畜牧兽医学报  2019, Vol. 50 Issue (7): 1493-1499. DOI: 10.11843/j.issn.0366-6964.2019.07.019    PDF    
百里香酚对脂多糖诱导的子宫内膜上皮细胞炎性反应的抑制作用研究
邵丹1, 宋朋杰1, 闫宝琪1, 武小虎1, 王东升1, 李亚娟1,2, 张世栋1, 严作廷1     
1. 中国农业科学院兰州畜牧与兽药研究所, 农业部兽用药物创制重点实验室, 甘肃省新兽药工程重点实验室, 兰州 730050;
2. 广西大学动物科学技术学院, 南宁 530004
摘要:为探究百里香酚治疗子宫内膜炎的抗炎活性,利用脂多糖(LPS)诱导山羊子宫内膜上皮细胞(gEECs)建立炎性模型,以百里香酚进行干预。采用NO试剂盒和酶联免疫吸附试验(ELISA)分别检测百里香酚对LPS诱导的NO和细胞因子分泌的影响;利用实时荧光定量PCR(RT-PCR)检测百里香酚对LPS诱导的IL-1β、TLR4和NF-κB基因转录的影响。结果显示:不同剂量的百里香酚(100、50、25 μg·mL-1)能不同程度地抑制LPS诱导的炎性模型细胞TNF-α、IL-1β、IL-6、NO和PGE2的分泌,亦可降低炎性模型细胞IL-1β、TLR4和NF-κB的基因转录水平(P < 0.01)。结果表明,百里香酚可抑制LPS诱导gEECs炎性模型的细胞因子表达水平,具有显著的抗炎活性,其作用机制可能与抑制TLR4/NF-κB信号通路相关。
关键词百里香酚    LPS    子宫内膜上皮细胞    抗炎    
Inhibiting Effect of Thymol on Inflammation Induced by LPS in Endometrial Epithelial Cells
SHAO Dan1, SONG Pengjie1, YAN Baoqi1, WU Xiaohu1, WANG Dongsheng1, LI Yajuan1,2, ZHANG Shidong1, YAN Zuoting1     
1. Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
2. Department of Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
Abstract: In order to investigate the anti-inflammatory effect of thymol on endometritis, the inflammatory model was established in LPS-induced goat endometrial epithelial cells (gEECs)with thymol treantment. The secretion of NO and cytokines were measured by NO kit and ELISA kits respectively in LPS-induced gEECs. Gene transcription of IL-1β, TLR4, and NF-κB were detected by RT-PCR respectively in LPS-induced gEECs. The results showed that thymol (100, 50, 25 μg·mL-1) inhibited the secretion of TNF-α, IL-1β, IL-6, NO, and PGE2 to a significant extent in LPS-induced gEECs (P < 0.01). In addition, thymol markedly decreased gene transcription of IL-1β, TLR4, and NF-κB in LPS-induced gEECs (P < 0.01). These results demonstrated that thymol exerted anti-inflammatory effect through inhibiting the level of inflammatory cytokines, which possibly involved in the inhibition of TLR4/NF-κB signaling pathway.
Key words: thymol     LPS     endometrial epithelial cells     anti-inflammatory    

子宫内膜炎(endometritis)是由病原微生物感染子宫内膜而引起的一种生殖系统疾病,严重影响母畜的生产性能,可导致受精失败、产犊间隔延长、不孕不育等[1-2]。该病至今依然是世界范围内严重威胁畜牧养殖业的繁殖障碍性疾病之一,给经济动物养殖业带来巨大的经济损失,已成为兽医临床上普遍重视和急需解决的问题。目前,大量抗生素被用于治疗子宫内膜炎,导致药物残留和细菌耐药性增加[3],使临床治疗效率大大降低。近年来,天然药物的抗炎作用倍受广大研究者的关注,得到了越来越广泛的认可。

