畜牧兽医学报  2019, Vol. 50 Issue (6): 1154-1161. DOI: 10.11843/j.issn.0366-6964.2019.06.005    PDF    
过表达IL-6对山羊毛囊干细胞增殖和迁移的影响
史明艳1,2, 高雪2, 易力1, 周新雨1, 亢君芳3, 李志超4     
1. 洛阳师范学院生命科学学院, 洛阳 471934;
2. 中国农业科学院北京畜牧兽医研究所, 北京 100193;
3. 河南科技大学动物科技学院, 洛阳 471023;
4. 新乡医学院生命科学技术学院, 新乡 453003
摘要:旨在通过在山羊毛囊干细胞(HFSCs)中过表达炎症因子白细胞介素6(IL-6),探讨其对山羊HFSCs增殖和迁移的影响,阐明MAPK/ERK信号通路在山羊HFSCs增殖和迁移过程中发挥的作用。本试验通过构建pXJ40-myc-IL-6过表达载体,瞬时转染到山羊HFSCs中,以空载体细胞为空白对照组。利用Western blot定量检测IL-6蛋白的表达,MTT法检测山羊HFSCs的增殖活力,划痕试验判定山羊HFSCs的迁移能力,最后采用Western blot检测山羊HFSCs中MAPK/ERK和P38信号通路中关键激酶的表达水平。结果表明,将获得的IL-6过表达载体转染至山羊HFSCs 3 d后,与对照组比较,山羊HFSCs的增殖活力出现抑制,且抑制效果持续至第7天(P < 0.05)。IL-6过表达载体转染至山羊HFSCs 24 h后,处理组划痕部位的愈合率达到84.2%,显著低于对照组的98.5%(P < 0.01)。与对照组相比,MAPK/ERK信号通路中的关键激酶ERK1/2的磷酸化水平(p-ERK1/2)显著下调(P < 0.01),P38信号通路中的关键激酶p38的磷酸化水平(p-p38)表达量上调,但差异无统计学意义(P>0.05)。综上所述,过表达IL-6基因对山羊HFSCs的增殖和迁移能力具有抑制作用,且过表达IL-6可能是通过MAPK/REK信号通路对山羊HFSCs增殖和迁移发挥负性调控作用,以上结果为揭示山羊HFSCs的迁移及组织修复机制的研究提供依据。
关键词IL-6    增殖    迁移    毛囊干细胞    MAPK/ERK信号通路    
Effects of Overexpression of IL-6 on Proliferation and Migration of Goat Hair Follicle Stem Cells in vitro
SHI Mingyan1,2, GAO Xue2, YI Li1, ZHOU Xinyu1, KANG Junfang3, LI Zhichao4     
1. Life Science College, Luoyang Normal University, Luoyang 471934, China;
2. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
3. College of Animal Science & Technology, Henan University of Science and Technology, Luoyang 471023, China;
4. School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China
Abstract: The aim of this study was to investigate the effects of overexpressing inflammatory factor interleukin-6 (IL-6) on the proliferation and migration of goat hair follicle stem cells (HFSCs) and elucidate the role of MAPK/ERK signaling pathway in the proliferation and migration of goat HFSCs. The pXJ40-myc-IL-6 overexpression vector was constructed and transiently transfected into the goat HFSCs, and the empty vector cells were used as the blank control group. Western blot was used to quantitatively detect the expression of IL-6 protein, and MTT assay was used to detect the proliferation of goat HFSCs. The migration ability of HFSCs was detected by wound healing assay. Finally, Western blot was used to detect the expression of key kinases in MAPK/ERK and P38 signaling pathway in goat HFSCs. The results showed that after transfecting the IL-6 overexpression vector into goat HFSCs for 3 days, compared with the control group, the proliferation activity of the HFSCs was inhibited and the sustained inhibition effect was observed until the 7th day(P < 0.05). After 24 h of transfection of IL-6 overexpression vector into goat HFSCs, the healing rate of wounding site in the treatment group reached 84.2%, which was significantly lower than that in the control group (98.5%, P < 0.01). Compared with the control group, the phosphorylation level of the key kinase ERK1/2 (p-ERK1/2) in the MAPK/ERK signaling pathway was significantly down-regulated (P < 0.01), the phosphorylation level of the key kinase p38 (p-p38) in the P38 signaling pathway was up-regulated, however, the change was not statistically significant (P>0.05). In summary, the overexpression of IL-6 gene has an inhibitory effect on the proliferation and migration ability of goat HFSCs, and its negative regulatory role on the proliferation and migration of goat HFSCs maybe through the MAPK/REK signaling pathway. The results provide basis for revealing the mechanism of migration and tissue repair of goat HFSCs.
Key words: interleukin-6     proliferation     migration     hair follicle stem cells     MAPK/ERK signaling pathway    

