畜牧兽医学报  2020, Vol. 51 Issue (11): 2710-2719. DOI: 10.11843/j.issn.0366-6964.2020.11.010    PDF    
整合素αv在牦牛繁殖周期输卵管不同部位中的表达与定位
杨珊珊, 何翃闳, 潘阳阳, 段宏伟, 刘敏清, 高泽川, 赵凌, 韩小红, 王亚营, 崔燕, 余四九     
甘肃农业大学动物医学院 甘肃省牛羊胚胎工程技术研究中心, 兰州 730070
摘要:旨在探究整合素αv在牦牛繁殖周期输卵管不同部位的表达差异,为进一步了解整合素αv在牦牛生殖过程中发挥的作用提供理论依据。本研究采集卵泡期、黄体期和妊娠期健康母牦牛(3~6岁)的输卵管伞部、壶腹部和峡部样品,将卵泡期、黄体期和妊娠期输卵管分别按照伞部、壶腹部和峡部分为9组,采用实时荧光定量PCR(qRT-PCR)和蛋白免疫印迹法(Western-blotting,WB)检测整合素αv基因和蛋白的表达情况,运用免疫组织化学法检测整合素αv的定位。结果表明:1)qRT-PCR结果显示,在卵泡期,整合素αv基因在输卵管伞部的表达量最高,极显著高于壶腹部和峡部(P < 0.01);在黄体期,整合素αv基因在输卵管峡部的表达量最高,极显著高于伞部和壶腹部(P < 0.01);在妊娠期,整合素αv基因在输卵管伞部的表达量最高,极显著高于壶腹部和峡部(P < 0.01)。2)Western-blotting结果显示,在卵泡期,整合素αv蛋白在输卵管伞部的表达量最高,极显著高于壶腹部和峡部(P < 0.01);在黄体期,整合素αv蛋白在输卵管峡部的表达量最高,极显著高于伞部和壶腹部(P < 0.01);在妊娠期,整合素αv蛋白在输卵管峡部和伞部的表达差异不显著,但二者极显著高于壶腹部(P < 0.01)。3)免疫组织化学结果显示,整合素αv主要分布于输卵管伞部、壶腹部和峡部的纤毛细胞、分泌细胞、基细胞、肌层和浆液腺中。结果显示,整合素αv在牦牛繁殖周期输卵管不同部位中的表达存在显著差异,说明其可能参与了牦牛受精及早期胚胎发育等一系列生殖过程,为牦牛的繁殖性能研究提供了基础资料。
关键词整合素αv    牦牛    输卵管    繁殖周期    表达    
Expression and Localization of Integrin αv in Different Parts of the Fallopian Tube in Reproduction Cycle of Yak
YANG Shanshan, HE Honghong, PAN Yangyang, DUAN Hongwei, LIU Minqing, GAO Zechuan, ZHAO Ling, HAN Xiaohong, WANG Yaying, CUI Yan, YU Sijiu     
Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
Abstract: The objective of this study was to explore the expression differences of integrin αv in different parts of the fallopian tube at different reproduction stages of yak, and provide some important theoretical foundations for understanding the effect of integrin αv on the reproductive performance of yak. The samples of the tubal umbrella, ampulla, and isthmus of healthy female yaks (3-6 years old) during follicular, luteal and pregnancy stages were collected, the fallopian tubes of the follicular phase, the luteal phase and the pregnancy phase were divided into 9 groups according to the umbrella, ampulla and isthmus. Real-time PCR (qRT-PCR) and Western-blotting (WB) were used to detect the expression of integrin αv gene and protein. The expression of integrin αv protein was localized by immunohistochemistry. Results: 1) qRT-PCR results showed that, during the follicular phase, the expression of the integrin αv gene in the umbrella of the fallopian tube was the highest and extremely significantly higher than those in the ampulla and isthmus (P < 0.01). During the luteal phase, the expression of the integrin αv gene in the isthmus of the fallopian tube was the highest and extremely significantly higher than those in the umbrella and ampulla (P < 0.01). During the pregnancy phase, the expression of the integrin αv gene in the umbrella of the fallopian tube was the highest and extremely significantly higher than those in the ampulla and isthmus (P < 0.01). 2) Western-blotting results showed that, during the follicular phase, the expression of integrin αv protein in the umbrella of the fallopian tube was the highest and extremely significantly higher than those in the ampulla and isthmus (P < 0.01). During the luteal phase, the expression of integrin αv protein in the isthmus of the fallopian tube was the highest and extremely significantly higher than those in the umbrella and ampulla (P < 0.01). During the pregnancy phase, the expression of integrin αv protein in tubal isthmus and umbrella was not significantly different, but these were extremely significantly higher than that in the ampulla (P < 0.01). 3) The results of immunohistochemistry showed that integrin αv protein was positively expressed in ciliated cells, secretory cells, basal cells, muscular layers and serous glands of the fallopian tube umbrella, ampulla and isthmus. The results indicated that the expression of integrin αv in different parts of the fallopian tube at different reproduction stages of the yak were significantly different, which showed that αv might be involved in a series of reproductive processes such as fertilization and early embryonic development, the results provided basic information for the study of yak's reproductive performance.
Key words: integrin αv    yak    fallopian tube    reproduction cycle    expression    

