipid droplets deposition by targeting the 3'-UTR of Lipin1 and IRS2.
Key words: miR-33a    Lipin1    IRS2    sheep    adipocyte differentiation    

脂肪组织是重要的代谢器官,在维持机体能量平衡中发挥重要作用。机体过剩的能量主要以甘油三酯的形式储存在白色脂肪组织中,在哺乳动物中主要储存于皮下脂肪组织[1]。在规模化舍饲的情况下,绵羊快速生长发育的同时伴随着大量皮下脂肪的沉积。过量的皮下脂肪沉积不利于机体健康,降低皮下脂肪是肉用绵羊遗传改良的重要育种目标。因此,研究脂肪细胞分化和脂质沉积相关基因的调控机制尤为重要。

microRNA(miRNA)是一种内源性的、长约22 nt、进化中高度保守的非编码RNA。miRNA通常与其靶基因mRNA的3′-UTR结合,在转录后水平上降解mRNA或者抑制mRNA的翻译过程,因而在基因表达调控方面具有非常重要的作用[2]。miR-33包括miR-33a和miR-33b两个亚型,位于甾醇调节元件结合蛋白(sterol regulatory element-binding proteins, SREBPs)内含子区域,属于内含子miRNA[3]。最新研究发现,在遗传上缺失miR-33序列的小鼠表现出脂肪组织部分功能丧失、促进前体脂肪细胞的增殖、脂肪组织对脂质的摄取增加及脂解作用受损等现象[4]。然而,miR-33a对前体脂肪细胞分化和脂肪沉积的调控机制尚不完全清楚,研究miR-33a对脂肪组织脂质代谢的具体调控机制尤为重要。

脂素1基因(Lipin1)编码的蛋白参与多个组织中细胞脂质代谢的调控。首次从脂肪肝营养不良(fatty liver dystrophy, fld)的小鼠中发现了Lipin1,鉴定发现,Lipin1的无义突变是导致fld小鼠表型的主要原因[5]。fld小鼠在脂肪细胞分化和循环性高血脂症中表现出严重的缺陷[6-7]。在骨骼肌或白色脂肪组织中过表达Lipin1加剧了高脂饮食诱导的肥胖[8]。在高等生物中已发现编码Lipins家族蛋白(Lipin1、Lipin2和Lipin3)的3个基因[9]。Lipin1在机体脂肪代谢中的功能主要有:一是作为依赖Mg2+的磷脂酸磷酸酶1(phosphatidic acid phosphatase, PAP1),催化磷脂酸水解脱去磷酸生成二酰甘油,进而生成三酰甘油[10];二是作为转录辅激活因子与过氧化物酶增殖物激活受体γ(peroxisome proliferator-activated receptor gamma, PPARγ)和PPARγ辅激活因子1α(peroxisome proliferator-activated receptor-γ coactivator 1α, PGC-1α)相互作用,进而调节脂肪酸利用和脂肪合成基因的表达[11]。乙醇通过激活SREBP1和抑制肝AMP激活激酶(AMP-activated kinase, AMPK)诱导Lipin1表达上调,进而引起小鼠酒精性脂肪肝(alcoholic fatty liver, AFL)[12]。miR-203通过靶向Lipin1抑制肝脂质积累和酒精性脂肪肝的形成[13]。可见,Lipin1在脂质沉积中发挥着重要作用,而靶向Lipin1在脂肪组织代谢中的miRNA调节机制尚不清楚。

胰岛素信号转导途径是一种复杂的调控网络,以组织特异性的方式调节一系列代谢过程[14-16]。胰岛素受体底物(insulin receptor substrates, IRSs)家族共有6个成员(IRS1~IRS6)。IRS1和IRS2在促进CCAAT增强子结合蛋白α(CCAAT enhancer binding proteins α, C/EBPα)和PPARγ的表达和脂肪细胞分化中发挥关键作用[17]。miR-1704通过靶向IRS2影响鸡的体重[18]。miR-431通过靶向IRS2抑制人骨髓间充质干细胞(human bone marrow-derived mesenchymal stem cells, hMSCs)的成脂分化[19]。胰岛素信号转导途径是脂肪细胞脂质沉积中的重要途径之一,胰岛素受体底物2(IRS2)蛋白是胰岛素信号传导的重要蛋白。综上研究表明,IRS2参与人和小鼠脂肪组织脂质代谢,而IRS2在家畜中的研究报道较少。预测发现,miR-33a在绵羊IRS2的3′-UTR存在结合位点,为研究miR-33a和IRS2在绵羊脂肪组织脂质代谢中的作用提供了新的切入点。

