畜牧兽医学报  2019, Vol. 50 Issue (5): 901-908. DOI: 10.11843/j.issn.0366-6964.2019.05.001    PDF    
白条纹鸡肉和木质化鸡胸肉的发生特征及机理研究进展
刘一帆, 巨晓军, 章明, 屠云洁, 姬改革, 单艳菊, 邹剑敏, 束婧婷     
江苏省家禽科学研究所, 江苏省家禽遗传育种重点实验室, 扬州 225125
摘要:鸡肉品质是决定肉鸡生产效益的重要因素之一。近年来,白条纹鸡肉(white striping,WS)和木质化鸡胸肉(woody/wooden breast,WB)两种新型肌肉缺陷问题因其出现概率高、影响范围大,正受到业界的广泛关注。WS是指肌肉表面出现平行于肌纤维的白色脂肪沉积条纹,WB主要表现为胸肉明显硬化。这两种肌肉缺陷问题表现出类似的组织学特征,并且常常共同出现。WS和WB的出现严重影响了屠宰鸡肉及分割产品的外观、营养品质以及加工特性,给肉鸡产业造成了严重的经济损失。目前,WS和WB的特征、性质及发生机理方面已取得较大进展,但大多数研究为国外团队报道,国内相关报道较少。本文针对WS和WB的病理学特征、品质特性以发生机理等方面相关研究进展进行综述,旨在为后续研究提供基础理论支撑及参考。
关键词肉品质    肌肉缺陷    白条纹鸡肉    木质化鸡胸肉    
Research Progress on Characteristics and Mechanism of White Striping and Wooden Breast Myopathies in Broilers
LIU Yifan, JU Xiaojun, ZHANG Ming, TU Yunjie, JI Gaige, SHAN Yanju, ZOU Jianmin, SHU Jingting     
Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
Abstract: Meat quality is one of the most important factors for determining the efficiency of broiler production. Recently, two newly reported myopathies are gaining the more attention of poultry industry globally for their high incidence, white striping (WS) and wooden breast (WB). WS is characterized by the occurrence of white fat striations parallel to muscle fibers, while WB is mainly characterized by obvious hardening of the breast muscle. These two myopathies share similar histological lesions, and often appear together. The occurrence of the two myopathies can adversely affect meat's appearance, nutrition value and ability for further processes, which result in huge economic loss to the industry. In recent years, the study of characteristics and mechanism of WB and WS has a greater progress. Most of the studies were reported by foreign research groups, fewer by Chinese research teams. In this review, we summarized the research progress of WB and WS from the aspect of pathological features, effect on meat quality and nutrition value, and detailed mechanism in order to provide reference and theoretical basis for future studies.
Key words: meat quality     myopathies     white striping     wooden breast    

近半个世纪以来,为满足全球日益增长的禽肉消费需求,肉鸡主产品种的生长发育性能得到持续选育提高,同时也带来了一些不利影响。近期,在美国、巴西、英国、中国等多个国家的报告中指出,快大型白羽肉鸡品种中普遍存在一些肌肉缺陷问题,严重威胁了肉鸡产业[1-5]。目前,最受关注的肌肉缺陷问题是白条纹鸡肉(white striping,WS)和木质化鸡胸肉(woody/wooden breast,WB),这两种肌肉缺陷问题均能造成鸡肉的外观异常,降低消费者的购买欲望,同时还会对鸡肉的营养品质和可加工性造成严重的影响,给肉鸡饲养者带来严重的经济损失[1, 6]。WS最早于2009年被报道[7],定义为胸肌肉和腿肌肉上出现平行于肌纤维的白色条纹状的脂肪沉积(图 1)。而WB在2014年被提出[8],这种缺陷造成胸肉的硬度明显增加(图 2),严重的个体表面呈木质纹理状,甚至出现渗血和黏性分泌物[9]。WS和WB均可根据损伤程度分为不同的等级,且这两种缺陷较大比例出现在同一个体上。研究数据显示,目前快大型白羽肉鸡品种中严重程度的WS和WB的发生率分别在10%和15%左右,并有逐年上升的趋势[5, 10-12]。因此,研究WS和WB的特性和发生机理,以此为依据通过遗传育种和饲养管理手段降低肌肉缺陷的发生率,有着迫切的实践意义。