百里香酚(5-甲基-2-异丙基酚),又名麝香草酚, 是一种单萜类化合物(图 1),最初被发现于百里草中而得名,是百里香油和牛至油的主要成分[4]。研究表明,百里香酚具有抗氧化、抗炎、抗菌、抗真菌、防腐等多种药理活性[5]。Nagoor Meeran等[4]报道百里香酚可通过抑制溶酶体酶的释放和下调促炎细胞因子——肿瘤坏死因子(TNF-α)、白细胞介素-1β(IL-1β)和IL-6的表达来减轻异丙肾上腺素诱导的心肌梗死大鼠的炎症反应。Omran等[6]研究发现,百里香精油对外阴道念珠菌有较强的抑制作用,其效果优于氟康唑,相当于1 μg·mL-1的两性霉素B的抗真菌效果。此外,百里香酚作为一种活性抗炎成分已被广泛应用,它不仅可以抑制卵清蛋白诱导的小鼠哮喘气道炎症反应[7],也可以减轻胶原酶诱导的骨关节炎[8]。已有研究表明,百里香酚可通过调节LPS诱导的Toll样受体4(toll-like receptor 4, TLR4)信号通路(如NF-κB和MAPK信号通路)发挥抗炎活性[9-10],但该药物对子宫内膜炎的抗炎作用的报道较少。因此,本研究将探讨百里香酚对子宫内膜炎的体外抗炎效果,以期为百里香酚治疗子宫内膜炎的临床用药研究提供理论依据。

图 1 百里香酚的化学结构 Fig. 1 Chemical structure of thymol
1 材料与方法 1.1 药品和试剂

百里香酚(thymol,B21153,100 mg)标准品购自上海源叶生物科技有限公司(HPLC≥98%);脂多糖(lipopolysaccharides, LPS,E. coil O111:B4)、胰蛋白酶、噻唑蓝(MTT)购自美国Sigma公司;胎牛血清(fetal bovine serum,FBS),DMEM/F12培养基购自Gibco公司;山羊TNF-α、IL-1β、IL-6、PGE2的ELISA检测试剂盒购自上海酶联生物科技有限公司;NO检测试剂盒(A013-2)购自南京建成生物工程研究所有限公司;RNA提取试剂盒(RNAiso Plus)、反转录试剂盒、实时荧光定量PCR试剂盒(SYBY® Premix Ex TaqTMⅡ)购自大连宝生物工程有限公司。

1.2 细胞培养

永生化细胞系山羊子宫内膜上皮细胞(goat endometrial epithelial cells, gEECs)由西北农林科技大学动物医学院靳亚平教授惠赠,培养于含10%的FBS、100 U·mL-1青霉素和100 μg·mL-1链霉素的DMEM/F12培养液中,置于37 ℃、5% CO2、95%湿度的无菌培养箱内培养。取对数生长期的细胞用于试验。

1.3 试验分组及处理

待细胞生长融合至80%以上后,胰酶(0.25%)消化细胞制成密度为5×104·mL-1的细胞悬液,接种于6孔板,每孔2 mL,并将细胞分为对照组(control):正常培养24 h;炎性模型组(LPS):5 μg·mL-1的LPS作用24 h;LPS+百里香酚组:5 μg·mL-1的LPS作用12 h后,向培养液中加入百里香酚,使药物终浓度分别为25、50、100 μg·mL-1,继续培养处理12 h。每组设3个重复。

1.4 细胞毒性试验

收集对数生长期的gEECs,制成密度为5×104·mL-1的细胞悬液并接种于2块96孔板,100 μL每孔。培养24 h后,其中一块分别加入0、10、20、40、60、80、100、120、150 μg·mL-1的百里香酚,每个浓度设置8个复孔;另一块用于MTT检测以获取药物处理前细胞光吸收值(A0)。药物处理24 h后,每孔加入20 μL MTT(5 mg·mL-1,PBS配制),孵育4 h后,吸弃培养液,每孔加入200 μL二甲基亚砜(DMSO),轻微振荡10 min使结晶物充分溶解,用酶标仪在570 nm处读取各孔OD值,取平均值后计算细胞增殖率:(A2-A0)/(A1-A0)×100%[11],式中A0为药物处理前细胞的平均OD值;A1为对照组细胞的平均OD值;A2为药物处理结束后细胞的平均OD值。

1.5 NO含量测定

细胞培养及药物处理结束后,分别收集各孔的细胞上清液,3 000 r·min-1离心后取上清,按照试剂盒说明书测定上清液中NO的含量。

1.6 ELISA检测TNF-α、IL-1β、IL-6和PGE2含量

细胞培养及药物处理结束后,分别收集各孔细胞上清液,3 000 r·min-1离心后取上清,按照ELISA试剂盒说明书检测细胞上清中TNF-α、IL-1β、IL-6、PGE2的含量。