综上所述,研究miR-33a与Lipin1和IRS2的调控关系以及miR-33a对绵羊前体脂肪细胞分化调控的分子机理,为揭示miR-33a调节绵羊脂肪代谢的机制,寻求利用分子育种手段改善绵羊脂肪沉积与生产性能提供科学依据。

1 材料与方法 1.1 试验材料 1.1.1 样品采集

采集约15日龄雄性绵羊的背部皮下脂肪组织用于前体脂肪细胞的培养。采样程序:屠宰后迅速去除皮毛,用无菌的剪刀、镊子剪下0.5 cm×0.5 cm的皮下脂肪组织块。用含有1%双抗(青霉素和链霉素)的无菌PBS溶液冲洗2~3遍后,将组织块浸泡于15 mL含有双抗的PBS溶液中。然后冷藏保存带回实验室。

1.1.2 主要材料与试剂

慢病毒载体pHBLV-U6-ZsGreen-T2A-puro、慢病毒包装质粒psPAX2和pMD2.G和HB-infusionTM无缝克隆试剂盒购自上海汉恒生物;胶回收试剂盒、质粒提取试剂盒购自Omega公司;LB固体培养基、液体培养基和5% BSA封闭液购自北京索莱宝公司;哺乳动物全蛋白提取试剂盒和BCA试剂盒购自江苏凯基生物公司;Trizol试剂、各种工具酶、反转录试剂盒和qPCR试剂盒购自TaKaRa公司;Lipo-fectamineTM2000转染试剂购自Invitrogen公司;用于Western blotting的抗体购自Abcam公司。

1.2 试验方法 1.2.1 miR-33a靶基因的预测

用miRDB、miRBase、TargetScan和miRWalk等4种生物信息学软件预测miR-33a的靶基因,发现miR-33a与Lipin1和IRS2的 3′-UTR都存在结合位点,说明Lipin1和IRS2都是miR-33a的潜在靶基因。

1.2.2 绵羊前体脂肪细胞的分离培养、诱导分化和油红O染色

按照参考文献[20-22]中的方法,在严格无菌的环境下,从绵羊背部皮下脂肪组织中分离得到前体脂肪细胞。在37 ℃,5% CO2的条件下,用含1%双抗和10%胎牛血清的高糖DMEM培养液培养绵羊前体脂肪细胞,每2 d更换1次培养基。当绵羊前体脂肪细胞汇合度达到80%左右时,用诱导分化培养液(在上述培养液中添加1 μmol·L-1地塞米松,1 mg·L-1胰岛素,0.5 mmol·L-1 IBMX)进行诱导分化。诱导分化12 d后将培养液弃掉,加入适量预冷的PBS清洗,再用4%多聚甲醛过夜固定细胞,弃掉固定液。加入适量PBS将固定液清洗干净后,加入油红O工作液染色2 h,弃掉油红O工作液。蒸馏水漂洗数次后,用倒置显微镜观察。

1.2.3 miR-33a、Lipin1和IRS2在绵羊前体脂肪细胞分化过程中的表达趋势

培养原代绵羊前体脂肪细胞,当细胞汇合度达到80%左右时,用诱导分化培养基进行诱导分化,收集诱导分化0、2、4、6、8、10和12 d细胞,提取总RNA和蛋白。用qPCR检测细胞中miR-33a、Lipin1和IRS2 mRNA的表达趋势,采用Western blotting检测Lipin1和IRS2蛋白的表达。

1.2.4 miR-33a过表达和shRNA干扰慢病毒载体的构建

根据miRBase数据库收录的miRNA数据,找出miR-33a的成熟序列。人工合成miR-33a成熟序列并在其上下游分别引入BamH Ⅰ和EcoR Ⅰ酶切位点及保护碱基,且在序列末端加入用来终止转录的poly T。将慢病毒载体pHBLV-U6-ZsGreen-T2A-Puro经酶切鉴定后,用T4 DNA连接酶将miR-33a成熟序列与线性化的pHBLV-U6进行连接。连接后转化DH5α大肠杆菌,取单克隆菌落进行测序鉴定。将构建成功的重组慢病毒过表达载体命名为pHB-miR-33a。

使用BLOCK-iTTM RNAi Designer软件设计2对miR-33a成熟序列的shRNA干扰序列和1对negative control序列(表 1),两端暴露两个酶切位点(BamH Ⅰ和EcoR Ⅰ)。正向序列和反相序列经退火后形成一条互补的双链。用T4 DNA连接酶将退火后的shRNA序列与酶切后线性化的慢病毒载体pHBLV-U6进行连接。将连接产物转化DH5α大肠杆菌,取单克隆菌落进行测序鉴定。构建miR-33a重组慢病毒干扰载体并命名为pHB-shRNA-miR-33a。

表 1 miR-33a的成熟序列和shRNA序列 Table 1 Mature sequence and shRNA sequence for miR-33a
1.2.5 引物设计与目的片段的扩增