A.正常鸡胸肉;B.中等程度WS;C.严重程度WS。引用自Kuttappan等[13]研究报道 A.Normal fillet; B. Moderate WS; C. Severe WS. Cited from the report by Kuttappan et al[13] 图 1 白条纹鸡胸肉(WS)与正常鸡胸肉的外观比较 Fig. 1 Comparison of the appearance between white striping and normal fillet
木质化鸡胸肉一般在底部出现明显的隆起(箭头位置)。相比于正常胸肉,木质化鸡胸肉受到压力下的形变较小。引自Kuttappan等[14]研究报道 In severe WB, a prominent ridge-like bulge on caudal area of fillet is presented(arrow). The WB shows less visual change than normal fillet when weight compresses the surface of fillet. Cited from the report by Kuttappan et al[14] 图 2 木质化鸡胸肉(A)与正常鸡胸肉(B)的对比 Fig. 2 Comparison between wooden breast (A) and normal fillet (B)

目前,WS和WB已经成为家禽学界的研究热点。WS和WB的病理学特征、品质特性、影响因素以及具体的发生机理研究陆续被报道。随着生物技术的飞速发展,高通量组学技术已经被广泛应用于WS和WB发生机理的相关研究。本文综述了近年来国内外WS和WB的研究进展,以期为后续试验研究和生产实践提供参考。

1 WS和WB的病理学特征

组织学研究发现,WS和WB的发生都伴随着肌肉纤维的损伤。中等程度以上的WS和WB个体都表现出明显的肌纤维变性、坏死甚至裂解,出现再生的异常纤维、结缔组织和脂肪增多、炎性细胞浸润以及纤维化[13, 15-17]。这两种肌肉缺陷的病理特征相近,但也存在着一些差别,如WS个体一般出现脂肪细胞的异常沉积;而WB个体通常发生胶原蛋白的高度交联,可能是WB胸肉硬度增加的直接原因[18-19]。此外,一般WB个体发生肌纤维损伤的程度较WS高[20-21]。Papah等[16]研究发现,WB的病变呈现一个逐步推进的过程,早期阶段(1~4周龄)胸肉主要表现为急性血管炎、脂质沉积和肌纤维变性,然后是慢性纤维化阶段(5~7周龄)。尽管WB在1周龄时已经出现病变,但直至2周龄时才会表现出肌肉表层的变化[22]。Kuttappan等[23]报道,WS个体血清中转氨酶水平出现明显升高,提示WS伴随着发生严重的炎症反应。在肌肉缺陷个体中还发现肌肉卫星细胞数量的减少,以及增殖和分化能力的丧失[24-25]

根据鸡肉外观缺陷程度的不同,Kuttappan等[1]将WS鸡肉分为3个等级。轻度WS鸡肉表面没有明显的白条纹,中度WS表面出现容易察觉的白色条纹(宽度小于1 mm),严重的WS则拥有十分明显的条纹(宽度大于1 mm)。Soglia等[26]也制定了一个WB胸肉的分级标准,根据胸肉的柔韧程度、不同部位的触感以及自由下垂的程度不同分为低、中、高共3个等级。

2 WS和WB对肉品质和营养价值的影响

系水力(water holding capacity,WHC)是评价肉品质的一类重要指标,WHC指标的高低对肉品的加工价值有着重要的影响。研究表明,WS和WB鸡肉的WHC大幅下降,主要体现在蒸煮损失增高、蒸煮肉得率和腌渍吸收率降低[2, 27-29],同时发现,WB对WHC的影响明显大于WS[6, 10, 30]。有研究表明,WS和WB胸肉的pH显著高于正常胸肉[2, 6],肉品pH的升高造成细菌的繁殖加快,导致保存时间缩短。此外,WS个体的肌肉剪切力明显低于正常个体[2]。经过烹饪后WB鸡胸肉硬度明显高于正常鸡肉[29],同时进一步研究发现,WB肉的硬度在胸肉的不同部位并不均匀[31-32],这也影响了WB肉的口感。孙啸等[33]研究发现,经过短期储存后,WB肉的硬度有所下降,但其品质没有明显变化。

鸡肉含有较低的脂肪和胆固醇,作为一种健康的蛋白质来源深受广大消费者的欢迎。WS和WB的发生对鸡肉营养成分造成了较大的影响。研究发现,相比与正常胸肉,WS和WB个体的水分、肌内脂肪和胶原蛋白含量较高,蛋白和灰分含量较低[11, 34-38]。由于人消化胶原蛋白的效率相对较低,WS/WB鸡肉中较高的胶原蛋白含量降低了鸡肉整体的营养价值。此外,蛋白水平降低而胶原蛋白水平升高是造成鸡肉WHC下降的重要原因[15]。Petracci等[35]研究发现,严重的WS肌肉中总能量水平明显升高,其中来源于脂肪的能量是正常鸡肉的3倍以上。有研究报道,WS肌肉中脂肪酸种类的丰富程度不如正常肌肉[11]。微量元素方面,Tasoniero等[30]报道,WS和WS/WB同时发生的个体拥有较高的Ca、Fe、Na含量和较低的K、P含量。