毛囊干细胞(hair follicle stem cells,HFSCs)具有较强的自我更新和多重分化潜能,可分化为毛囊、表皮、皮脂腺等器官,在哺乳动物的毛发生长和皮肤修复过程中发挥着重要作用[1-2],同时,HFSCs也成为软骨组织工程中重要的种子细胞,构建具有毛囊等皮肤的组织工程是未来组织工程发展的方向[3]。毛囊控制毛发的生长,毛发自我更新和修复依赖于HFSCs的增殖、分化和迁移,且皮肤组织结构状态和毛囊的性状对羊毛的品质、产量有较大影响[4]。阐明影响HFSCs生物学特性的相关因素及其生长机制,有助于了解羊毛周期性的调控,促进羊毛的生产,在优化畜牧生产上也有较大的应用价值。

白细胞介素-6(interleukin-6,IL-6)是一种多效性的细胞炎症因子,参与急性炎症反应,也参与包括癌症等多种慢性炎症性疾病的发病机制[5],在许多肿瘤细胞如前列腺癌、乳腺癌中高表达,并参与肿瘤的增殖、凋亡及迁移等生物学性状的调节[6],可激活血管内皮细胞诱导产生IL-8、单核细胞趋化蛋白-1(MCP-1)、细胞间黏附分子-1(ICAM-1)等[7]。同时,IL-6也是一种主要的免疫调节剂,通过在体液免疫和细胞免疫中调节激活辅助性T细胞、抑制调节性T细胞(Treg)和分化B细胞中发挥积极的作用[8-9]。Huang等[10]利用体外培养方法发现了部分炎性因子,如IL-6可抑制克隆性角质细胞的生长,阻止毛发从生长终期向具有生长活性的生长初期的转变,促进毛乳头早发性衰老并导致毛囊的老化,IL-6对毛发的生长周期有抑制作用,此外,增加IL-6的量可延长静止期,进而抑制HFSCs的活化。Wu等[11]研究证实,毛囊热损伤后,TNF-α、IL-1b和IL-6在内的细胞因子直接参与损伤过程,与其他因子相比,IL-6对修复过程有着重要作用。

关于炎症因子对HFSCs增殖、迁移过程的影响和分子机制尚未明了,这也是目前科研工作的重要课题之一。研究报道,细胞内有多条信号通路可介导IL-6刺激信号,其中与细胞增殖、迁移关系密切的信号通路主要有MAPK/ERK以及P38等相关信号通路[12-13]。本试验着重研究了过表达IL-6对HFSCs增殖和迁移能力的影响,同时也对IL-6调控HFSCs增殖、迁移的分子机制进行初步探究,以期为干细胞组织工程的研究,毛发的移植和受损皮肤修复的临床应用提供新的思路。