根据NCBI中公布的绵羊Lipin1(登录号:NM_001280700.1)和IRS2(登录号:XM_027973785.1)mRNA序列,设计其3′-UTR野生型和突变型扩增引物,并使用Primer-BLAST验证引物的扩增特异性,并在引物上下游分别加入酶切位点,引物序列见表 2

表 2 Lipin1和IRS2的3′-UTR扩增引物 Table 2 Amplification primers for 3′-UTR of Lipin1 and IRS2

根据表 2引物序列,利用普通PCR扩增Lipin1和IRS2 3′-UTR野生型片段,利用重叠PCR扩增突变型片段(突变与miR-33a种子区结合位点的3个碱基)。使用MasterMix配制PCR反应体系(15.8 μL):2×Taq Master mix 7.6 μL,上、下游引物各0.6 μL,ddH2O 6 μL,cDNA 1 μL。PCR程序:95 ℃预变性5 min;95 ℃变性30 s,52 ℃退火30 s,72 ℃延伸30 s,33个循环;72 ℃ 5 min使产物延伸完整。扩增结束后进行琼脂糖凝胶电泳。

1.2.6 Lipin1和IRS2 3′-UTR双荧光素酶载体的构建及双荧光素酶活性检测

使用胶回收纯化试剂盒对PCR产物进行回收。用无缝克隆技术将胶回收产物连接在pmirGLO载体上(pmirGLO-Lipin1和pmirGLO-IRS2)。连接产物经感受态细胞DH5α转化后,涂板培养12 h后挑选阳性克隆,送公司测序。构建两个基因的3′-UTR双荧光素酶突变载体(pmirGLO-mut-Lipin1和pmirGLO-mut-IRS2)。

复苏293T细胞至12孔板,待细胞汇合度达到70%左右,用转染试剂进行转染操作。试验分5组,每组各设对照,空载体组(共转染pHB-miR-33a和pmirGLO,以共转染pHB-GFP和pmirGLO为其对照)、Lipin1野生型组(共转染pHB-miR-33a和pmirGLO-Lipin1,以共转染pHB-GFP和pmirGLO-Lipin1为其对照)、Lipin1突变组(共转染pHB-miR-33a和pmirGLO-mut-Lipin1,以共转染pHB-GFP和pmirGLO-mut-Lipin1为其对照)、IRS2野生型组(共转染pHB-miR-33a和pmirGLO-IRS2,以共转染pHB-GFP和pmirGLO-IRS2为其对照)、IRS2突变组(共转染pHB-miR-33a和pmirGLO-mut-IRS2,以共转染pHB-GFP和pmirGLO-mut-IRS2为其对照)。每组设3个重复。转染时加重组载体质粒300 ng,转染试剂1.5 μL。转染48 h后,用Dual-Luciferase Reporter Assay System试剂盒检测荧光素酶活性。

1.2.7 miR-33a过表达和干扰重组慢病毒感染绵羊前体脂肪细胞

将鉴定正确的慢病毒载体质粒(pHB-miR-33a、pHB-GFP、pHB-shRNA-miR-33a和pHB-shRNA-NC)分别与两个包装质粒(pSPAX2和pMD2.G)共转染293T细胞,48 h后生产出重组慢病毒,并测定其病毒滴度。试验分4组,pHB-miR-33a为过表达组,以pHB-GFP为其对照组;pHB-shRNA-miR-33a为干扰组,以pHB-shRNA -NC为其对照组。每组设3个重复。待绵羊前体脂肪细胞融合约60%,将重悬的慢病毒加入培养基中感染绵羊前体脂肪细胞。感染24 h后换液,48 h后在倒置荧光显微镜下观察细胞状态和绿色荧光。诱导分化12 d后的细胞,一部分提取RNA和蛋白质,另一部分用于油红O染色。

1.2.8 qPCR

采用stem-loop qPCR对miR-33a的表达量进行检测,以U6作为内参基因。根据绵羊Lipin1、IRS2、PPARγC/EBPαAdiponectinFABP4 mRNA CDS序列,以18S rRNA作为内参基因,设计qPCR引物,各引物序列见表 3

表 3 miR-33a和相关基因mRNA的qPCR引物 Table 3 The qPCR primers for miR-33a and related gene mRNAs
1.2.9 Western blotting检测

用全蛋白提取试剂盒分别提取各组细胞总蛋白,用BCA试剂盒及酶标仪测定总蛋白浓度。将提取的总蛋白与5×SDS-PAGE蛋白上样缓冲液以4:1比例混合,100 ℃变性10 min。用10%聚丙烯酰胺凝胶电泳90 min,4 ℃转膜90 min。5%的脱脂奶粉封闭1 h,4 ℃过夜孵育稀释2 000倍的一抗(兔源),PBST漂洗3次,每次5 min。室温遮光孵育稀释10 000倍的荧光二抗(兔源)1 h,重复上述漂洗步骤。最后将NC膜置于Odyssey Clx成像系统获取印记条带。