牦牛是青藏高原上的一种特有牛种,与藏民的生产生活密切相关[1]。牦牛一般生活在海拔3 000 m以上空气稀薄、氧分压低的地区,被誉为“高原之舟”,它以极强的生命力和适应性丰富着青藏高原地区的物质和文化生活[2-3]。在哺乳动物中,输卵管在繁殖方面起着举足轻重的作用,为卵母细胞的生长和成熟、精子储存和获能、受精以及早期胚胎的发育提供了最佳环境[4-5]。输卵管根据其形态特征可分为伞部、壶腹部和峡部。黏膜形成了纵行的初级皱襞,伞部和壶腹部皱襞高而窄,分支多,而峡部皱襞矮而宽,分支少[6]。输卵管伞部的主要功能是拾卵,壶腹部和峡部有利于卵子在输卵管中顺利转运以及精子顺利通过子宫颈、宫管连接部和壶峡连接部这三大障碍,最终精、卵在输卵管壶腹部相遇并结合,整体为受精和胚胎早期的正常发育提供了良好的环境[7-8]

整合素家族发现于20世纪80年代中期,是细胞黏附分子家族成员之一,其为一类介导细胞间及细胞外基质相互作用的跨膜糖蛋白。目前,已发现18种不同的α亚单位和8种β亚单位,共形成24种功能不同的整合素分子[9]。整合素可以识别、结合细胞外基质中相应的配体,为细胞黏附提供附着点,调控细胞的运动、增殖和凋亡[10-11]。整合素αv属于整合素家族亚单位之一,有研究表明,整合素αv在人输卵管上皮细胞有表达,可特异性地识别RGD(精氨酸-甘氨酸-天冬氨酸)序列,参与细胞间的黏附,使精子与卵子在输卵管中黏附融合,从而完成受精和早期胚胎的发育过程[12-14]。Van Waes和杨筱祎等[15-16]研究发现,在人生殖过程中,输卵管黏膜上皮细胞的分泌活动参与了受精和胚胎早期发育等重要事件,而整合素能够促进输卵管黏膜分泌营养成分、精子头部穿透进入卵母细胞以及受精卵穿透蜕膜层和胎盘滋养层。另外,有报道称,整合素αv蛋白存在于猪卵母细胞表面,并作为精子受体参与精卵结合过程[17]。在猪和绵羊复杂的胚胎植入过程中,整合素αv通过与细胞外基质分子和其他配体的相互作用,介导子宫上皮细胞和滋养外胚层中的细胞信号,从而有利于胚卵对内膜的黏附并促进着床[18-20]

上述研究表明,整合素αv在雌性动物生殖过程中可能起着重要作用。然而,迄今为止,虽然已知整合素与某些哺乳动物卵母细胞、精子的质膜和输卵管等有关,但它在牦牛繁殖周期输卵管不同部位表达的研究在国内外尚未见报道。因此,本试验通过采用实时荧光定量PCR、免疫蛋白印迹法和免疫组织化学染色法对整合素αv基因及蛋白在母牦牛繁殖周期输卵管不同部位的表达和定位进行研究,了解整合素αv基因及蛋白在牦牛输卵管不同部位的表达情况,确定其是否参与牦牛受精及早期胚胎发育等生殖过程,以期阐明整合素αv在牦牛输卵管中的作用,为进一步探讨整合素αv在牦牛生殖过程中发挥的作用提供理论依据。

1 材料与方法 1.1 试验材料

选取健康卵泡期、黄体期和妊娠期母牦牛(3~6岁)各6头(样品采于青海省西宁市乐家湾屠宰场),颈动脉放血处死,并分别收集卵泡期后期(有优势卵泡>6 mm)、黄体期后期(可见多个黄体)同侧以及妊娠期早期(胚胎约长2~3 cm)妊娠侧[21]的输卵管伞部、壶腹部和峡部样品,并用生理盐水冲洗干净,一部分组织样品用锡箔纸包裹放进有标记的布袋中,置于液氮中运回实验室,-80 ℃保存;另一部分置于4%多聚甲醛溶液中,4 ℃保存。