1 材料与方法 1.1 试验材料

山羊HFSCs由本实验室分离培养;DMEM低糖培养基、优质胎牛血清(FBS)、胰蛋白酶购自Gibco公司;1%青链霉素、细胞裂解液、蛋白酶抑制剂(PMSF)、SDS蛋白上样缓冲液、辣根过氧化物酶标记山羊抗小鼠IgG(H + L)抗体购自上海碧云天生物技术有限公司;抗体p-ERK1/2、ERK2、p-p38、p38、myc-Tag均购自Cell Signaling Technology;DNA Marker购自上海欣百诺生物科技有限公司;引物由上海桑尼生物科技有限公司合成;预染蛋白marker购自Bio-Rad公司;MTT购自于Sigma公司;PVDF膜和显色底物液均购自Millipore公司。

1.2 方法 1.2.1 山羊HFSCs分离和培养

试验过程主要参照本实验室已发表改进的干细胞分离、培养方法:山羊毛囊干细胞分离培养方法研究[14]。简要过程为:取关中奶山羊耳部皮肤标本0.5 cm×0.5 cm,在净化工作台中用柳叶刀刮去皮肤表面脏物,75%酒精消毒2次,然后用D-Hank′s液冲洗3~5次,每次5 min。消毒的皮肤标本用眼科剪剪成小条,加入2.4 U·mL-1的Dispase酶,4 ℃消化15 h后,用眼科镊拔出毛囊, 在体视显微镜下切取毛囊隆突部,置于5 mL胰酶(0.5 mg·mL-1胰酶+0.2 mg·mL-1 EDTA)中37 ℃消化1.5 h,终止反应, 1 200 r·min-1离心收集细胞接种于100 μg·mL-1的Ⅳ型胶原包被的培养皿中。48 h后首次换液,去除未贴壁的细胞,此后,每2 d换1次培养液,当细胞接近90%融合,0.25%胰蛋白酶(pH 7.4)消化细胞,用新鲜生长培养基重悬细胞。显微镜下观察细胞形态及生长变化,记录细胞增殖和迁移情况。

1.2.2 目的片段的扩增及重组质粒的构建

提取山羊HFSCs的总RNA,反转录成为cDNA文库,设计扩增IL-6的引物,上游引物:5′-ATGAACTCCCTCTTCACAAG-3′, 下游引物:5′-CTACTTCATCCGAATAGCT -3′, 克隆获得CDS全长序列并测序验证,扩增条件:95 ℃预变性5 min;95℃变性30 s,60 ℃退火30 s,72 ℃延伸1 min,30个循环;72 ℃延伸5 min。将测序正确的IL-6序列和pXJ40-myc空载体均使用BamH Ⅰ和Xhol Ⅰ进行双酶切,37 ℃连接2 h,将连接产物转化到受体菌DH5α,挑取单克隆抽提质粒酶切鉴定。

1.2.3 IL-6重组载体转染山羊HFSCs

用含10%胎牛血清的DMEM培养基培养的HFSCs接种于6孔板中,24 h后转染。按照空载体组和IL-6载体组2组进行分别转染。转染时将1 μg质粒与0.5 μL转染试剂相混合,用生理盐水稀释至50 μL,静置20 min后加入到单孔中,4 h后换液。

1.2.4 Western blot检测山羊HFSCs中IL-6蛋白表达水平和信号通路关键激酶的磷酸化水平

收集转染24 h后的细胞进行Western blot分析,收集转染细胞用预冷PBS各洗3次,加入裂解缓冲液,静置30 min,超声破碎细胞30 s,12 000 r·min-1离心20 min后取上清液。采用BCA法进行蛋白定量,经SDS-PAGE分离将蛋白转移到PVDF膜上,脱脂牛奶封闭1 h,加入一抗,室温孵育2 h,PBST漂洗5 min,重复3次,加入二抗,室温孵育1 h。再次利用PBST漂洗5 min,并重复3次。将PVDF膜用发光剂ECL显色后曝光,并进行灰度值分析。