1.2.10 数据分析

双荧光素酶报告检测数据以萤火虫荧光素酶荧光强度与海肾荧光素酶荧光强度的比值作为荧光值。用t-检验分析荧光值的组间差异。用2-ΔΔCT法计算miRNA和mRNA的相对表达量[23]。对于miR-33a、Lipin1、IRS2和成脂标志基因的mRNA表达量进行独立样本t-检验。用GraphPad Prism 7.0绘制直方图和折线图。

2 结果 2.1 绵羊前体脂肪细胞的培养效果与成脂能力

从绵羊皮下脂肪组织中分离出的前体脂肪细胞呈梭形(图 1A)。分离出的前体脂肪细胞可分化为成熟脂肪细胞并产生大量脂滴(红色部分)(图 1B)。说明,从绵羊皮下脂肪组织中成功分离出的前体脂肪细胞可用于后续试验。

图 1 体外培养的绵羊前体脂肪细胞 Fig. 1 In vitro cultured ovine preadipocytes
2.2 miR-33a、Lipin1和IRS2在绵羊前体脂肪细胞分化过程中的表达趋势

随着绵羊前体脂肪细胞分化天数的增加,miR-33a的表达总体呈先下降后上升的趋势,在细胞分化第6天时下降到最低值。Lipin1与IRS2 mRNA和蛋白的表达总体呈先上升后下降的趋势,在细胞分化第6天时上升到最高值(图 2)。说明,在绵羊前体脂肪细胞分化过程中,miR-33a与Lipin1和IRS2存在负调节关系。同时发现,Lipin1主要在分化前中期发挥作用,而IRS2则在后期发挥作用。

A. miR-33a、Lipin1和IRS2 mRNA的表达;B. Lipin1和IRS2蛋白的表达;C. Lipin1和IRS2蛋白灰度值 A. Expression of miR-33a, Lipin1 and IRS2 mRNA; B. Expression of Lipin1 and IRS2 proteins; C. Lipin1 and IRS2 proteins gray value 图 2 绵羊前体脂肪细胞分化过程中miR-33a、Lipin1和IRS2 mRNA和蛋白的表达趋势 Fig. 2 Expression trends of miR-33a, Lipin1 and IRS2 mRNA and proteins during the differentiation of ovine preadipoctes
2.3 miR-33a与Lipin1和IRS2的靶标关系

预测发现,miR-33a的种子区序列(UGCAUUG)在Lipin1 CDS(911~916 nt)和3′-UTR(679~684 nt和1 469~1 474 nt)存在3个结合位点,在IRS2 3′-UTR(994~1 000 nt和1 532~1 538 nt)存在2个结合位点(图 3)。我们分别构建了含Lipin1 3′-UTR(679~684 nt)和IRS2 3′-UTR(1 532~1 538 nt)序列的双荧光素酶载体验证靶标关系。

红色标记的序列是miR-33a的种子区 The red-labeled sequences are the seed region of miR-33a 图 3 miR-33a与Lipin1和IRS2 mRNA预测的结合位点 Fig. 3 The predicted binding sites of miR-33a to Lipin1 and IRS2 mRNA

荧光活性检测结果表明,空载体组与其对照的荧光活性差异不显著,Lipin1和IRS2野生型组的荧光活性显著低于各自对照(P < 0.05),但Lipin1和IRS2突变组与其对照的荧光活性差异不显著(图 4)。说明,miR-33a在Lipin1和IRS2 3′-UTR存在结合位点,Lipin1和IRS2是miR-33a的靶基因。

*. P < 0.05 图 4 Lipin1和IRS2 3′-UTR重组双荧光质粒的相对荧光素酶活性 Fig. 4 The relative luciferase activity of recombinant dual-fluorescence plasmids containing 3′-UTR of Lipin1 or IRS2
2.4 miR-33a对绵羊前体脂肪细胞分化的调节

通过慢病毒介导实现miR-33a在绵羊前体脂肪细胞中的过表达和干扰。过表达miR-33a后(图 5A),miR-33a表达显著上调(P < 0.001)。干扰miR-33a后(图 5B),shRNA-1序列对miR-33a的表达无显著影响,但shRNA-2序列显著下调了miR-33a的表达(P < 0.05)。说明,成功实现了miR-33a的过表达和抑制。过表达miR-33a后,Lipin1(P < 0.01)、IRS2(P < 0.05)和成脂标志基因PPARγ(P < 0.001)、C/EBPα(P < 0.05)、Adiponectin(P < 0.05)和FABP4(P < 0.01)mRNA的表达显著下调(图 5C)。干扰miR-33a后,Lipin1(P < 0.01)、IRS2(P < 0.01)和成脂标志基因的表达则显著上调(图 5D)。这些结果说明,miR-33a抑制Lipin1、IRS2和成脂标志基因的表达,从而抑制绵羊前体脂肪细胞的分化。