1.2 主要试剂和仪器

整合素αv抗体(bs-2203R)、二抗(Goat Anti-Rabbit IgG,北京博奥森生物技术有限公司);β-actin(13E5)Rabbit mAb (Cell Signaling公司);RNA提取试剂盒(Omega公司,北京);两步法反转录试剂盒(Promega公司,美国);蛋白裂解液(索莱宝公司,北京);DAB显色液、显影液、定影液以及BeyoEcl曝光液(Beyotime公司);Go Taq® Green Master Mix 2× (Promega公司,美国);SYBR® Premix Ex TaqTMEraserTM(Tli RNaseH Plus,宝生物(TaKaRa)公司);阳离子防脱片(北京中杉金桥生物技术有限公司);免疫组化染色试剂盒(北京博奥森生物技术有限公司);PCR仪(T100TMThermal Cycler,BioRad公司);实时荧光定量PCR仪(Roche生物科技公司);显微照相装置(DP71)(Olympus公司,日本)。

1.3 qRT-PCR检测牦牛整合素αv基因的表达

将保存于-80 ℃卵泡期、黄体期和妊娠期输卵管不同部位的组织研成粉末状,并称量0.1 g后装入标记好的无RNA酶EP管中,用RNA提取试剂盒提取总RNA(表 1)。按照反转录试剂盒步骤在PCR仪中将RNA反转录为cDNA,测其浓度并存于-20 ℃备用。根据GenBank数据库中牛整合素αv基因(NM_174367)和牦牛β-actin基因(JF830811)的序列,利用Primer Premier 5.0软件设计整合素αvβ-actin的引物(表 2,整合素αv引物浓度为10 μmol·L-1β-actin引物浓度为10 μmol·L-1),并由华大基因科技有限公司合成。将卵泡期、黄体期和妊娠期输卵管分别按照伞部、壶腹部和峡部分为9组,每组3个复孔,分别为待测孔、内参对照孔和空白对照孔,进行实时荧光定量PCR扩增。反应总体系为20 μL:cDNA 1 μL,上下游引物各0.8 μL,SYBR® Premix Ex TaqTMEraserTM 10 μL,无菌去离子水7.4 μL。反应条件:预变性(95 ℃)4 min;变性(95 ℃)30 s,退火(56 ℃)30 s,延伸(72 ℃)5 min,40个循环。每个样品重复3次。

表 1 所提取RNA的质量 Table 1 RNA quality extracted in this study
表 2 目的基因和内参基因引物序列 Table 2 Primer sequences of target gene and housekeeping gene
1.4 Western-blotting检测牦牛整合素αv蛋白的表达

将-80 ℃保存的卵泡期、黄体期和妊娠期牦牛输卵管伞部、壶腹部和峡部组织样品研磨成粉末,称取0.1 g并加入裂解液(1 mL RIPA+10 μL PMSF),涡旋后在冰上裂解1 h,1 500 r·min-1离心5 min后,吸取上清,提取总蛋白,于-80 ℃保存。将不同时期输卵管不同部位的蛋白样品与4×蛋白上样缓冲液按照3:1的比例配置蛋白工作液,金属浴变性(100 ℃,10 min),冰上静置5 min。制备好SDS-PAGE胶并进行预电泳(70 V)20 min,再将蛋白质进行聚丙烯酰胺凝胶电泳分离;依次按照滤纸、胶、PVDF膜、滤纸从下到上的顺序将其固定于转膜夹子上,并将蛋白转至PVDF膜;用5%脱脂奶粉溶液封闭1.5 h;一抗(整合素αv抗体:PBST= 1:1 000;β-actin(13E5)Rabbit mAb:PBST=1:1 000)孵育,4 ℃过夜,PBST清洗3次,每次10 min;二抗(Goat Anti-Rabbit IgG:PBST=1:1 000)孵育2 h,PBST清洗3次,每次10 min;曝光显影与定影,扫描蛋白印迹条带,并用ImageJ测灰度值。

1.5 免疫组织化学法对牦牛整合素αv蛋白进行定位

根据常规方法制作4 μm石蜡切片,脱蜡至水,蒸馏水清洗5 min,PBS浸泡5 min。将切片置于柠檬酸盐缓冲液(0.1 mol·L-1)中抗原修复,高火加热至沸腾后转中高火加热10 min,冷却至室温。滴加3% H2O2溶液进行阻断,在37 ℃烘箱中,孵育15 min,PBS清洗3次,每次3 min。滴入SP试剂盒A液进行封闭,室温作用15 min。添加一抗(整合素αv抗体:PBS=1:250)孵育,4 ℃过夜,阴性对照组用PBS代替一抗工作液,阳性反应与阴性对照组分开清洗,PBS清洗3次,每次3 min。添加SP试剂盒B液孵育,37 ℃烘箱孵育15 min,PBS清洗3次,每次3 min。添加SP试剂盒C液,37 ℃烘箱孵育15 min,PBS清洗3次,每次3 min。DAB显色液适度显色,自来水冲洗10 min,蒸馏水浸泡1 min终止显色。苏木精复染并通过盐酸酒精分化。脱水透明,树脂封片,用显微镜照相。

1.6 数据分析

利用SPSS 21.0软件对试验所得数据进行单因素方差分析,分析不同繁殖周期输卵管不同部位中整合素αv基因及蛋白的表达差异,相对表达水平表示为“平均值±标准差(Mean±SE)”,每组至少3个重复。P≥0.05为差异不显著,0.01≤P < 0.05为差异显著,P < 0.01为差异极显著。