1.2.5 MTT检测山羊HFSCs细胞增殖水平

将转染的细胞株接种于96孔板中,待细胞贴壁后加入各组培养基,每组7个复孔,分别培养至第1、2、3、4、5、6、7天时加入5 g·L-1 MTT 20 μL,置于恒温箱中孵育4 h,取上清液,加入200 μL二甲基亚砜以溶解细胞形成的结晶,酶标仪检测570 nm波长处吸光度值,并分析各组细胞株增殖情况。

1.2.6 划痕试验检测山羊HFSCs细胞迁移能力

HFSCs传代后重悬,用细胞计数仪测量细胞浓度,得到细胞总数,并在2个相同大小的培养皿中分别加入数量相同的细胞。于每个培养皿中各加入2 mL培养液,4 ℃培养。当细胞密度达到100%时,用10 μL枪头进行均匀划线。划线后倒掉培养液,用PBS洗2次,再重新加入DMEM培养基,每隔6 h观察划痕部位愈合情况,并置于显微镜下拍照,24 h后结束观察,整理数据并制图,使用Image J软件分析划痕后0、6、18、24 h划痕处的愈合面积。

1.2.7 统计学分析

采用SPSS 17. 0统计软件包(SPSS,美国)进行统计学处理。数据以“均数±标准差”表示,各组间观察指标的比较采用单因素方差分析和最小显著差法,检验水准α值取双侧P<0.05。

2 结果 2.1 山羊IL-6过表达重组载体的构建

使用PCR技术扩增山羊HFSCs中的IL-6基因,PCR产物经1%琼脂糖凝胶电泳显示,其与预期627 bp大小一致,进行产物回收。将胶回收得到的IL-6片段和pXJ40-myc空载体均使用BamH Ⅰ和Xhol Ⅰ进行双酶切,22 ℃水浴3 h,产物胶回收后用T4DNA连接酶于16 ℃金属浴过夜连接,连接产物转化到受体菌DH5α,挑取单克隆,抽提质粒,酶切鉴定,通过DNA测序来确定阳性克隆。从图 1可以看出,泳道1空载体组片段大小约为5 000 bp,泳道2载体组出现5 000和627 bp两个条带,泳道3显示IL-6扩增片段约为627 bp,鉴定结果显示重组载体pXJ40-myc-IL-6构建成功。

M.DNA相对分子质量标准;1. pXJ40-myc空载体;2.重组载体pXJ40-myc-IL-6双酶切;3. IL-6基因PCR扩增产物 M.DNA marker; 1. pXJ40-myc empty vector; 2. Double digestion of recombinant vector pXJ40-myc-IL-6; 3. The PCR product of IL-6 gene 图 1 构建重组表达载体pXJ40-myc-IL-6 Fig. 1 Construction of the pXJ40-myc-IL-6 recombinant vector
2.2 山羊HFSCs中IL-6融合蛋白的表达

山羊HFSCs转染重组载体24 h后在荧光显微镜下观察到绿色荧光蛋白表达,转染效率约80%,结果见图 2A。同时收获转染细胞进行Western blot分析,用myc-Tag抗体检测IL-6融合蛋白的表达,以β-actin的表达水平作参照,结果发现,在转染空载体的对照组中,没有检测到融合蛋白IL-6的表达,在转染重组载体的试验组中成功检测到IL-6融合蛋白的高表达(图 2B)。

A.荧光显微镜观察GFP绿色荧光蛋白的表达:A1.山羊HFSCs转染重组载体后白场照片;A2.毛囊干细胞转染重组载体后395 nm激发照片。B. myc-Tag抗体检测融合蛋白myc-IL-6的表达:Veh.转染空载体;myc-IL-6.转染重组载体pXJ40-myc-IL-6,下同 A. Fluorescence microscopy was used to observe the expression of GFP green fluorescent protein: A1. Photograph of white field after transfection of goat HFSCs into recombinant vector; A2. Photograph of 395 nm excitation after transfection of goat HFSCs into recombinant vector. B. myc-Tag antibody was used to detect the expression of fusion protein myc-IL-6: Veh. Transfected with empty vector; myc-IL-6. Transfected with recombinant vector pXJ40-myc-IL-6, the same as below 图 2 重组IL-6载体转染山羊HFSCs后融合蛋白表达鉴定 Fig. 2 Identification of fusion protein expression after transfection of recombinant IL-6 vector into goat HFSCs
2.3 过表达IL-6对山羊HFSCs细胞增殖的影响