A.过表达miR-33a(pHB-miR-33a)后miR-33a的相对表达;B.干扰miR-33a(shRNA-miR-33a)后miR-33a的相对表达;C.过表达miR-33a后Lipin1、IRS2和成脂标志基因的相对表达;D.干扰miR-33a后Lipin1、IRS2和成脂标志基因的相对表达。*. P < 0.05,**. P < 0.01,***. P < 0.001,下同 A. Relative expression of miR-33a after overexpressing miR-33a (pHB-miR-33a); B. Relative expression of miR-33a after interfering miR-33a (shRNA-miR-33a); C. The mRNA expression of Lipin1, IRS2 and adipogenic marker genes after overexpressing miR-33a; D. The mRNA expressions of Lipin1, IRS2 and adipogenic marker genes after interfering miR-33a. *. P < 0.05, **. P < 0.01, ***. P < 0.001, the same as below 图 5 过表达和干扰miR-33a后miR-33a、Lipin1、IRS2和成脂标志基因的相对表达 Fig. 5 Relative expressions of miR-33a and Lipin1, IRS2 and adipogenic marker genes after overexpressing or interfering miR-33a

另外,比较Lipin1和IRS2的表达(图 5)发现,过表达miR-33a后,Lipin1的表达量显著低于IRS2(P < 0.05),与图 2中分化12 d时的结果一致。而干扰miR-33a后,Lipin1的表达量显著高于IRS2(P < 0.05)。

Western blotting结果表明,过表达miR-33a后,Lipin1和IRS2蛋白的表达量都显著下调(P < 0.01)。干扰miR-33a后,Lipin1(P < 0.05)和IRS2(P < 0.01)蛋白的表达量均显著上调(图 6)。说明,miR-33a抑制Lipin1、IRS2 mRNA表达后,进一步下调了Lipin1和IRS2蛋白的表达。

A. Lipin1和IRS2蛋白的表达;B. Lipin1蛋白灰度值;C. IRS2蛋白灰度值。pHB-miR-33a.过表达miR-33a;pHB-GFP.对照;shRNA-miR-33a.干扰miR-33a;shRNA-NC. shRNA-对照。下同 A. Expression of Lipin1 and IRS2 proteins; B. Lipin1 protein gray value; C. IRS2 protein gray value. pHB-miR-33a. Overexpressing miR-33a; pHB-GFP. Negative control; shRNA-miR-33a. Interfering miR-33a; shRNA-NC. shRNA-negative control. The same as below 图 6 过表达和干扰miR-33a后Lipin1和IRS2蛋白的表达 Fig. 6 The expression of Lipin1 and IRS2 proteins after overexpressing or interfering miR-33a

油红O染色结果表明,过表达miR-33a后脂肪细胞脂滴积累减少,干扰miR-33a后脂滴积累则增加(图 7)。说明,miR-33a在抑制两个蛋白表达的基础上,导致脂滴沉积减少。

图 7 过表达和干扰miR-33a后油红O染色的脂肪细胞 Fig. 7 Oil Red O stained adipocytes after overexpressing or interfering miR-33a
3 讨论

目前,分离细胞常用的方法是胶原酶消化法,用胶原酶消化法已建立了多种动物前体脂肪细胞培养模型[24-27]。用胶原酶消化法从1周龄绵羊的尾部脂肪组织中获得前体脂肪细胞,呈纺锤形或三角形[28]。本研究也采用该方法分离了绵羊前体脂肪细胞,细胞呈梭形,与上述研究获得的细胞形状一致。用油红O染色可将细胞中的脂滴染成红色,且脂滴边界清楚可见,该方法可简便快速地分析甘油三酯的沉积程度[29-31]。背最长肌来源的前体脂肪细胞在分化12 d后形成了大量脂滴[32]。本研究也采用该方法鉴定了前体脂肪细胞的分化情况,结果表明,从15日龄绵羊的皮下脂肪组织获得的前体脂肪细胞可以产生大量的脂滴。