3 影响WS和WB发生的因素 3.1 体重、生长速度与肌肉缺陷的发生

一系列试验数据表明,过快的生长速度和过大的体重可能是引发肉鸡肌肉缺陷的重要原因。Kuttappan等[11]分析了同一肉鸡群体中WS发生概率,发现WS发生率及严重程度与体重和生长速度呈明显的正相关。随后的研究也指出,较大体重的个体出现WS和WB的概率更高[2, 20, 39-41]。Alnahhas等[42]报道,WS的发生与体重、胸肌重存在较高的遗传相关。Trocino等[20]研究发现,公鸡的WS和WB发生率高于母鸡,可能是由于公鸡的体重高于母鸡。Livingston等[40]报道,经过较长时间的种蛋保存后,孵化的肉鸡出栏体重较轻,肌肉缺陷的发生概率较低。有研究报道,随着饲养日龄的增加,体重不断上升,WS和WB的发生率也随之提高[43-44]。在国际肉鸡市场中,超过半数的肉鸡被延长饲养日龄以获得更多的鸡肉产量,导致WS和WB的发生更为普遍,加剧了经济损失[45]

3.2 饲料营养与WS和WB的关系

研究人员还深入研究了不同饲料营养方案对肉鸡肌肉缺陷发生的影响。许多研究证实,降低日粮能量水平或者进行限饲能够明显降低WS和WB的发生,但这也会对肉鸡生产性能造成很大的影响,在实际生产中并不是一个可行的方案[11, 20, 39, 46-47]。研究人员还尝试了通过改变其他营养成分的添加量以改善肉鸡肌肉问题。营养肌肉萎缩症(nutritional muscular dystrophy)是一种表现接近于WS的肉鸡肌肉问题,该疾病的发生与维生素E和硒的缺乏有关[48]。Cemin等[49]和Kuttappan等[12]研究发现,在日粮中分别增加有机硒和维生素E水平并不能降低肉鸡WS和WB的发生机率。Cruz等[50]研究发现,在日粮中增加赖氨酸添加量后,WS和WB的发生率增高。Meloche等[51]报道,可以通过适度降低赖氨酸在肉鸡日粮中的添加量,可以在不显著降低肉鸡生产性能的情况下改善肌肉缺陷问题。Córdova-Noboa等[52]研究发现,在基础日粮中添加胍乙酸后,肉鸡的胸肉得率提高,WB的发生有所降低。Bodle等[53]报道,适度提高日粮中精氨酸与赖氨酸的比例,同时提高维生素C含量和降低总氨基酸含量也是一个可行的方案。

3.3 WS和WB发生的遗传因素

尽管WS和WB的发生与生长速度以及饲养管理条件有着密切的关系,仍有诸多证据提示这些肌肉缺陷可能受遗传影响。一方面,许多研究发现,不同品种的WS和WB发生率存在明显差别,可能与各自品种的遗传背景不同相关[20, 39-40]。其中,Lorenzi等[39]比较了两个商业肉鸡品种的WS发生情况,发现Ross308肉鸡的WS发生率显著高于Cobb500肉鸡。另一方面,通过遗传力的估计也证实了WS和WB的发生率能够传递到后代。Bailey等[54]报道,WS的发生具有中等遗传力,WB遗传力较低。Alnahhas[42]也报道了WS的遗传力为0.65。Chabault[55]研究发现,WS的发生与肌内脂肪含量(IMF)高度相关,而IMF一般被认为是高遗传力性状。为定位到影响WS发生的主效位点,Pampouille等[56]利用两个高度分离的肉鸡群体进行了QTL定位研究,结果共定位到18个与WS相关的QTL分布在13条染色体上,并鉴定了一系列候选基因,包括肌球蛋白重链基因MYH15、MYH1E、MYH1B和血小板源性生长因子受体PDGFR等。