MTT法检测连续培养7 d HFSCs的增殖活力,发现与空载体组相比,过表达IL-6组山羊HFSCs的增殖活力在第3天时出现抑制效果,增殖活力下降了约23% (P < 0.01),并持续抑制,在第6和7天时增殖活力下降速度基本趋于稳定,为约13%(P < 0.01),结果见图 3A,且具有显著统计学意义。Western blot检测转染pXJ40-myc空载体和IL-6重组载体中myc-IL-6的表达,结果显示,第1~3天IL-6蛋白的表达量逐渐增加,第4~7天IL-6蛋白的表达量处于稳定的表达水平,如图 3B所示。结果提示IL-6过表达对山羊HFSCs的增殖活力具有抑制作用。

A. MTT法检测羊HFSCs转染IL-6重组载体后细胞增殖活力; B. Western blot检测转染IL-6重组载体后IL-6蛋白连续7 d的表达水平;0. myc-Tag抗体检测转染pXJ40-myc空载体后融合蛋白myc-IL-6的表达;1~7. myc-Tag抗体检测转染pXJ40-myc-IL-6重组载体后连续7 d融合蛋白myc-IL-6的表达。**. P < 0.01,下同 A. MTT assay was used to detect the proliferation of goat HFSCs transfected with IL-6 recombinant vector; B. Western blot was used to detect the expression level of IL-6 protein for 7 days after transfecting with IL-6 recombinant vector; 0. myc-Tag antibody was used to detect the expression of myc-IL-6 fusion protein after transfecting with pXJ40-myc empty vector; 1-7. myc-Tag antibody was used to detect the expression of fusion protein myc-IL-6 for 7 days after transfecting with pXJ40-myc-IL-6 recombinant vector. **. P < 0.01, the same as below 图 3 MTT法检测羊HFSCs转染IL-6重组载体后细胞增殖活力 Fig. 3 Detection of the cell proliferation activity of goat HFSCs by MTT assay
2.4 划痕试验检测过表达IL-6对山羊HFSCs的迁移的影响

划痕试验后分别统计6、18、24 h山羊HFSCs的划痕部位愈合程度,空载体组划痕部位的愈合率均明显高于过表达IL-6组,结果见图 4A;使用Image J软件对划痕试验后伤口的愈合程度进行统计,24 h时空载体组划痕部位与0 h相比未愈合率为1.5%,愈合率达到约98.5%,已基本愈合;过表达IL-6组划痕部位伤口未愈合率为15.8%,愈合率为84.2%,结果显示,山羊HFSCs过表达IL-6后愈合率显著降低且具有统计学意义(P < 0.01),如图 4B所示,提示过表达IL-6后对伤口的愈合具有显著的抑制作用。

A.划痕试验检测HFSCs迁移能力;B. Image J软件计算伤口愈合程度。Veh.转染空载体;myc-IL-6.转染重组载体pXJ40-myc-IL-6 A. The wound healing assay was used to detect the migration ability of HFSCs; B. Image J software was used to calculate wound healing degree 图 4 划痕试验检测HFSCs的迁移能力 Fig. 4 Detection of HFSCs migration by wound healing assay
2.5 过表达IL-6对MAPK/ERK和P38信号通路中关键激酶ERK1/2的磷酸化水平的影响