本研究发现,绵羊Lipin1 mRNA和蛋白表达量在前体脂肪细胞分化的第0~6天逐渐上升,并在第6天达到峰值,随后表达水平逐渐下降。说明Lipin1可能主要在绵羊脂肪细胞分化的前中期发挥生物学功能。小鼠Lipin1的不同剪接形式可产生两种亚型蛋白(Lipin1-α和Lipin1-β)。Lipin1-α的表达在3T3-L1细胞分化的第2天达到峰值, 随后逐渐下降;相反,Lipin1-β的表达在分化后10 h瞬时上升,然后在20 h下降到分化前水平,分化第2~6天又逐渐上升[33]。在Lipin1缺失的小鼠和细胞中发现,脂肪细胞的分化不能被诱导,表明Lipin1在早期形成脂肪的过程中起到了重要作用[34-36]。本研究结果与3T3-L1细胞分化过程中Lipin1的表达趋势相符。本研究中,在绵羊前体脂肪细胞分化过程中miR-33a与Lipin1和IRS2的表达趋势相反,说明分化中Lipin1和IRS2的表达可能受miR-33a调节。

研究表明,在遗传上缺失miR-33序列的小鼠脂肪组织中观察到前体脂肪细胞增殖增加、脂质摄取增加和脂质分解作用受损[4]。高脂饮食诱导草鱼肝中miR-33a、miR-30、miR-122和miR-16的表达降低,而SREBP1、PPARγ、肝X受体α和ATP结合盒转运体A1的表达增加,从而导致草鱼肝脂肪沉积[37],这说明miR-33a与脂肪代谢密切相关。因此,本研究先在理论上预测miR-33a可能靶向的影响脂肪代谢的基因,再通过双荧光素酶报告系统加以验证。结果表明,miR-33a靶向Lipin1和IRS2,可能调节前体脂肪细胞分化和脂肪沉积。

Lipin1作为转录辅激活因子与PPARγ和PGC-1α相互作用调节脂肪合成基因的表达[38-39]。前期研究表明,Lipin1 mRNA在绵羊的大网膜、小网膜、肠系膜、腹膜后、皮下、肾周和尾部脂肪组织中都表达,说明Lipin1直接或间接调节脂肪代谢[40]。在胚胎成纤维细胞中同时缺失IRS1和IRS2显著降低C/EBPαPPARγ mRNA和蛋白质水平,而导致胚胎成纤维细胞不能分化为脂肪细胞[17]。在山羊乳腺上皮细胞中,miR-181b一方面通过靶向IRS2抑制甘油三酯(triglyceride, TG)的合成,另一方面,通过自身及其靶基因IRS2调控Hippo信号通路上的多个基因抑制TG的合成[41]。这说明IRS2与脂肪沉积密切相关。本研究中,过表达miR-33a后,Lipin1和IRS2在绵羊前体脂肪细胞中的表达显著下降,诱导分化后脂滴的数量减少;干扰miR-33a后,结果相反。由此阐明了miR-33a靶向Lipin1和IRS2 3′-UTR负调节绵羊前体脂肪细胞分化和脂滴沉积。结合文献[41],也说明IRS2在调节脂肪代谢方面还受其他miRNA的调控。

经预测,miR-33a在Lipin1和IRS2 3′-UTR均有2个结合位点,而在前者的CDS区还有1个结合位点。本研究验证了miR-33a与2个靶基因3′-UTR其中一个结合位点的靶标关系,过表达和干扰miR-33a后发现,其对Lipin1的调节作用更强,可能与其在Lipin1上的结合位点较多,且这些位点间可能存在协同作用有关。关于miRNA与其靶基因结合位点的数目和区域与其调节作用大小间的关系值得进一步研究。

本试验研究miR-33a调节Lipin1和IRS2的机制所用材料是分化第12天的成熟脂肪细胞,结果表明,miR-33a对Lipin1的调节作用更强。但细胞分化中的表达趋势表明,前8 d Lipin1的表达量高于IRS2,此后则低于IRS2。这似乎说明如果用培养前8 d的材料验证其机制,有可能得出相反的结果,这是因为基因的表达往往有严格的时间特异性,对此有待进一步研究。

4 结论

经预测和验证,miR-33a与Lipin1和IRS2都存在结合位点。在绵羊前体脂肪细胞分化中,miR-33a与Lipin1和IRS2的表达呈负相关,且两个基因的表达存在一定的时序差异。miR-33a靶向Lipin1和IRS2抑制绵羊前体脂肪细胞的分化和脂滴沉积。