2 结果 2.1 qRT-PCR检测牦牛整合素αv基因的表达

实时荧光定量试验结果表明,整合素αv基因和β-actin基因熔解曲线中的熔解峰单一且无杂峰,验证了整合素αvβ-actin的引物特异性良好(图 1a)。通过SPSS 21.0软件对实时荧光定量CT值进行分析发现,在卵泡期,整合素αv基因在输卵管伞部的表达量最高,壶腹部表达最低,且二者间差异极显著(P < 0.01);在黄体期,整合素αv基因在输卵管峡部表达量最高,伞部表达量最低, 且二者间差异极显著(P < 0.01);在妊娠期,整合素αv基因在输卵管伞部表达量最高,壶腹部表达量最低, 且二者间差异极显著(P < 0.01),见图 1b~d

a.整合素αvβ-actin的熔解曲线;b.整合素αv基因在卵泡期输卵管伞部、壶腹部、峡部中的表达;c.整合素αv基因在黄体期输卵管伞部、壶腹部、峡部中的表达;d.整合素αv基因在妊娠期输卵管伞部、壶腹部、峡部中的表达。不同大写字母表示差异极显著(P < 0.01);不同的小写字母表示差异显著(0.01≤P < 0.05)。图 2 a. Melting curve of integrin αv and β-actin genes; b. The expression of integrin αv gene in tubal umbrella, ampulla and isthmus during the follicular phase; c. The expression of integrin αv gene in tubal umbrella, ampulla and isthmus during the luteal phase; d. The expression of integrin αv gene in tubal umbrella, ampulla and isthmus during the pregnancy phase. The different uppercase letters indicate extremely significant difference (P < 0.01); the different lowercase letters indicate significant difference (0.01≤P < 0.05). The same as figure 2 图 1 牦牛整合素αv基因在繁殖周期输卵管不同部位中的表达 Fig. 1 The expression of integrin αv gene in different parts of the fallopian tube at different reproductive stages of yak
2.2 Western-blotting检测牦牛整合素αv蛋白的表达

Western-blotting试验表明,整合素αv蛋白在不同时期输卵管的不同部位均有表达,且存在表达差异(图 2a)。在卵泡期,整合素αv蛋白在输卵管伞部的表达量最高,壶腹部表达量最低,且二者间差异极显著(P < 0.01);在黄体期,整合素αv蛋白在输卵管峡部表达量最高,伞部表达量最低, 且二者间差异极显著(P < 0.01);在妊娠期,整合素αv蛋白在输卵管峡部和伞部的表达差异不显著,但二者的表达量极显著高于壶腹部(P < 0.01),见图 2b~d

a.整合素αv和β-actin蛋白的免疫蛋白印迹条带:1~3.卵泡期输卵管伞部、壶腹部和峡部;4~6.黄体期输卵管伞部、壶腹部和峡部;7~9.妊娠期输卵管伞部、壶腹部和峡部;b.整合素αv蛋白在卵泡期输卵管伞部、壶腹部、峡部中的表达;c.整合素αv蛋白在黄体期输卵管伞部、壶腹部、峡部中的表达差异;d.整合素αv蛋白在妊娠期输卵管伞部、壶腹部、峡部中的表达差异 a. The Western-blotting bands of integrin αv and β-actin proteins: 1-3.Tubal umbrella, ampulla and isthmus during the follicular phase; 4~6. Tubal umbrella, ampulla and isthmus during the luteal phase; 7~9. Tubal umbrella, ampulla and isthmus during the pregnancy phase; b. The expression of integrin αv protein in tubal umbrella, ampulla and isthmus during the follicular phase; c. The expression of integrin αv protein in tubal umbrella, ampulla and isthmus during the luteal phase; d. The expression of integrin αv protein in tubal umbrella, ampulla and isthmus during the pregnancy phase 图 2 牦牛整合素αv蛋白在繁殖周期输卵管不同部位中的表达差异 Fig. 2 The expression of integrin αv protein in different parts of the fallopian tube at different reproductive stages of yak
2.3 免疫组织化学法对牦牛整合素αv蛋白的定位