为进一步探究过表达IL-6抑制HFSCs迁移的内在可能分子机制,本研究尝试探究介导此现象的相关信号通路。山羊HFSCs成功转染IL-6重组表达载体24 h后,收获细胞,Western blot检测相关信号通路关键激酶的磷酸化水平,结果发现,在IL-6过表达后,MAPK/ERK信号通路中的关键激酶ERK1/2的磷酸化水平(p-ERK1/2)显著下降了76%(P < 0.01),P38信号通路中的关键激酶p38的磷酸化水平(p-p38)表达量上调了17%(P=0.15),但差异无统计学意义,结果如图 5所示。结果提示,MAPK/ERK信号通路可能在IL-6抑制山羊HFSCs增殖和迁移过程中发挥了一定的调控作用。

A.在空载体组和IL-6重组载体组中检测p-ERK1/2和p-p38的磷酸化水平;B. Image J软件计算p-ERK1/2 & p-p38和β-actin的灰度比值 A. The phosphorylation level of p-ERK1/2 & p-p38 in transfected empty vector and recombinant vector pXJ40-myc-IL-6; B. Image J software was used to calculate p-ERK1/2 & p-p38/β-actin ratio 图 5 Western blot检测HFSCs中MAPK/REK和P38信号通路相关蛋白表达水平 Fig. 5 Detection of the expression level of MAPK/REK and P38 signaling pathway-related proteins in HFSCs by Western blot
3 讨论

HFSCs具有干细胞的一般特性,即具有多向分化潜能等广泛的生物学功能,易获得、易培养,与胚胎干细胞相比,拥有使用时不受伦理学问题限制的优点[15-16]。同时研究显示,毛囊干细胞与神经元细胞具有较好的亲和性,因此,探究细胞增殖、迁移和分化的微环境,使用细胞-支架组合植入,对毛发的移植和受损皮肤修复有临床应用价值,也是再生医学体外技术发展的一个潜在方向[17-18]。而毛囊对于产毛动物(如羊)具有非常重要的作用,因此近年来对HFSCs生物学应用的探索成为了科研热点。

有研究显示,秃顶人群的真皮乳头(dermal papilla)细胞与未秃顶的真皮乳头细胞相比,炎症因子IL-6的表达量上调。分离培养人的毛囊细胞,加入外源性重组IL-6能够增加细胞基质中IL-6受体和gp130的表达量,并对毛囊细胞的增殖有明显的抑制作用[19]。毛囊能够保持周期性的休息(休眠期)、再生(生长期)和退化(退化期)取决于毛囊干细胞的更新能力。在毛发生长初期,凸起的毛囊干细胞被接收到的信号激活真皮乳头,干细胞退出隆起并向下扩散,形成一条小径成为外根鞘[20-21]。HFSC的休眠期受许多内在和外在机制的调节,能够在新的毛发周期中很快被激活分裂[22]

HFSCs的增殖、迁移对毛发的周期性增长和调控以及更新有重要作用,尽管关于成体干细胞已经有不少报道,但较多集中于对其培养、分离方法等的研究[23-24],关于调控HFSCs增殖、迁移的作用机制尚不清楚。有研究显示,IL-6可与CD5低亲和力结合,激活STAT3(transcription 3)、MAPKs、丝裂原活化蛋白激酶来调控细胞的行为[25]。Osorio等[26]研究显示,人类胚胎皮肤前体细胞Runx1通过Wnt信号通路调控成人HFSCs的活化和增殖。在本研究中,从羊背部皮肤成功提取、分离并培养了羊HFSCs,通过体外试验发现,过表达IL-6对HFSCs的增殖和迁移具有显著的抑制作用。此外,还尝试探索了HFSCs中MAPK/REK和P38信号通路[27]中关键激酶的活化水平,发现MAPK/REK信号通路中的关键激酶ERK1/2的磷酸化水平显著下调,P38信号通路中的关键激酶p38的磷酸化水平上调,但在统计学上无显著性差异,因此,推测过表达IL-6可能是通过影响MAPK/REK信号通路进而影响HFSCs的增殖和迁移过程。