1.7 Real-time PCR检测IL-1β、TLR4、NF-κB的基因转录

细胞培养和药物处理结束时,收集细胞,经PBS(pH7.2)洗涤2次后,根据RNA提取试剂盒说明书提取细胞总RNA,测定浓度后取800 ng的RNA,按照试剂盒操作将mRNA反转录为cDNA,根据SYBY®Premix Ex TaqTMⅡ试剂盒将获得的cDNA用于Real-time PCR检测IL-1β、TLR4、NF-κB的基因转录,每个样品设置三个重复。Real-time PCR反应体系为25 μL:SYBY Green预混液12.5 μL,上、下游引物各1 μL(10 μmol·L-1,北京六合华大基因合成),1 μL cDNA,补加双蒸水至25 μL。Real-time PCR反应程序:95 ℃预变性3 min;95 ℃变性30 s,60 ℃退火20 s,72 ℃延伸20 s,40个循环。具体引物序列信息见表 1

表 1 Real-time PCR检测基因表达的引物信息 Table 1 Information of primers used in real-time PCR
1.8 数据分析

利用SAS 9.2软件采用组间单因素方差分析法(One-Way ANOVA)对数据进行统计分析,数据都以x±s表示, P≤0.05时组间差异具有统计学意义。

2 结果 2.1 百里香酚对gEECs增殖的影响

MTT检测结果显示(图 2),百里香酚浓度在10 ~ 20 μg·mL-1时,对gEECs表现一定的促增殖作用;在40~150 μg·mL-1时,百里香酚对细胞有较显著的增殖抑制作用,且随着药物浓度的增加,对gEECs的增殖抑制作用越显著;当其浓度为150 μg·mL-1时,细胞增殖几乎停止。此外,当药物对细胞的增殖抑制率达到50%(IC50)时,药物浓度约为100 μg·mL-1

标注不同小写字母表示组间差异极显著(P<0.01),标相同字母表示组间差异不显著(P>0.05) Different letters mean very significant difference among the treatments (P < 0.01), the same letters mean no significant difference among treatments (P > 0.05) 图 2 百里香酚对gEECs增殖的影响 Fig. 2 Effect of thymol on the viability of gEECs
2.2 百里香酚对LPS诱导的炎症细胞因子分泌的影响

图 3所示,与正常对照组相比,LPS组中TNF-α、IL-1β和IL-6的含量极显著升高(P<0.01)。与LPS组相比,百里香酚组TNF-α、IL-1β和IL-6的含量均极显著降低(P<0.01)。

横坐标为各处理组,以所用处理药物和剂量的差异区分。LPS组(5 μg·mL-1 LPS)与正常对照组(未处理)比较:**.差异极显著(P<0.01);百里香酚组(百里香酚+LPS处理)与LPS组比较:##.差异极显著(P<0.01)。下图同 The abscissa show the treatment groups, which are distinguished by the difference of the drugs and doses used. Comparison of LPS group (5 μg·mL-1 LPS) and normal control group (untreated):** show very significant difference (P < 0.01);Comparison of thymol group (thymol+LPS) and LPS group:## show very significant difference (P < 0.01). The same as below 图 3 百里香酚对LPS诱导的TNF-α (A), IL-1β (B), IL-6 (C)的影响 Fig. 3 Effects of thymol on LPS-induced TNF-α (A), IL-1β (B) and IL-6 (C)
2.3 百里香酚对LPS诱导的细胞炎症介质的影响

图 4所示,与正常对照组相比,LPS组中NO和PGE2的含量均极显著升高(P<0.01)。与LPS组相比,百里香酚组的NO和PGE2的含量均极显著降低(P<0.01),但不同浓度的百里香酚对NO和PGE2含量的抑制作用无显著差异。

图 4 百里香酚对LPS诱导的NO(A)和PGE2(B)的影响 Fig. 4 Effects of thymol on LPS-induced NO (A) and PGE2 (B) production
2.4 百里香酚对LPS诱导的炎症相关基因转录的影响

图 5,与正常对照组相比,LPS组中IL-1β、TLR4和NF-κB的基因转录量极显著升高(P<0.01)。与LPS组相比,百里香酚组IL-1β、TLR4和NF-κB的基因转录量均极显著降低(P<0.01),且随着百里香酚的浓度增大,抑制作用也相应增强,其中100 μg·mL-1的百里香酚抑制作用最显著(P<0.01)。

图 5 百里香酚对LPS诱导的IL-1β (A)、TLR4 (B), NF-κB(C)基因转录的影响 Fig. 5 Effects of thymol on the gene expression of IL-1β (A), TLR4 (B) and NF-κB(C) in LPS-induced gEECs
3 讨论

