畜牧兽医学报  2019, Vol. 50 Issue (4): 721-726. DOI: 10.11843/j.issn.0366-6964.2019.04.005    PDF    
A亚型禽白血病的遗传抗性位点与肉鸡重要经济性状的关联分析
甘师仪, 王劼, 罗成龙, 瞿浩, 舒鼎铭     
广东省农业科学院动物科学研究所, 畜禽育种国家重点实验室, 广东省畜禽育种与营养研究重点实验室, 广州 510640
摘要:为了研究A亚型禽白血病病毒遗传抗性与重要经济性状的关联性,本试验组建了肉鸡F2代资源群体,在788只健康鸡中筛选了tva基因的抗性位点,分别测量记录每只鸡6、8、10、12周龄体重、屠宰体重、胸肌重、腿肌重等重要经济性状指标,并与tva基因位点进行关联分析。研究发现,在该试验群体中存在3个突变型tvar3tvar5tvar6,命名为tvamut502-516。通过关联分析发现,tvamut502-516位点在屠体性状方面,只与腹脂重(AFW)和腹脂率(AFR)呈显著相关(P < 0.05),与生长、饲料转化率及其他屠宰性状的相关性均未达到显著水平(P>0.05)。研究结果表明,A亚型禽白血病病毒的抗性遗传突变可以显著降低肉鸡的腹脂重(AFW)和腹脂率(AFR),并且对肉鸡的生长、饲料转化率等其他重要经济性状没有产生不良的影响,因此,该抗性位点可以兼顾抗性和生长发育,可应用于A亚型禽白血病抗病育种。
关键词肉鸡    tva受体基因    遗传抗性    A亚型禽白血病病毒    经济性状    
Association of Genetic Resistance Loci to Subgroup A Avian Leukosis Virus with Important Economic Traits in Broilers
GAN Shiyi, WANG Jie, LUO Chenglong, QU Hao, SHU Dingming     
Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Abstract: To investigate the association of genetic resistance loci to subgroup A avian leukosis virus(ALV) with important economic traits, the genetic variations within resistance loci of tva gene were screened in an F2 resource population of broilers, which contained 788 healthy chicken. Production-related traits such as body weight, breast muscle weight, leg muscle weight on 6, 8, 10, 12 weeks and slaughter weight were measured, separately, and their association with genetic resistance loci to subgroup A avian leukosis virus was analyzed. Three variants (tvar3, tvar5 and tvar6, named tvamut502-516) were discovered in the F2 population. Association analysis revealed that the tvamut502-516 was significantly associated with abdominal fat weight (AFW) and abdominal fat rate (AFR) (P < 0.05), but not significantly associated with growth, feed efficiency and other carcass traits (P>0.05). These results indicate that the mutation of genetic resistance loci to subgroup A avian leukosis virus can significantly decrease the AFW and AFR of chicken, and had no unfavorable effect on growth, feed efficiency and other carcass traits, therefore, these loci can balance the ALV-A resistance and growth development, can be applied in subgroup A ALV resistant breeding of broilers.
Key words: broilers     tva receptor gene     genetic resistance     subgroup A avian leukosis virus     economic traits    

禽白血病是由禽白血病病毒(avian leukosis virus, ALVs)引起的一种免疫抑制性的肿瘤疾病,感染后会引起宿主产生各种肿瘤疾病和生产问题,对世界家禽产业造成了极大的经济损失[1]。基于病毒囊膜糖蛋白的抗原特性,感染鸡的禽白血病病毒可分为A、B、C、D、E、J和K 7个亚型[2-3]。目前主要采用传统的扑杀感染动物的方法和创造高标准的生物安全环境来控制生产群体的禽白血病[4]。通过这两种方法,发达国家已经成功控制禽白血病,但是在发展中国家,因为复杂的养殖环境很难利用这种方法有效地阻止禽白血病的发生和传染[5-7],因此,找到一种适用于发展中国家的控制禽白血病的新方法迫在眉睫。近年来,学者们意识到抗病育种可能是一种有效控制禽白血病的方法,但在现研究阶段抗病育种只是被用作现有方法的补充,随着研究的深入,未来可能会替代现有的方法[1, 4, 8]

禽白血病病毒是通过细胞表面与病毒囊膜糖蛋白有高亲和力的特异性受体蛋白进入宿主细胞。A亚型禽白血病病毒的受体为tva基因编码的受体蛋白[9]。目前在tva受体基因上发现了6个抗性突变型(tvar1tvar2tvar3tvar4tvar5tvar6)[10-11],这些抗性位点可以为A亚型禽白血病的抗病育种提供分子标记。但是,有研究表明抗病性可能与其重要的经济性状呈负相关。比如,马立克氏病的抗病性导致鸡只体重和产蛋重量的下降[12];在绵羊、虹鳟鱼、虾等其他物种中也有类似的发现[13-16]。而对于禽白血病来说,抗病性与肉鸡重要经济性状的关联尚不清楚,这是限制抗病育种的一个重要因素。

为了探索tva受体基因上6个抗性突变与肉鸡重要经济性状的相关性,在惠阳胡须鸡和黄羽肉鸡杂交体系F2代进行了基因多态性检测,并且评估了ALV-A抗性与生长、饲料转化率和屠体性状的效应关系。