4 WS和WB的发生机理研究

肌肉缺陷是困扰肉鸡业的重要问题之一。更早出现的其他肉质缺陷问题研究,包括PSE肉(pale-soft-exudative meat)、绿色鸡肉(deep pectoralis muscle),为开展WS和WB的发生机理研究提供了重要参考。Lesiow和Kijowski[57]认为,肌肉缺陷问题的频繁出现是由于育种过程中对肌肉生长速度的过度选择。例如,PSE肉具有色泽灰白、质地松软、系水力低的特征,研究发现,该问题与基因突变造成的钙离子调控机制缺失有关[58]。近年来,高通量组学研究策略已经成为揭示疾病和复杂生物学问题的有效途径。为深入揭示肉鸡肌肉缺陷的发生机理,转录组学、蛋白组学和代谢组学工具已经被应用于WS和WB的相关研究中。2015年,Mutryn等[59]首先通过RNA-seq技术对WB胸肌与正常胸肌转录组进行了比较,结果发现,超过1 500个基因发生差异表达。对差异表达基因进行注释发现,一些关键的生理过程可能与WB的发生相关,包括结缔组织紊乱、细胞功能与维持、组织发育、轴突导向信号等。Zambonelli等[60]通过基因表达芯片技术对发生WS/WB的肉鸡胸肌和正常胸肌的基因表达进行分析,结果共鉴定出了204个差异表达基因,功能富集结果显示,差异基因主要参与了氧化应激、肌纤维降解与再生、肌肉离子稳态以及糖代谢、脂质化、纤维化等生理过程。Kuttappan等[61]利用LC-MS/MS质谱技术对WS/WB发生相关的差异蛋白进行研究,结果发现,在WS/WB组和对照组存在141种差异表达蛋白。深入分析发现,WS/WB组显著上调的蛋白可能通过启动mTOR信号,以缓解肌肉纤维降低对机体造成的损伤;下调蛋白主要参与糖酵解和糖异生通路,这可能是造成胸肌pH上升的原因之一。Cai等[38]利用蛋白组学策略研究发现,一系列氧化应激和糖酵解相关的功能蛋白与WB发生相关。最近的转录组学研究报道,1 441个基因在WS个体和正常个体胸肌组织发生差异表达,GO富集分析发现,差异表达基因主要参与免疫系统激活、血管生成、缺氧、细胞死亡和横纹肌收缩[62]

在代谢组学方面,Abasht等[63]通过LC-MS/MS技术比较了WB与正常个体胸肌的代谢差异,结果共鉴定到了140个差异代谢物,这些代谢物主要参与氧化应激增加、蛋白水平升高、肌肉降解和葡萄糖利用。Boerboom等[64]通过代谢组学研究发现,众多与缺氧相关的代谢产物在WS个体肌肉中发生显著变化,推测局部缺氧可能是造成WS的重要原因。

早期研究表明,对肉鸡体重和生长速度的选择导致肌纤维粗大、血管密度和结蹄组织间距的减少[65]。综合近期组学研究结果,WS和WB的发生可能是由于肌肉生长超过机体承受水平,包括血氧供应和结构支撑等[66-67]。血管密度降低还会造成代谢废弃物难以运输,出现应激反应[42, 68]。Mutryn等[59]对早期WB胸肉研究发现,血管密度和肌肉的损伤程度呈明显的正相关,WB病灶区域的未降解肌纤维也表现出了类似缺氧的形态变化,初步支持了以上推论。缺少血氧和营养物质的供应进一步造成炎症和氧化应激的发生,组织无法发挥正常功能。由于缺乏活性氧(ROS)的清除机制,氧化应激能够继续损伤细胞蛋白和质膜,导致肌纤维的形态结构发生变化[69]。Mutryn等[59]研究发现,WS和WB肌肉中ROS浓度远远超出正常水平。此外,装饰蛋白Decorin被认为是一种造成WB发生的关键蛋白。Decorin作为一种胶原交联过程的调节剂,多个研究指出该蛋白的异常高表达引起胶原交联程度升高,导致胶原纤维紧密堆积,最终造成肌肉硬度增加[70-71]

5 小结

综合相关研究结果,WS和WB不仅降低了鸡肉的外在观感,还对鸡肉的营养价值和品质造成了严重影响,因此禽肉生产中应严格限制肌肉缺陷鸡肉的使用,以确保产品品质。如果只在加工环节对缺陷鸡肉进行分拣和处理,势必会造成生产成本的大幅增加。因此,如何在源头降低肌肉缺陷的发生,是当前肉鸡产业亟待解决的重要问题。尽管目前已经揭示了缺陷鸡肉发生与生长速度、体重、饲料营养以及遗传因素的关联,但是其具体的发生机制仍不明确。后续的研究应当在已有报道的基础上,加强对不同研究之间结果的整合挖掘,深入研究解决肉鸡肌肉缺陷问题:一方面需要在饲料营养角度寻找能够改善肌肉缺陷的最佳配方方案,另一方面通过筛选与肌肉缺陷相关的分子标记物,利用遗传选育方法降低WS和WB的发生率。