百里香酚药理活性广泛。研究表明,百里香酚能抑制人中性粒细胞弹性蛋白酶的释放[12];阻断p38有丝分裂原活化蛋白激酶的磷酸化;还能抑制诱导型一氧化氮合酶和细胞色素C氧化酶-2的表达[13]。另外,百里香酚的抗炎作用在不同的细胞和动物模型中都已得到证实。Chauhan等[14]发现百里香酚可改善小鼠巨噬细胞中LPS诱导的炎性反应;Divate和Chung[15]报道百里香酚在足水肿和腹膜炎啮齿动物模型中表现出显著的抗炎活性和促进伤口愈合的作用。因此,抗炎作用是百里香酚多种药理活性的重要功能之一。

炎症是免疫系统的一种基本反应,有助于伤口愈合、受损组织修复和抵御病原体[16]。引起雌性哺乳动物子宫内膜炎的主要病原是大肠杆菌[17],其细胞壁的主要成分脂多糖是导致细胞产生炎症反应的重要物质,已被广泛用于急性肺损伤、乳腺炎和子宫内膜炎等炎症模型的研究[17-19]。本研究利用LPS诱导山羊子宫内膜上皮细胞产生炎性反应,建立了炎性细胞模型。结果显示,5 μg·mL-1 LPS处理山羊子宫内膜细胞24 h后,TNF-α、IL-1β和IL-6的含量均极显著高于正常组(P<0.01),表明体外炎症模型建立成功。

TNF-α、IL-1β和IL-6在炎症反应中具有重要作用,其过度分泌会引起细胞和组织损伤。据Kim等[21]报道,在子宫内膜炎患牛的子宫冲洗液中细胞因子的浓度明显升高,从而导致子宫内膜上皮损伤并加重炎症反应。TNF-α由单核-巨噬细胞产生,能够增加黏附因子的表达,促进IL-1β等细胞因子的分泌[21]。IL-1β不仅能调节免疫细胞和非免疫细胞,还可促进树突状细胞、巨噬细胞和中性粒细胞的活化,是增强炎症反应的重要因素[22]。IL-6具有调节免疫应答和急性期反应的功能,并参与机体的抗感染免疫应答[23]。除炎症因子外,炎症介质在炎症反应中也发挥着重要作用。NO和PGE2均是多效性炎症介质,不仅参与机体的免疫调节,也参与血管舒张和炎性反应[24-25]。研究表明,LPS诱导的子宫内膜细胞炎性反应可增加NO的合成和PGE的分泌[26]。本研究中,LPS刺激山羊子宫内膜上皮细胞后,TNF-α、IL-1β、IL-6、NO和PGE2的分泌量均极显著增多(P<0.01),而百里香酚处理炎性细胞后,TNF-α、IL-1β、IL-6、NO和PGE2的分泌量均极显著低于模型组(P<0.01),这些结果表明百里香酚对LPS诱导的子宫内膜上皮细胞炎性反应具有显著的抑制作用。同时,百里香酚的IC50约为100 μg·mL-1,极显著高于药物体外毒性标准(IC50<30 μg·mL-1)[27]。百里香酚对gEECs无显著毒活性,且具有显著的抗炎活性,可作为治疗子宫内膜炎的候选药物。

此外,哺乳动物分娩后,子宫防御屏障被破坏,病原微生物易侵入子宫[28]。一旦细菌或病原相关分子(如LPS)被免疫系统感知,就会发生炎症应答,导致子宫内膜炎发生[28]。子宫内膜上皮细胞是子宫内膜的第一道防线,其先天免疫依赖于模式识别受体(pattern recognition receptor,PRR),如TLR4,来识别LPS等病原相关分子模式(pathogen-associated molecular patterns,PAMPs)[29]。TLR4迅速识别LPS并作出应答,活化其下游信号级联反应,最后活化的NF-κB激活和促进细胞因子的转录和表达,如IL-6、IL-1β等。同时,炎性细胞因子也可以刺激NF-κB的活化,从而加重炎症反应,导致机体炎性损伤[30-32]。因此,NF-κB信号通路中关键分子都是抗炎药物的主要靶点。本试验结果显示,百里香酚作用于炎性细胞后均能显著抑制LPS诱导的IL-1β、TLR4和NF-κB基因的表达,且表现出一定的剂量效应,表明百里香酚对LPS诱导的子宫内膜上皮细胞炎性反应的抑制作用可能与抑制TLR4/NF-κB信号通路的活化相关,但具体作用机制还有待进一步研究。