免疫组织化学试验结果发现,阳性产物呈棕黄色,表明整合素αv在输卵管中有分布,在卵泡期、黄体期和妊娠期,整合素αv在输卵管伞部、壶腹部和峡部的纤毛细胞、分泌细胞、基细胞、肌层和浆液腺中均有分布(图 3a-i);阴性对照试验未见棕黄色阳性表达(图 3j-l)。

a.卵泡期输卵管伞部;b.卵泡期输卵管壶腹部;c.卵泡期输卵管峡部;d.黄体期输卵管伞部;e.黄体期输卵管壶腹部;f.黄体期输卵管峡部;g.妊娠期输卵管伞部;h.妊娠期输卵管壶腹部;i.妊娠期输卵管峡部;j.输卵管伞部阴性对照;k.输卵管壶腹部阴性对照;l.输卵管峡部阴性对照。LP.固有层;TM.肌层;EP.黏膜上皮;P.初级皱襞;S.次级皱襞;C.纤毛细胞。黑色五角星为分泌细胞;黑色细箭头为基细胞;黑色三角形为浆液腺 a. Tubal umbrella during the follicular phase; b. Tubal ampulla during the follicular phase; c. Tubal isthmus during the follicular phase; d. Tubal umbrella during the luteal phase; e. Tubal ampulla during the luteal phase; f. Tubal isthmus during the luteal phase; g. Tubal umbrella during the pregnancy phase; h. Tubal ampulla during the pregnancy phase; i. Tubal isthmus during the pregnancy phase; j. Tubal umbrella negative control; k. Tubal ampulla negative control; l. Tubal isthmus negative control. LP. Lamina propria; TM. Muscular layer; EP. Mucosal epithelium; P. Primary wrinkles; S. Secondary wrinkles; C. Ciliated cell. Black five-pointed star. Secretory cell; Black thin arrow. Basal cell; Black triangle. Serous gland 图 3 牦牛整合素αv蛋白在繁殖周期输卵管不同部位中的免疫组织化学染色 Fig. 3 Immunohistochemical staining of integrin αv protein in different parts of the fallopian tube at different reproductive stages of yak
3 讨论

整合素αv是跨膜糖蛋白家族成员之一,广泛存在于人和动物体内各种组织中。有研究显示,整合素αv分子以及包含αv亚基的其他整合素二聚体分子参与动物受精和早期胚胎发育等过程[22],但在牦牛输卵管中的作用尚不清楚。因此,本研究探究了整合素αv在牦牛繁殖周期输卵管中不同部位的表达情况。

前人通过免疫组织化学方法定位了整合素αv蛋白在人[23-24]、鼠[25-26]和奶牛[27]等输卵管中的表达,表明其主要存在于输卵管上皮中。本研究通过免疫组化方法发现,整合素αv主要分布在牦牛输卵管的纤毛细胞、分泌细胞、基细胞、肌层和浆液腺中。上皮细胞中的纤毛细胞主要参与输卵管物质的运输,分泌细胞主要分泌营养物质,为输卵管受精和早期胚胎发育提供良好的环境[28-29],整合素αv在输卵管上皮纤毛细胞和分泌细胞中表达,可能与其发挥这些功能有关。

为了进一步探究整合素αv在牦牛输卵管中的表达情况,本研究检测了牦牛繁殖周期不同阶段输卵管伞部、壶腹部及峡部中整合素αv基因和蛋白的表达。结果显示,在卵泡期,整合素αv基因和蛋白在输卵管伞部的表达量最高,壶腹部表达量最低。由于整合素αv有黏附功能,并且这种黏附在拾卵过程中参与输卵管黏膜上皮纤毛细胞与卵子间的黏附。输卵管伞部表达量高可能是由于卵泡期输卵管伞部产生大量整合素与卵子上整合素受体双向识别,从而有助于伞部接收卵子[30]

雌性动物卵泡破裂后,在卵巢上会形成一个临时性的分泌器官——黄体。本研究显示,黄体期整合素αv在输卵管峡部表达量最高,伞部表达量最低。有研究发现,排卵后输卵管峡部上皮高表达的整合素αv有可能参与此时期精子功能的调节和精子受精前修饰,而且为输卵管峡部发挥精子“储存器”的功能提供一种分子机制[24]。排卵后,输卵管峡部黏膜上皮高表达的整合素αv可以通过与精子表面的细胞外基质配体结合,使精子内某些蛋白激酶的酪氨酸磷酸化,从而激活精子,使之从输卵管峡部黏膜上皮分离,进入到输卵管壶腹部与卵子结合并受精[31]。卵巢排卵后,输卵管上皮纤毛细胞变长且增多,分泌细胞分泌功能也更加旺盛,从而有助于卵子的运输[5]。因此,整合素αv可能参与了输卵管纤毛摆动、运送卵子和精子的过程。

精、卵在输卵管壶腹部结合后被运送至子宫着床,动物进入妊娠期。在此阶段,整合素αv在输卵管峡部和伞部的表达差异不显著,壶腹部表达量最低。输卵管中存在一种输卵管分泌的特殊蛋白—骨桥蛋白,并且整合素通过其RGD氨基酸序列与骨桥蛋白结合从而参与细胞黏附和细胞信号传导,这种细胞附着系统在体内输卵管环境中可能对配子、胚胎和上皮之间的相互作用至关重要[32-33]。在这一时期,输卵管壶腹部已经完成为精卵结合提供场所的功能,这可能是整合素αv在这一部位低表达的原因,因此推测,整合素αv参与牦牛受精和早期胚胎发育过程。