致谢: 感谢滁州学院生物与食品工程学院孙啸博士和扬州大学动物科学与技术学院白皓博士对本文提出的宝贵建议。

参考文献
[1] KUTTAPPAN V A, LEE Y S, ERF G F, et al. Consumer acceptance of visual appearance of broiler breast meat with varying degrees of white striping[J]. Poult Sci, 2012, 91(5): 1240–1247. DOI: 10.3382/ps.2011-01947
[2] PETRACCI M, MUDALAL S, BONFIGLIO A, et al. Occurrence of white striping under commercial conditions and its impact on breast meat quality in broiler chickens[J]. Poult Sci, 2013, 92(6): 1670–1675. DOI: 10.3382/ps.2012-03001
[3] FERREIRA T Z, CASAGRANDE R A, VIEIRA S L, et al. An investigation of a reported case of white striping in broilers[J]. J Appl Poult Res, 2014, 23(4): 748–753. DOI: 10.3382/japr.2013-00847
[4] DE BROT S, PEREZ S, SHIVAPRASAD H L, et al. Wooden breast lesions in broiler chickens in the UK[J]. Vet Rec, 2016, 178(6): 141.
[5] 陈宏强, 王虎虎, 赵雪, 等. 木质化鸡胸肉发生率统计及其肉糜功能特性研究[J]. 食品工业科技, 2017, 38(20): 49–53.
CHEN H Q, WANG H H, ZHAO X, et al. The incidence of wooden chicken breast and the functional properties in its meat batter[J]. Science and Technology of Food Industry, 2017, 38(20): 49–53. (in Chinese)
[6] MUDALAL S, LORENZI M, SOGLIA F, et al. Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat[J]. Animal, 2015, 9(4): 728–734. DOI: 10.1017/S175173111400295X
[7] KUTTAPPAN V A, BREWER V B, CLARK F D, et al. Effect of white striping on the histological and meat quality characteristics of broiler fillets[J]. Poult Sci, 2009, 88(E-Suppl.1): 136–137.
[8] BILGILI S F, MELOCHE K J, CAMPASINO A, et al. The influence of carnitine and guanidinoacetic acid supplementation of low and high amino acid density diets on Pectoralis major myopathies in broiler chickens[J]. Poult Sci, 2014, 93: M56.
[9] 孙啸, 陈彩蓉, 周漫静, 等. 木质硬度缺陷鸡肉特征及其判定[J]. 食品科学, 2017, 38(7): 82–87.
SUN X, CHEN C R, ZHOU M J, et al. Characteristics and identification of woody breast fillets[J]. Food Science, 2017, 38(7): 82–87. (in Chinese)
[10] TIJARE V V, YANG F L, KUTTAPPAN V A, et al. Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies[J]. Poult Sci, 2016, 95(9): 2167–2173. DOI: 10.3382/ps/pew129
[11] KUTTAPPAN V A, BREWER V B, APPLE J K, et al. Influence of growth rate on the occurrence of white striping in broiler breast fillets[J]. Poult Sci, 2012, 91(10): 2677–2685. DOI: 10.3382/ps.2012-02259
[12] KUTTAPPAN V A, GOODGAME S D, BRADLEY C D, et al. Effect of different levels of dietary vitamin E (DL-α-tocopherol acetate) on the occurrence of various degrees of white striping on broiler breast fillets[J]. Poult Sci, 2012, 91(12): 3230–3235. DOI: 10.3382/ps.2012-02397
[13] KUTTAPPAN V A, SHIVAPRASAD H L, SHAW D P, et al. Pathological changes associated with white striping in broiler breast muscles[J]. Poult Sci, 2013, 92(2): 331–338. DOI: 10.3382/ps.2012-02646
[14] KUTTAPPAN V A, HARGIS B M, OWENS C M. White striping and woody breast myopathies in the modern poultry industry:a review[J]. Poult Sci, 2016, 95(11): 2724–2733. DOI: 10.3382/ps/pew216
[15] SIHVO H K, IMMONEN K, PUOLANNE E. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers[J]. Vet Pathol, 2014, 51(3): 619–623. DOI: 10.1177/0300985813497488
[16] PAPAH M B, BRANNICK E M, SCHMIDT C J, et al. Evidence and role of phlebitis and lipid infiltration in the onset and pathogenesis of wooden breast disease in modern broiler chickens[J]. Avian Pathol, 2017, 46(6): 623–643. DOI: 10.1080/03079457.2017.1339346
[17] BALDI G, SOGLIA F, MAZZONI M, et al. Implications of white striping and spaghetti meat abnormalities on meat quality and histological features in broilers[J]. Animal, 2018, 12(1): 164–173. DOI: 10.1017/S1751731117001069
[18] SOGLIA F, MAZZONI M, PETRACCI M. Spotlight on avian pathology:current growth-related breast meat abnormalities in broilers[J]. Avian Pathol, 2019, 48(1): 1–3.