4 结论

百里香酚可抑制LPS诱导的子宫内膜上皮细胞中TNF-α、IL-1β、IL-6和炎性介质NO与PGE2的分泌,亦可降低IL-1β、TLR4和NF-κB的基因转录水平。因此,百里香酚通过调节细胞因子及炎症介质的分泌发挥抗炎活性,其作用机制可能与抑制NF-κB信号通路相关。

参考文献
[1] LEBLANC S J, DUFFIELD T F, LESLIE K E, et al. Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows[J]. J Dairy Sci, 2002, 85(9): 2223–2236. DOI: 10.3168/jds.S0022-0302(02)74302-6
[2] WILLIAMS E J, FISCHER D P, NOAKES D E, et al. The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow[J]. Theriogenology, 2007, 68(4): 549–559. DOI: 10.1016/j.theriogenology.2007.04.056
[3] ZHAO H X, ZHAO J L, SHEN J Z, et al. Prevalence and molecular characterization of fluoroquinolone resistance in Escherichia coli isolates from dairy cattle with endometritis in China[J]. Microb Drug Resist, 2014, 20(2): 162–169. DOI: 10.1089/mdr.2013.0073
[4] NAGOOR MEERAN M F, JAGADEESH G S, SELVARAJ P. Thymol attenuates inflammation in isoproterenol induced myocardial infarcted rats by inhibiting the release of lysosomal enzymes and downregulating the expressions of proinflammatory cytokines[J]. Eur J Pharmacol, 2015, 754: 153–161. DOI: 10.1016/j.ejphar.2015.02.028
[5] NAGOOR MEERAN M F, JAVED H, AL TAEE H, et al. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development[J]. Front Pharmacol, 2017, 8: 380. DOI: 10.3389/fphar.2017.00380
[6] OMRAN S M, ESMAEILZADEH S, RAHMANI Z. Laboratory study of anticandidal activity of thyme, pennyroyal and lemon essential oils by micro dilution method[J]. Jundishapur J Microbiol, 2010, 3(4): 161–167.
[7] ZHOU E S, FU Y H, WEI Z K, et al. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma[J]. Fitoterapia, 2014, 96: 131–137. DOI: 10.1016/j.fitote.2014.04.016
[8] PATIL D, DHANESHWAR S, KADAM P. Diacerein-thymol prodrug:in vivo release and pharmacological screening in experimental models of osteoarthritis in Wistar rats[J]. Inflamm Allergy Drug Targets, 2014, 13(6): 393–405.
[9] WU H C, JIANG K F, YIN N N, et al. Thymol mitigates lipopolysaccharide-induced endometritis by regulating the TLR4- and ROS-mediated NF-κB signaling pathways[J]. Oncotarget, 2017, 8(12): 20042–20055.
[10] LIANG D J, LI F Y, FU Y H, et al. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells[J]. Inflammation, 2014, 37(1): 214–222. DOI: 10.1007/s10753-013-9732-x
[11] LAN D, ZHANG S D, YANG D J, et al. Cytotoxicity and apoptosis induction of weisiensin B isolated from Rabdosia weisiensis C. Y. Wu in human hepatoma cells[J]. J Asian Nat Prod Res, 2008, 10(11): 1055–1062. DOI: 10.1080/10286020802318941
[12] LI W S, FU K Q, LV X P, et al. Lactoferrin suppresses lipopolysaccharide-induced endometritis in mice via down-regulation of the NF-κB pathway[J]. Int Immunopharmacol, 2015, 28(1): 695–699. DOI: 10.1016/j.intimp.2015.07.040
[13] BRAGA P C, DAL SASSO M, CULICI M, et al. Anti-inflammatory activity of thymol:inhibitory effect on the release of human neutrophil elastase[J]. Pharmacology, 2006, 77(3): 130–136. DOI: 10.1159/000093790
[14] CHAUHAN A K, JAKHAR R, PAUL S, et al. Potentiation of macrophage activity by thymol through augmenting phagocytosis[J]. Int Immunopharmacol, 2014, 18(2): 340–346. DOI: 10.1016/j.intimp.2013.11.025
[15] DIVATE R D, CHUNG Y C. In vitro and in vivo assessment of anti-inflammatory and immunomodulatory activities of Xylaria nigripes mycelium[J]. J Funct Foods, 2017, 35: 81–89. DOI: 10.1016/j.jff.2017.05.027
[16] DU L, LI J K, ZHANG X T, et al. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264. 7 macrophages via the suppression of MAPKs activation[J]. J Funct Foods, 2018, 43: 62–69. DOI: 10.1016/j.jff.2018.01.028