参考文献
[1] CHUSYD D E, WANG D H, HUFFMAN D M, et al. Relationships between rodent white adipose fat pads and human white adipose fat depots[J]. Front Nutr, 2016, 3: 10.
[2] PAN Y, JING J, QIAO L, et al. MiRNA-seq reveals that miR-124-3p inhibits adipogenic differentiation of the stromal vascular fraction in sheep via targeting C/EBPα[J]. Domest Anim Endocrinol, 2018, 65: 17–23.
[3] MARQUART T J, ALLEN R M, ORY D S, et al. miR-33 links SREBP-2 induction to repression of sterol transporters[J]. Proc Natl Acad Sci U S A, 2010, 107(27): 12228–12232. DOI: 10.1073/pnas.1005191107
[4] PRICE N L, SINGH A K, ROTLLAN N, et al. Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance[J]. Cell Rep, 2018, 22(8): 2133–2145. DOI: 10.1016/j.celrep.2018.01.074
[5] PÉTERFY M, PHAN J, XU P, et al. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin[J]. Nat Genet, 2001, 27(1): 121–124. DOI: 10.1038/83685
[6] REUE K, PÉTERFY M. Mouse models of lipodystrophy[J]. Curr Atheroscler Rep, 2000, 2(5): 390–396. DOI: 10.1007/s11883-000-0077-1
[7] REUE K, XU P, WANG X P, et al. Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene[J]. J Lipid Res, 2000, 41(7): 1067–1076.
[8] PHAN J, REUE K. Lipin, a lipodystrophy and obesity gene[J]. Cell Metab, 2005, 1(1): 73–83. DOI: 10.1016/j.cmet.2004.12.002
[9] CSAKI L S, DWYER J R, FONG L G, et al. Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling[J]. Prog Lipid Res, 2013, 52(3): 305–316. DOI: 10.1016/j.plipres.2013.04.001
[10] HAN G S, WU W I, CARMAN G M. The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme[J]. J Biol Chem, 2006, 281(14): 9210–9218. DOI: 10.1074/jbc.M600425200
[11] FINCK B N, GROPLER M C, CHEN Z J, et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway[J]. Cell Metab, 2006, 4(3): 199–210. DOI: 10.1016/j.cmet.2006.08.005
[12] HU M, WANG F M, LI X, et al. Regulation of hepatic lipin-1 by ethanol:role of AMP-activated protein kinase/sterol regulatory element-binding protein 1 signaling in mice[J]. Hepatology, 2012, 55(2): 437–446. DOI: 10.1002/hep.24708
[13] CHENG X Y, LIU J D, LU X Y, et al. miR-203 inhibits alcohol-induced hepatic steatosis by targeting Lipin1[J]. Front Pharmacol, 2018, 9: 275. DOI: 10.3389/fphar.2018.00275
[14] ZHANG J J, LIU F. Tissue-specific insulin signaling in the regulation of metabolism and aging[J]. IUBMB Life, 2014, 66(7): 485–495. DOI: 10.1002/iub.1293
[15] LEE S, DONG H H. FoxO integration of insulin signaling with glucose and lipid metabolism[J]. J Endocrinol, 2017, 233(2): R67–R79. DOI: 10.1530/JOE-17-0002
[16] PAYANKAULAM S, RAICU A M, ARNOSTI D N. Transcriptional regulation of INSR, the insulin receptor gene[J]. Genes (Basel), 2019, 10(12): 984. DOI: 10.3390/genes10120984
[17] MIKI H, YAMAUCHI T, SUZUKI R, et al. Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation[J]. Mol Cell Biol, 2001, 21(7): 2521–2532. DOI: 10.1128/MCB.21.7.2521-2532.2001
[18] WANG Y C, WANG S H, WANG S H, et al. Target gene identification and functional characterization of miR-1704 in chicken[J]. Anim Biotechnol, 2019, 30: 1–8. DOI: 10.1080/10495398.2017.1390475
[19] WANG Y L, YANG L, LIU X F, et al. miR-431 inhibits adipogenic differentiation of human bone marrow-derived mesenchymal stem cells via targeting insulin receptor substance 2[J]. Stem Cell Res Ther, 2018, 9(1): 231.
[20] PU Y, VEIGA-LOPEZ A. PPARγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes[J]. Cell Mol Biol Lett, 2017, 22: 6. DOI: 10.1186/s11658-017-0037-1
[21] DENG K P, REN C F, LIU Z F, et al. Characterization of RUNX1T1, an adipogenesis regulator in ovine preadipocyte differentiation[J]. Int J Mol Sci, 2018, 19(5): 1300. DOI: 10.3390/ijms19051300
[22] DENG K P, REN C F, FAN Y X, et al. YAP1 regulates PPARG and RXR alpha expression to affect the proliferation and differentiation of ovine preadipocyte[J]. J Cell Biochem, 2019, 120(12): 19578–19589. DOI: 10.1002/jcb.29265