[19] VELLEMAN S G, CLARK D L, TONNIGES J R. Fibrillar collagen organization associated with broiler wooden breast fibrotic myopathy[J]. Avian Dis, 2017, 61(4): 481–490. DOI: 10.1637/11738-080217-Reg.1
[20] TROCINO A, PICCIRILLO A, BIROLO M, et al. Effect of genotype, gender and feed restriction on growth, meat quality and the occurrence of white striping and wooden breast in broiler chickens[J]. Poult Sci, 2015, 94(12): 2996–3004. DOI: 10.3382/ps/pev296
[21] GRIFFIN J R, MORAES L, WICK M, et al. Onset of white striping and progression into wooden breast as defined by myopathic changes underlying Pectoralis major growth.Estimation of growth parameters as predictors for stage of myopathy progression[J]. Avian Pathol, 2018, 47(1): 2–13. DOI: 10.1080/03079457.2017.1356908
[22] SIHVO H K, LINDÉN J, AIRAS N, et al. Wooden breast myodegeneration of pectoralis major muscle over the growth period in broilers[J]. Vet Pathol, 2017, 54(1): 119–128. DOI: 10.1177/0300985816658099
[23] KUTTAPPAN V A, HUFF G R, HUFF W E, et al. Comparison of hematologic and serologic profiles of broiler birds with normal and severe degrees of white striping in breast fillets[J]. Poult Sci, 2013, 92(2): 339–345. DOI: 10.3382/ps.2012-02647
[24] DAUGHTRY M R, BERIO E, SHEN Z, et al. Satellite cell-mediated breast muscle regeneration decreases with broiler size[J]. Poult Sci, 2017, 96(9): 3457–3464. DOI: 10.3382/ps/pex068
[25] VELLEMAN S G. Recent developments in breast muscle myopathies associated with growth in poultry[J]. Annu Rev Anim Biosci, 2019, 7: 289–308. DOI: 10.1146/annurev-animal-020518-115311
[26] SOGLIA F, MUDALAL S, BABINI E, et al. Histology, composition, and quality traits of chicken Pectoralis major muscle affected by wooden breast abnormality[J]. Poult Sci, 2016, 95(3): 651–659. DOI: 10.3382/ps/pev353
[27] BOWKER B C, MAXWELL A D, ZHUANG H, et al. Marination and cooking performance of portioned broiler breast fillets with the wooden breast condition[J]. Poult Sci, 2018, 97(8): 2966–2970. DOI: 10.3382/ps/pey144
[28] BOWKER B, ZHUANG H. Impact of white striping on functionality attributes of broiler breast meat1[J]. Poult Sci, 2016, 95(8): 1957–1965. DOI: 10.3382/ps/pew115
[29] CHATTERJEE D, ZHUANG H, BOWKER B C, et al. Instrumental texture characteristics of broiler pectoralis major with the wooden breast condition[J]. Poult Sci, 2016, 95(10): 2449–2454. DOI: 10.3382/ps/pew204
[30] TASONIERO G, CULLERE M, CECCHINATO M, et al. Technological quality, mineral profile, and sensory attributes of broiler chicken breasts affected by White Striping and Wooden Breast myopathies[J]. Poult Sci, 2016, 95(11): 2707–2714. DOI: 10.3382/ps/pew215
[31] AGUIRRE M E, OWENS C M, MILLER R K, et al. Descriptive sensory and instrumental texture profile analysis of woody breast in marinated chicken[J]. Poult Sci, 2018, 97(4): 1456–1461. DOI: 10.3382/ps/pex428
[32] BRAMBILA G S, CHATTERJEE D, BOWKER B, et al. Descriptive texture analyses of cooked patties made of chicken breast with the woody breast condition[J]. Poult Sci, 2017, 96(9): 3489–3494. DOI: 10.3382/ps/pex118
[33] 孙啸, 张大成, 季方芳, 等. Woody Breast短期贮藏中肉质的变化[J]. 食品科学, 2017, 38(9): 213–219.
SUN X, ZHANG D C, JI F F, et al. Effect of short-term storage on raw meat quality traits of Woody Breast fillets[J]. Food Science, 2017, 38(9): 213–219. (in Chinese)
[34] MUDALAL S, BABINI E, CAVANI C, et al. Quantity and functionality of protein fractions in chicken breast fillets affected by white striping[J]. Poult Sci, 2014, 93(8): 2108–2116. DOI: 10.3382/ps.2014-03911
[35] PETRACCI M, MUDALAL S, BABINI E, et al. Effect of white striping on chemical composition and nutritional value of chicken breast meat[J]. Ital J Anim Sci, 2014, 13(1): 3138. DOI: 10.4081/ijas.2014.3138