[17] WILLIAMS E J, HERATH S, ENGLAND G C W, et al. Effect of Escherichia coli infection of the bovine uterus from the whole animal to the cell[J]. Animal, 2008, 2(8): 1153–1157. DOI: 10.1017/S1751731108002413
[18] WU H C, ZHAO G, JIANG K F, et al. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation[J]. Int Immunopharmacol, 2016, 35: 315–322. DOI: 10.1016/j.intimp.2016.04.013
[19] WU H C, ZHAO G, JIANG K F, et al. Puerarin exerts an antiinflammatory effect by inhibiting NF-κB and MAPK activation in Staphylococcus aureus-induced mastitis[J]. Phytother Res, 2016, 30(10): 1658–1664. DOI: 10.1002/ptr.v30.10
[20] RIELLA K R, MARINHO R R, SANTOS J S, et al. Anti-inflammatory and cicatrizing activities of thymol, a monoterpene of the essential oil from Lippia gracilis, in rodents[J]. J Ethnopharmacol, 2012, 143(2): 656–663. DOI: 10.1016/j.jep.2012.07.028
[21] KIM I H, KANG H G, JEONG J K, et al. Inflammatory cytokine concentrations in uterine flush and serum samples from dairy cows with clinical or subclinical endometritis[J]. Theriogenology, 2014, 82(3): 427–432. DOI: 10.1016/j.theriogenology.2014.04.022
[22] FERRARI L, KRANE M K, FICHERA A. Inflammatory bowel disease surgery in the biologic era[J]. World J Gastrointest Surg, 2016, 8(5): 363–370. DOI: 10.4240/wjgs.v8.i5.363
[23] YANG X, SHI B, LI L, et al. Death receptor 6 (DR6) is required for mouse B16 tumor angiogenesis via the NF-κB, P38 MAPK and STAT3 pathways[J]. Oncogenesis, 2016, 5(3): e206. DOI: 10.1038/oncsis.2016.9
[24] MASLANKA T, CHROSTOWSKA M, OTROCKA-DOMAGAŁA I, et al. Prostaglandin E2 exerts the proapoptotic and antiproliferative effects on bovine NK cells[J]. Res Vet Sci, 2016, 107: 80–87. DOI: 10.1016/j.rvsc.2016.05.009
[25] SHELDON I M, CRONIN J, GOETZE L, et al. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle[J]. Biol Reprod, 2009, 81(6): 1025–1032. DOI: 10.1095/biolreprod.109.077370
[26] MEI X T, XU D H, XU S K, et al. Novel role of Zn(Ⅱ)-curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers[J]. Chem-Biol Interact, 2012, 197(1): 31–39. DOI: 10.1016/j.cbi.2012.03.006
[27] SUFFNESS M, PEZZUTO J M. Assays related to cancer drug discovery[M]//HOSTETTMANN K. Methods in Plant Biochemistry: Assays for Bioactivity. London: Academic Press, 1990: 71-133.
[28] TURNBULL C M, MARCARINO P, SHELDRAKE T A, et al. A novel hybrid aspirin-NO-releasing compound inhibits TNFalpha release from LPS-activated human monocytes and macrophages[J]. J Inflamm (Lond), 2008, 5: 12. DOI: 10.1186/1476-9255-5-12
[29] KASIMANICKAM R, KASIMANICKAM V, KASTELIC J P. Mucin 1 and cytokines mRNA in endometrium of dairy cows with postpartum uterine disease or repeat breeding[J]. Theriogenology, 2014, 81(7): 952–958. e2. DOI: 10.1016/j.theriogenology.2014.01.018
[30] ZHANG Y, IGWE O J. Lipopolysaccharide (LPS)-mediated priming of toll-like receptor 4 enhances oxidant-induced prostaglandin E2 biosynthesis in primary murine macrophages[J]. Int Immunopharmacol, 2018, 54: 226–237. DOI: 10.1016/j.intimp.2017.11.017
[31] DEVI S M, KURREY N K, HALAMI P M. In vitro anti-inflammatory activity among probiotic Lactobacillus species isolated from fermented foods[J]. J Funct Foods, 2018, 47: 19–27. DOI: 10.1016/j.jff.2018.05.036
[32] DUARTE L J, CHAVES V C, DOS SANTOS NASCIMENTO M V P, et al. Molecular mechanism of action of Pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits[J]. Food Chem, 2018, 247: 56–65. DOI: 10.1016/j.foodchem.2017.12.015