近年来,整合素αv在精卵结合和胚胎着床、发育方面受到了广泛关注。前人研究发现,人、羊、鼠子宫内膜中检测到多种整合素,表明它们可能在着床开始时参与滋养细胞与子宫内膜的黏附[34-37]。也有报道称,在人睾丸中的生精细胞上检测到了整合素αv [38-39],精子上整合素的存在和卵母细胞上整合素配体结合结构域的存在表明,整合素αv亚型可能参与了受精过程[40]。而本研究发现,整合素αv基因和蛋白在牦牛繁殖周期输卵管不同部位中存在表达差异,推测整合素αv在牦牛受精及早期胚胎发育方面发挥着重要作用,为研究整合素αv在牦牛生殖过程中发挥的作用提供了理论依据,但其参与牦牛卵子接收、精卵结合及受精卵运输等的具体机制还需进一步研究。

4 结论

整合素αv在牦牛繁殖周期中输卵管伞部、壶腹部和峡部中均有表达,且存在表达差异性,在繁殖周期输卵管伞部、壶腹部和峡部的纤毛细胞、分泌细胞、基细胞、肌层和浆液腺中均有分布,因此推测,整合素αv可能参与了输卵管受精以及早期胚胎发育等生殖过程,为牦牛的繁殖性能研究提供了理论依据。