[36] RUSSO E, DRIGO M, LONGONI C, et al. Evaluation of white striping prevalence and predisposing factors in broilers at slaughter[J]. Poult Sci, 2015, 94(8): 1843–1848. DOI: 10.3382/ps/pev172
[37] MAZZONI M, PETRACCI M, MELUZZI A, et al. Relationship between pectoralis major muscle histology and quality traits of chicken meat[J]. Poult Sci, 2015, 94(1): 123–130. DOI: 10.3382/ps/peu043
[38] CAI K, SHAO W, CHEN X, et al. Meat quality traits and proteome profile of woody broiler breast (pectoralis major) meat[J]. Poult Sci, 2018, 97(1): 337–346. DOI: 10.3382/ps/pex284
[39] LORENZI M, MUDALAL S, CAVANI C, et al. Incidence of white striping under commercial conditions in medium and heavy broiler chickens in Italy[J]. J Appl Poult Res, 2014, 23(4): 754–758. DOI: 10.3382/japr.2014-00968
[40] LIVINGSTON M L, LANDON C, BARNES H J, et al. White striping and wooden breast myopathies of broiler breast muscle is affected by time-limited feeding, genetic background, and egg storage[J]. Poult Sci, 2019, 98(1): 217–226. DOI: 10.3382/ps/pey333
[41] KUTTAPPAN V A, BREWER V B, MAUROMOUSTAKOS A, et al. Estimation of factors associated with the occurrence of white striping in broiler breast fillets[J]. Poult Sci, 2013, 92(3): 811–819. DOI: 10.3382/ps.2012-02506
[42] ALNAHHAS N, BERRI C, CHABAULT M, et al. Genetic parameters of white striping in relation to body weight, carcass composition, and meat quality traits in two broiler lines divergently selected for the ultimate pH of the pectoralis major muscle[J]. BMC Genet, 2016, 17: 61.
[43] RADAELLI G, PICCIRILLO A, BIROLO M, et al. Effect of age on the occurrence of muscle fiber degeneration associated with myopathies in broiler chickens submitted to feed restriction[J]. Poult Sci, 2017, 96(2): 309–319. DOI: 10.3382/ps/pew270
[44] KUTTAPPAN V A, OWENS C M, COON C, et al. Incidence of broiler breast myopathies at 2 different ages and its impact on selected raw meat quality parameters[J]. Poult Sci, 2017, 96(8): 3005–3009. DOI: 10.3382/ps/pex072
[45] HUANG X, AHN D U. The incidence of muscle abnormalities in broiler breast meat-a review[J]. Korean J Food Sci Anim Resour, 2018, 38(5): 835–850. DOI: 10.5851/kosfa.2018.e2
[46] MELOCHE K J, FANCHER B I, EMMERSON D A, et al. Effects of quantitative nutrient allocation on myopathies of the Pectoralis major muscles in broiler chickens at 32, 43, and 50 days of age[J]. Poult Sci, 2018, 97(5): 1786–1793.
[47] MELOCHE K J, FANCHER B I, EMMERSON D A, et al. Effects of reduced dietary energy and amino acid density on Pectoralis major myopathies in broiler chickens at 36 and 49 days of age[J]. Poult Sci, 2018, 97(5): 1794–1807.
[48] WALSH D M, KENNEDY D G, GOODALL E A, et al. Antioxidant enzyme activity in the muscles of calves depleted of vitamin E or selenium or both[J]. Br J Nutr, 1993, 70(2): 621–630. DOI: 10.1079/BJN19930153
[49] CEMIN H S, VIEIRA S L, STEFANELLO C, et al. Broiler responses to increasing selenium supplementation using Zn-L-selenomethionine with special attention to breast myopathies[J]. Poult Sci, 2018, 97(5): 1832–1840. DOI: 10.3382/ps/pey001
[50] CRUZ R F A, VIEIRA S L, KINDLEIN L, et al. Occurrence of white striping and wooden breast in broilers fed grower and finisher diets with increasing lysine levels[J]. Poult Sci, 2017, 96(2): 501–510. DOI: 10.3382/ps/pew310
[51] MELOCHE K J, FANCHER B I, EMMERSON D A, et al. Effects of reduced digestible lysine density on myopathies of the Pectoralis major muscles in broiler chickens at 48 and 62 days of age[J]. Poult Sci, 2018, 97(9): 3311–3324. DOI: 10.3382/ps/pey171
[52] CÍRDOVA-NOBOA H A, OVIEDO-RONDÍN E O, SARSOUR A H, et al. Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid[J]. Poult Sci, 2018, 97(7): 2479–2493. DOI: 10.3382/ps/pey096