[23] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402–408. DOI: 10.1006/meth.2001.1262
[24] 郭红芳, 昝林森, 孙永刚. 牛前体脂肪细胞的分离培养及诱导分化[J]. 西北农林科技大学学报:自然科学版, 2014, 42(2): 1–6, 12.
GUO H F, ZAN L S, SUN Y G. Primary culture and differentiation of bovine preadipocytes[J]. Journal of Northwest A&F University: Natural Science Edition, 2014, 42(2): 1–6, 12. (in Chinese)
[25] YU H, EMONT M, JUN H, et al.Isolation and differentiation of murine primary brown/beige preadipocytes[M]//BUNNELL B A, GIMBLE J M.Adipose-Derived Stem Cells: Methods and Protocols.New York: Humana Press, 2018: 273-282.
[26] GAO W, KONG X X, YANG Q.Isolation, primary culture, and differentiation of preadipocytes from mouse brown adipose tissue[M]// WU J.Thermogenic Fat: Methods and Protocols.New York: Humana Press, 2017: 3-8.
[27] DING F, LI Q Q, LI L, et al. Isolation, culture and differentiation of duck (Anas platyrhynchos) preadipocytes[J]. Cytotechnology, 2015, 67(5): 773–781. DOI: 10.1007/s10616-014-9715-2
[28] SHI T, YAN X R, QIAO L Y, et al. MiR-330-5p negatively regulates ovine preadipocyte differentiation by targeting branched-chain aminotransferase 2[J]. Anim Sci J, 2018, 89(6): 858–867. DOI: 10.1111/asj.12995
[29] RAMÍREZ-ZACARÍAS J L, CASTRO-MUÑOZLEDO F, KURI-HARCUCH W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O[J]. Histochemistry, 1992, 97(6): 493–497. DOI: 10.1007/BF00316069
[30] RIVA G, VILLANOVA M, CIMA L, et al. Oil Red O is a useful tool to assess donor liver steatosis on frozen sections during transplantation[J]. Transplant Proc, 2018, 50(10): 3539–3543. DOI: 10.1016/j.transproceed.2018.06.013
[31] MEHLEM A, HAGBERG C E, MUHL L, et al. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease[J]. Nat Protoc, 2013, 8(6): 1149–1154. DOI: 10.1038/nprot.2013.055
[32] PAN Y Y, JING J J, QIAO L Y, et al. miR-124-3p affects the formation of intramuscular fat through alterations in branched chain amino acid consumption in sheep[J]. Biochem Biophys Res Commun, 2018, 495(2): 1769–1774. DOI: 10.1016/j.bbrc.2017.12.046
[33] PÉTERFY M, PHAN J, REUE K. Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis[J]. J Biol Chem, 2005, 280(38): 32883–32889. DOI: 10.1074/jbc.M503885200
[34] SUVIOLAHTI E, REUE K, CANTOR R M, et al. Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism[J]. Hum Mol Genet, 2006, 15(3): 377–386.
[35] KANG E S, PARK S E, HAN S J, et al. LPIN1 genetic variation is associated with rosiglitazone response in type 2 diabetic patients[J]. Mol Genet Metab, 2008, 95(1-2): 96–100. DOI: 10.1016/j.ymgme.2008.06.011
[36] RYU D, OH K J, JO H Y, et al. TORC2 regulates hepatic insulin signaling via a mammalian phosphatidic acid phosphatase, LIPIN1[J]. Cell Metab, 2009, 9(3): 240–251. DOI: 10.1016/j.cmet.2009.01.007
[37] TANG T, HU Y, PENG M, et al. Effects of high-fat diet on growth performance, lipid accumulation and lipid metabolism-related MicroRNA/gene expression in the liver of grass carp (Ctenopharyngodon idella)[J]. Comp Biochem Physiol Part B:Biochem Mol Biol, 2019, 234: 34–40. DOI: 10.1016/j.cbpb.2019.04.006
[38] KIM H E, BAE E, JEONG D Y, et al. Lipin1 regulates PPARγ transcriptional activity[J]. Biochem J, 2013, 453(1): 49–60. DOI: 10.1042/BJ20121598
[39] BOU KHALIL M, BLAIS A, FIGEYS D, et al. Lipin-the bridge between hepatic glycerolipid biosynthesis and lipoprotein metabolism[J]. Biochim Biophys Acta, 2010, 1801(12): 1249–1259. DOI: 10.1016/j.bbalip.2010.07.008
[40] 魏琳琳, 高晋生, 王景霖, 等. 绵羊LPIN1基因的克隆和mRNA表达研究[J]. 畜牧兽医学报, 2013, 44(9): 1371–1379.
WEI L L, GAO J S, WANG J L, et al. Study on the cloning and ontogenetic mRNA expression of ovine LPIN1 gene[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(9): 1371–1379. (in Chinese)
[41] CHEN Z, SHI H P, SUN S, et al. MicroRNA-181b suppresses TAG via target IRS2 and regulating multiple genes in the Hippo pathway[J]. Exp Cell Res, 2016, 348(1): 66–74.