参考文献
[1] 何翃闳, 潘阳阳, 张慧珠, 等. FSH对牦牛卵母细胞EGF、EGFR表达及其细胞凋亡的影响[J]. 畜牧兽医学报, 2018, 49(9): 1899–1907.
HE H H, PAN Y Y, ZHANG H Z, et al. The effects of follicle-stimulating hormone (FSH) on the expression of EGF and EGFR in yak oocytes and apoptosis[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(9): 1899–1907. (in Chinese)
[2] 芦光元. 浅析牦牛养殖发展现状及对策[J]. 中国畜禽种业, 2019, 15(4): 112.
LU G Y. Analysis of the status quo and countermeasures of yak breeding[J]. The Chinese Livestock and Poultry Breeding, 2019, 15(4): 112. (in Chinese)
[3] 张天留, 高雪, 徐凌洋, 等. 高原家养动物环境适应性的研究进展[J]. 畜牧兽医学报, 2020, 51(7): 1475–1487.
ZHANG T L, GAO X, XU L Y, et al. Research progress on environment adaptation of plateau domestic animals[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1475–1487. (in Chinese)
[4] 张译夫.牦牛发情周期中Ovn在输卵管的表达及EGF对其表达的影响[D].兰州: 甘肃农业大学, 2016: 16-25.
ZHANG Y F.The expression of Ovn in yak oviduct during estrus cycle and the effect of EGF on its expression[D].Lanzhou: Gansu Agricultural University, 2016: 16-25.(in Chinese)
[5] 韩小红, 何翃闳, 王靖雷, 等. 牦牛p38MAPK在雌性主要生殖器官中的表达[J]. 畜牧兽医学报, 2019, 50(9): 1802–1812.
HAN X H, HE H H, WANG J L, et al. Expression of p38MAPK in the main reproductive organs of female yaks (Bos grunniens)[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(9): 1802–1812. (in Chinese)
[6] 谭娟, 余四九, 崔燕. 妊娠期牦牛输卵管的组织结构观察[J]. 中国兽医科学, 2008, 38(7): 622–625.
TAN J, YU S J, CUI Y. Observation of the histological structure of Bos grunniens oviduct during pregnancy[J]. Chinese Veterinary Science, 2008, 38(7): 622–625. (in Chinese)
[7] 杨融.牦牛输卵管上皮细胞的分离培养及FSH对其分泌输卵管特异性糖蛋白的影响[D].兰州: 甘肃农业大学, 2015: 9-25.
YANG R.Isolation and culture of oviduct epithelial cells in yak and the effect of FSH on its secretion for oviduct-specific glycoprotein[D].Lanzhou: Gansu Agricultural University, 2015: 9-25.(in Chinese)
[8] 胡文萍, 汤继顺, 张壮彪, 等. Izumo1和Juno在哺乳动物受精过程中的研究进展[J]. 畜牧兽医学报, 2019, 50(9): 1737–1745.
HU W P, TANG J S, ZHANG Z B, et al. Progress of Izumo1 and Juno in mammalian fertilization[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(9): 1737–1745. (in Chinese)
[9] 杨青, 洪莉. 整合素的研究进展[J]. 实用医学杂志, 2015(6): 1023–1025.
YANG Q, HONG L. Research progress of integrin[J]. The Journal of Practical Medicine, 2015(6): 1023–1025. (in Chinese)
[10] 颜羽昕, 马月宏, 梁洁, 等. 整合素通路参与器官纤维化过程的研究进展[J]. 疾病监测与控制, 2019, 13(4): 320–322, 336.
YAN Y X, MA Y H, LIANG J, et al. Progress of integrin pathway in the process of organ fibrosis[J]. Journal of Diseases Monitor & Control, 2019, 13(4): 320–322, 336. (in Chinese)
[11] 余静, 张琦, 刘静. 整合素αvβ5的研究进展[J]. 世界最新医学信息文摘, 2019, 19(30): 64–65.
YU J, ZHANG Q, LIU J. Research progress in the research of integrin αvβ5[J]. World Latest Medicine Information, 2019, 19(30): 64–65. (in Chinese)
[12] SVLZ L, VALENZUELA J P, SALVATIERRA A M, et al. The expression of αv and β3 integrin subunits in the normal human Fallopian tube epithelium suggests the occurrence of a tubal implantation window[J]. Hum Reprod, 1998, 13(10): 2916–2920. DOI: 10.1093/humrep/13.10.2916
[13] GAILLARD O, LEBON P, DELATTRE J, et al. Bidirectional signaling between the cytoskeleton and integrins[J]. Curr Opin Cell Biol, 1999, 11(2): 274–286. DOI: 10.1016/S0955-0674(99)80037-4
[14] BROWN J K, SHAW J L V, CRITCHLEY H O D, et al. Human fallopian tube epithelium constitutively expresses integrin endometrial receptivity markers:no evidence for a tubal implantation window[J]. Mol Hum Reprod, 2012, 18(3): 111–120. DOI: 10.1093/molehr/gar068
[15] VAN WAES C. Cell adhesion and regulatory molecules involved in tumor formation, hemostasis, and wound healing[J]. Head Neck, 1995, 17(2): 140–147. DOI: 10.1002/hed.2880170212
[16] 杨筱祎, 朱伟杰, 徐建平, 等. 整合素β1在人输卵管及输卵管妊娠黏膜上皮中的表达[J]. 生殖与避孕, 2009, 29(12): 787–790.
YANG X Y, ZHU W J, XU J P, et al. Expression of integrin β1 in both human oviductal tissue and tubal ectopic pregnant tissue[J]. Reproduction & Contraception, 2009, 29(12): 787–790. (in Chinese)
[17] LINFOR J, BERGER T. Potential role of αv and β1 integrins as oocyte adhesion molecules during fertilization in pigs[J]. Reproduction, 2000, 120(1): 65–72. DOI: 10.1530/jrf.0.1200065
[18] GARCÍA P, NIETO A, SÁNCHEZ M A, et al. Expression of αv, α4, α5 and β3 integrin subunits, fibronectin and vitronectin in goat peri-implantation[J]. Anim Reprod Sci, 2004, 80(1-2): 91–100. DOI: 10.1016/S0378-4320(03)00157-X
[19] LIN H C, WANG X, LIU G F, et al. Expression of αv and β3 integrin subunits during implantation in pig[J]. Mol Reprod Dev, 2007, 74(11): 1379–1385. DOI: 10.1002/mrd.20732
[20] BURGHARDT R C, JOHNSON G A, JAEGER L A, et al. Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals[J]. Cells Tissues Organs, 2002, 172(3): 202–217.
[21] 何翃闳, 崔燕, 潘阳阳, 等. 牦牛HSP27基因的克隆及其在雌性生殖器官中的表达[J]. 中国农业科学, 2015, 48(20): 4178–4187.