[53] BODLE B C, ALVARADO C, SHIRLEY R B, et al. Evaluation of different dietary alterations in their ability to mitigate the incidence and severity of woody breast and white striping in commercial male broilers[J]. Poult Sci, 2018, 97(9): 3298–3310. DOI: 10.3382/ps/pey166
[54] BAILEY R A, WATSON K A, BILGILI S F, et al. Editor's choice:the genetic basis of pectoralis major myopathies in modern broiler chicken lines[J]. Poult Sci, 2015, 94(12): 2870–2879. DOI: 10.3382/ps/pev304
[55] CHABAULT M, BAÉZA E, GIGAUD V, et al. Analysis of a slow-growing line reveals wide genetic variability of carcass and meat quality-related traits[J]. BMC Genet, 2012, 13: 90.
[56] PAMPOUILLE E, BERRI C, BOITARD S, et al. Mapping QTL for white striping in relation to breast muscle yield and meat quality traits in broiler chickens[J]. BMC Genomics, 2018, 19: 202. DOI: 10.1186/s12864-018-4598-9
[57] LESIOW T, KIJOWSKI T. Impact of PSE and DED meat on poultry processing-a review[J]. Pol J Food Nutr Sci, 2003, 12(2): 3–8.
[58] BARBUT S, SOSNICKI A A, LONERGAN S M, et al. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat[J]. Meat Sci, 2008, 79(1): 46–63. DOI: 10.1016/j.meatsci.2007.07.031
[59] MUTRYN M F, BRANNICK E M, FU W X, et al. Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing[J]. BMC Genomics, 2015, 16(1): 399. DOI: 10.1186/s12864-015-1623-0
[60] ZAMBONELLI P, ZAPPATERRA M, SOGLIA F, et al. Detection of differentially expressed genes in broiler pectoralis major muscle affected by White Striping-Wooden Breast myopathies[J]. Poult Sci, 2016, 95(12): 2771–2785. DOI: 10.3382/ps/pew268
[61] KUTTAPPAN V A, BOTTJE W, RAMNATHAN R, et al. Proteomic analysis reveals changes in carbohydrate and protein metabolism associated with broiler breast myopathy[J]. Poult Sci, 2017, 96(8): 2992–2999. DOI: 10.3382/ps/pex069
[62] MARCHESI J A P, IBELLI A M G, PEIXOTO J O, et al. Whole transcriptome analysis of the pectoralis major muscle reveals molecular mechanisms involved with white striping in broiler chickens[J]. Poult Sci, 2019, 98(2): 590–601. DOI: 10.3382/ps/pey429
[63] ABASHT B, MUTRYN M F, MICHALEK R D, et al. Oxidative stress and metabolic perturbations in wooden breast disorder in chickens[J]. PLoS One, 2016, 11(4): e0153750. DOI: 10.1371/journal.pone.0153750
[64] BOERBOOM G, VAN KEMPEN T, NAVARRO-VILLA A, et al. Unraveling the cause of white striping in broilers using metabolomics[J]. Poult Sci, 2018, 97(11): 3977–3986. DOI: 10.3382/ps/pey266
[65] SOSNICKI A A, WILSON B W. Pathology of turkey skeletal muscle:implications for the poultry industry[J]. Food Struct, 1991, 10(4): 317–326.
[66] PETRACCI M, CAVANI C. Muscle growth and poultry meat quality issues[J]. Nutrients, 2012, 4(1): 1–12.
[67] SANDERCOCK D A, BARKER Z E, MITCHELL M A, et al. Changes in muscle cell cation regulation and meat quality traits are associated with genetic selection for high body weight and meat yield in broiler chickens[J]. Genet Sel Evol, 2009, 41: 8. DOI: 10.1186/1297-9686-41-8
[68] ALNAHHAS N, LE BIHAN-DUVAL E, BAÉZA E, et al. Impact of divergent selection for ultimate pH of pectoralis major muscle on biochemical, histological, and sensorial attributes of broiler meat[J]. J Anim Sci, 2015, 93(9): 4524–4531. DOI: 10.2527/jas.2015-9100
[69] MACRAE V E, MAHON M, GILPIN S, et al. Skeletal muscle fibre growth and growth associated myopathy in the domestic chicken (Gallus domesticus)[J]. Br Poult Sci, 2006, 47(3): 264–272. DOI: 10.1080/00071660600753615
[70] VELLEMAN S G, CLARK D L. Histopathologic and myogenic gene expression changes associated with wooden breast in broiler breast muscles[J]. Avian Dis, 2015, 59(3): 410–418. DOI: 10.1637/11097-042015-Reg.1
[71] CLARK D L, VELLEMAN S G. Spatial influence on breast muscle morphological structure, myofiber size, and gene expression associated with the wooden breast myopathy in broilers[J]. Poult Sci, 2016, 95(12): 2930–2945. DOI: 10.3382/ps/pew243