本试验是通过构建重组IL-6载体,着重研究过表达IL-6对HFSCs增殖和迁移过程的影响,而IL-6是否确实通过MAPK/REK信号通路负调控HFSCs增殖和迁移的,具体分子机制仍有待深入研究,这也将成为本实验室后续研究的重点和方向,对揭示山羊HFSCs的迁移及组织修复机制的研究具有重要意义。

4 结论

本研究构建的IL-6重组载体成功转染到羊的HFSCs中,并检测到IL-6蛋白的过表达,发现过表达IL-6对HFSCs的增殖和迁移具有抑制效果,并可能是通过MAPK/REK信号通路发挥负性调控作用。

参考文献
[1] MILLAR S E. Committing to a hairy fate:epigenetic regulation of hair follicle stem cells[J]. Cell Stem Cell, 2011, 9(3): 183–184. DOI: 10.1016/j.stem.2011.08.009
[2] LIEN W H, POLAK L, LIN M Y, et al. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators[J]. Nat Cell Biol, 2014, 16(2): 179–190.
[3] LIN C L, XU R J, YI J K, et al. Alkaline ceramidase 1 protects mice from premature hair loss by maintaining the homeostasis of hair follicle stem cells[J]. Stem Cell Rep, 2017, 9(5): 1488–1500. DOI: 10.1016/j.stemcr.2017.09.015
[4] CHEN C C, WANG L, PLIKUS M V, et al. Organ-level quorum sensing directs regeneration in hair stem cell populations[J]. Cell, 2015, 161(2): 277–290. DOI: 10.1016/j.cell.2015.02.016
[5] FISHER D T, APPENHEIMER M M, EVANS S S. The two faces of IL-6 in the tumor microenvironment[J]. Semin Immunol, 2014, 26(1): 38–47. DOI: 10.1016/j.smim.2014.01.008
[6] ALMURAIKHY S, KAFIENAH W, BASHAH M, et al. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance[J]. Diabetologia, 2016, 59(11): 2406–2416. DOI: 10.1007/s00125-016-4031-3
[7] NAGASHIMA H, ISHⅡ N, SO T. Regulation of interleukin-6 receptor signaling by TNF receptor-associated factor 2 and 5 during differentiation of inflammatory CD4+ T cells[J]. Front Immunol, 2018, 9: 1986. DOI: 10.3389/fimmu.2018.01986
[8] KAMPAN N C, MADONDO M T, MCNALLY O M, et al. Interleukin 6 present in inflammatory ascites from advanced epithelial ovarian cancer patients promotes tumor necrosis factor receptor 2-expressing regulatory T cells[J]. Front Immunol, 2017, 8: 1482. DOI: 10.3389/fimmu.2017.01482
[9] QU Z X, SUN F, ZHOU J J, et al. Interleukin-6 prevents the initiation but enhances the progression of lung cancer[J]. Cancer Res, 2015, 75(16): 3209–3215. DOI: 10.1158/0008-5472.CAN-14-3042
[10] HUANG W Y, HUANG Y C, HUANG K S, et al. Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction[J]. J Dermatol Sci, 2017, 86(2): 114–122.
[11] WU Y F, WANG S H, WU P S, et al. Enhancing hair follicle regeneration by nonablative fractional laser:assessment of irradiation parameters and tissue response[J]. Lasers Surg Med, 2015, 47(4): 331–341. DOI: 10.1002/lsm.v47.4
[12] CHAN L P, LIU C, CHIANG F Y, et al. IL-8 promotes inflammatory mediators and stimulates activation of p38 MAPK/ERK-NF-κB pathway and reduction of JNK in HNSCC[J]. Oncotarget, 2017, 8: 56375–56388.
[13] YU S T, ZHONG Q, CHEN R H, et al. CRLF1 promotes malignant phenotypes of papillary thyroid carcinoma by activating the MAPK/ERK and PI3K/AKT pathways[J]. Cell Death Dis, 2018, 9(3): 371. DOI: 10.1038/s41419-018-0352-0
[14] 史明艳, 杨学义, 窦忠英. 山羊毛囊干细胞分离培养方法研究[J]. 畜牧兽医学报, 2006, 37(5): 436–440.