HE H H, CUI Y, PAN Y Y, et al. Cloning of bos grunniens HSP27 gene and its expression in the female yak reproductive organs[J]. Scientia Agricultura Sinica, 2015, 48(20): 4178–4187. (in Chinese)
[22] FAZLEABAS A T, BELL S C, FLEMING S, et al. Distribution of integrins and the extracellular matrix proteins in the baboon endometrium during the menstrual cycle and early pregnancy[J]. Biol Reprod, 1997, 56(2): 348–356. DOI: 10.1095/biolreprod56.2.348
[23] MA C J, ZHU W J, JIN H Y. The expression and change of the β3 integrin subunit and fibronectin in normal human oviductal tissue and tubal ectopic pregnant tissue[J]. J Reprod Contracept, 2003, 14(4): 193–200.
[24] 马春杰.整合素β3和纤维粘连蛋白在人输卵管及早期胚胎的表达[D].广州: 暨南大学, 2002: 18-40.
MA C J.The expression of β3 integrin subunit and fibronectin in the human fallopian tube and early embryos[D].Guangzhou: Jinan University, 2002: 18-40.(in Chinese)
[25] GABLER C, CHAPMAN D A, KILLIAN G J. Expression and presence of osteopontin and integrins in the bovine oviduct during the oestrous cycle[J]. Reproduction, 2003, 126(6): 721–729. DOI: 10.1530/rep.0.1260721
[26] GHEIBI P, EFTEKHARI Z, DOROUD D, et al. Chlorpyrifos effects on integrin alpha v and beta 3 in implantation window phase[J]. Environ Sci Pollut Res, 2020, 27(23): 29530–29538. DOI: 10.1007/s11356-020-08288-0
[27] GONCALVES R F, WOLINETZ C D, KILLIAN G J. Influence of arginine-glycine-aspartic acid (RGD), integrins (αv and α5) and osteopontin on bovine sperm-egg binding, and fertilization in vitro[J]. Theriogenology, 2007, 67(3): 468–474. DOI: 10.1016/j.theriogenology.2006.08.013
[28] TONE A A. Taking the tube:from normal fallopian tube epithelium to ovarian high-grade serous carcinoma[J]. Clin Obstet Gynecol, 2017, 60(4): 697–710. DOI: 10.1097/GRF.0000000000000313
[29] 包图雅, 杨燕燕, 白萨日娜, 等. 孕酮对绵羊输卵管上皮细胞β-防御素2表达的影响[J]. 动物医学进展, 2019, 40(6): 42–47.
BAO T Y, YANG Y Y, BAI S R N, et al. Effect of progesterone on β-defensin-2 (SBD2) expression by in ovine oviduct epithelial cells[J]. Progress in Veterinary Medicine, 2019, 40(6): 42–47. (in Chinese)
[30] LIN F, HUANG C J, LIU C S, et al. Laminin-111 inhibits bovine fertilization but improves embryonic development in vitro, and receptor integrin-β1 is involved in sperm-oocyte binding[J]. Reprod Domest Anim, 2016, 51(5): 638–648. DOI: 10.1111/rda.12716
[31] 张元元, 王光明. 整合素αv和β3在小鼠胚胎着床中的作用[J]. 广东医学, 2013, 34(14): 2147–2150.
ZHANG Y Y, WANG G M. The role of integrin αv and β3 in mouse embryo implantation[J]. Guangdong Medical Journal, 2013, 34(14): 2147–2150. (in Chinese)
[32] KILLIAN G J. Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development[J]. Anim Reprod Sci, 2004, 82-83: 141–153. DOI: 10.1016/j.anireprosci.2004.04.028
[33] DONG X C, ZHAO B, LIN F Y, et al. High integrin αVβ6 affinity reached by hybrid domain deletion slows ligand-binding on-rate[J]. Proc Natl Acad Sci U S A, 2018, 115(7): E1429–E1436. DOI: 10.1073/pnas.1718662115
[34] WANG J, MAYERNIK L, ARMANT D R. Integrin signaling regulates blastocyst adhesion to fibronectin at implantation: intracellular calcium transients and vesicle trafficking in primary trophoblast cells[J]. Dev Biol, 2002, 245(2): 270–279. DOI: 10.1006/dbio.2002.0644
[35] APPARAO K B C, MURRAY M J, FRITZ M A, et al. Osteopontin and its receptor αvβ3 integrin are coexpressed in the human endometrium during the menstrual cycle but regulated differentially[J]. J Clin Endocrinol Metab, 2001, 86(10): 4991–5000.
[36] 雷彩霞, 张炜, 王丽. 整合素与子宫内膜容受性关系的研究进展[J]. 中国妇幼健康研究, 2006, 17(1): 54–56.
LEI C X, ZHANG W, WANG L. Advances in study on relation letween integrins and endometrial receptivity[J]. Chinese Journal of Maternal and Child Health Research, 2006, 17(1): 54–56. (in Chinese)
[37] 唐彬, 黎福荣, 付新录, 等. 米非司酮对Wistar大鼠窗口期子宫内膜整合素和血管内皮生长因子基因表达的影响[J]. 实验动物与比较医学, 2017, 37(5): 399–404.
TANG B, LI F R, FU X L, et al. Effects of mifepristone on expression of integrin αvβ3 and vascular endothelial growth factor in Wistar rats at implantation window phase[J]. Laboratory Animal and Comparative Medicine, 2017, 37(5): 399–404. (in Chinese)
[38] AL-DOSSARY A A, BATHALA P, CAPLAN J L, et al. Oviductosome-sperm membrane interaction in cargo delivery:detection of fusion and underlying molecular players using three-dimensional super-resolution structured illumination microscopy (SR-SIM)[J]. J Biol Chem, 2015, 290(29): 17710–17721. DOI: 10.1074/jbc.M114.633156
[39] 毛庆波, 刘瑞娟. 整合素α5、β1抗体对睾丸生精细胞凋亡的影响[J]. 中国优生与遗传杂志, 2010, 18(6): 133.
MAO Q B, LIU R J. The influence of integrin α5 and β1 on the apoptosis of Wistar mouse spermatogenic cells[J]. Chinese Journal of Birth Health & Heredity, 2010, 18(6): 133. (in Chinese)
[40] VJUGINA U, ZHU X L, OH E, et al. Reduction of mouse egg surface integrin Alpha9 subunit (ITGA9) reduces the egg' s ability to support sperm-egg binding and fusion[J]. Biol Reprod, 2009, 80(4): 833–841.