SHI M Y, YANG X Y, DOU Z Y. Study on the isolation and culture of goat hair follicle stem cells[J]. Acta Veterinaria et Zootechnica Sinica, 2006, 37(5): 436–440. DOI: 10.3321/j.issn:0366-6964.2006.05.004 (in Chinese)
[15] ZHANG H S, ZHANG S B, ZHAO H S, et al. Ovine hair follicle stem cells derived from single vibrissae reconstitute haired skin[J]. Int J Mol Sci, 2015, 16(8): 17779–17797. DOI: 10.3390/ijms160817779
[16] 肖平, 仲涛, 刘占发, 等. 绵、山羊毛囊发育与毛发弯曲机制研究进展[J]. 畜牧兽医学报, 2018, 49(8): 1567–1576.
XIAO P, ZHONG T, LIU Z F, et al. Research progress of mechanism of hair follicle development and hair curvature in sheep and goat[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(8): 1567–1576. (in Chinese)
[17] QUAN R F, DU W B, ZHENG X, et al. VEGF165 induces differentiation of hair follicle stem cells into endothelial cells and plays a role in in vivo angiogenesis[J]. J Cell Mol Med, 2017, 21(8): 1593–1604. DOI: 10.1111/jcmm.2017.21.issue-8
[18] YANG R F, ZHENG Y, BURROWS M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J]. Nat Commun, 2014, 5: 3071. DOI: 10.1038/ncomms4071
[19] KWACK M H, AHN J S, KIM M K, et al. Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice[J]. J Invest Dermatol, 2012, 132(1): 43–49.
[20] HSU Y C, PASOLLI H A, FUCHS E. Dynamics between stem cells, niche, and progeny in the hair follicle[J]. Cell, 2011, 144(1): 92–105. DOI: 10.1016/j.cell.2010.11.049
[21] WANG L, SIEGENTHALER J A, DOWELL R D, et al. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells[J]. Science, 2016, 351(6273): 613–617. DOI: 10.1126/science.aad5440
[22] FLORES A, SCHELL J, KRALL A S, et al. Lactate dehydrogenase activity drives hair follicle stem cell activation[J]. Nat Cell Biol, 2017, 19(9): 1017–1026. DOI: 10.1038/ncb3575
[23] GE W, WANG S H, SUN B, et al. Melatonin promotes cashmere goat (Capra hircus) secondary hair follicle growth:a view from integrated analysis of long non-coding and coding RNAs[J]. Cell Cycle, 2018, 17(10): 1255–1267. DOI: 10.1080/15384101.2018.1471318
[24] ZHU B, GUO Z L, JIN M Z, et al. Establishment of dermal sheath cell line from Cashmere goat and characterizing cytokeratin 13 as its novel biomarker[J]. Biotechnol Lett, 2018, 40(5): 765–772. DOI: 10.1007/s10529-018-2532-5
[25] TANAKA T, NARAZAKI M, KISHIMOTO T. Interleukin (IL-6) immunotherapy[J]. Cold Spring Harb Perspect Biol, 2018, 10(8): a028456. DOI: 10.1101/cshperspect.a028456
[26] OSORIO K M, LILJA K C, TUMBAR T. Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments[J]. J Cell Biol, 2011, 193(1): 235–250. DOI: 10.1083/jcb.201006068
[27] 孙晓林, 杜方原, 刘淑英. 外源性绵羊肺腺瘤病毒囊膜蛋白激活MAPK信号通路的分析[J]. 畜牧兽医学报, 2016, 47(8): 1658–1666.
SUN X L, DU F Y, LIU S Y. Recombinant plasmid pcDNA4/myc-His/exJSRV-env transiently transfect A549 cells and detect the activation of MAPK signal transduction pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(8): 1658–1666. (in Chinese)