1 材料与方法 1.1 伦理声明

研究动物试验经广东省农业科学院动物科学研究所动物委员会批准,批准号为GAAS-IAS-2009-73。

1.2 试剂器材

本研究所用离心机、ND-2000分光光度计为赛默飞世尔科技有限公司产品;PCR仪型号为Biometra Tgradient-96 PCR;引物由生物工程(大连)有限公司合成;KOD FX酶购自东洋纺(上海)生物科技有限公司;所有化学试剂均为国产分析纯。

1.3 试验群体和表型数据记录

F2资源群体是由中国地方鸡种慢长型的惠阳胡须鸡和快长型的黄羽肉鸡两个不同的品系组建的杂交系(BH × FCYB),分别从两个品系中选出4只公鸡和12只母鸡作为F0代,进行正交和反交,产出F1代56只鸡。F0正交产出的F1与F0反交产出的F1分别进行正交和反交,并通过6个批次孵化产出F2代788只鸡并按照文献[17]中的方法进行饲养。翅静脉采集全血,苯酚-氯仿方法抽提基因组DNA。基因组DNA浓度通过ND-2000分光光度计测定。抽提的DNA储存于-20 ℃备用。

研究所用F2代群体表型数据包括生长指标、饲料效率和屠体性状。其中生长指标包含6、8、10、12周的体重、屠宰时体重(body weight at slaughter,BWS)和7~8、9~10、11~12周的平均日增重(average daily weight gain,ADG)。饲料效率包括采食量(feed intake,FI)和7~8、9~10、11~12周的料重比(feed conversion ratio,FCR)。屠体性状包括屠体重(carcass weight,CW)、半净膛重(semi-evisceration weight,SEW)、净膛重(evisceration weight,EW)、腹脂重(abdominal fat weight,AFW)、胸肌重(breast muscle weight,BMW)、腿肌重(leg muscle weight,LMW)、翅重(wing weight,WW)、CW与BWS比值(CR)、SEW与CW比值(SER,)、EW与CW比值(ER)、AFW与CW比值(AFR)、BMW与CW比值(BMR)、LMW与CW比值(LMR)、WW与CW比值(WR)。

1.4 试验群体中tva基因多态性检测和基因分型

参考GenBank数据库中tva基因的序列(AY531262.1)设计了1对引物来检测BH×FCYB F2群体中的抗性突变(tvar1tvar2tvar3tvar4tvar5tvar6)。上游引物序列:(5′→3′) CCGCTTTATAGGCGTTGGG,下游引物序列:(5′→3′)GGGCAGGGAAGCAGACACT。引物由生物工程(大连)有限公司合成。PCR反应使用的是Biometra Tgradient-96 PCR仪器(Biometra, Goettingen, Germany)。以提取的基因组DNA为模板进行PCR反应。PCR反应体系25 μL:80~100 ng基因组DNA,12.5 μL 2 × PCR buffer for KOD FX(含MgCl2),5 μL dNTPs,上游和下游引物各1.5μL,0.5 U KOD FX DNA聚合酶,ddH2O补至25 μL。PCR反应条件:94 ℃ 5 min;94 ℃ 30 s,67 ℃ 45 s,72 ℃ 90 s,35个循环;72 ℃ 10 min。PCR产物直接测序获得基因分型结果。

1.5 统计分析方法

非正态分布的性状,表型值用Johnson Su转换进行4次对数转换,使其接近正态分布。转换软件为JMP8.0。基因型和性状之间的相关性利用SAS软件通过混合模型程序(模型Ⅰ和模型Ⅱ)进行分析。模型Ⅰ用来评估基因型与生长、饲料效率和免疫性状的相关性,模型Ⅱ用来评估基因型与屠体性状的相关性。

模型Ⅰ:Yijklm=μ+Gi+Sj+Hk+Fl+b1+eijklm;模型Ⅱ:Yijklm=μ+Gi+Sj+Hk+Fl+b2+eijklm。其中,Yijklm代表性状数值;μ代表群体平均值;Gi为基因型效应;Sj为性别效应;Hk为批次效应;Fl为随机家系效应;b1为出雏重,作为协变量评估其在生长、饲料转化率和免疫性状的效应;b2为屠体重,作为协变量评估其在屠体性状的效应,但是在CR、SER、ER、AFR、BMR、LMR和WR的模型中移除协变量b2eijklm为随机误差。

2 结果 2.1 肉鸡tva基因多态性和基因分型

在F2群体中检测tva基因内的遗传抗性突变,没有检测到tvar1tvar2tvar4突变型,只检测到tvar3tvar5tvar6突变型。其中,tvar3tvar4tvar5tvar6均位于tva基因的第一内含子同一区域,统称为tvamut502-516。在F2群体中发现了tvamut502-516的7种不同基因型(表 1)。其中等位基因频率最高的是tvar5(53.49%),最低的是tvas(7.04%)。说明通过抗病育种选择来得到抗ALV-A种鸡群体的方法是可行的。

表 1 F2群体中tvamut502-516的基因型分布和等位基因频率 Table 1 Genotypic distribution and allelic frequencies of tvamut502-516 in the F2 population
2.2 肉鸡tvamut502-516与经济性状的关联分析

关联分析结果显示,tvamut502-516与体重、日增重、采食量和饲料效率等性状均未达到显著相关(P>0.05),与屠体性状中的腹脂重(AFW)和腹脂率(AFR)显著相关(P < 0.05)(表 2),拥有抗病基因型tvar3/r3tvar5/r5个体的AFW和AFR要显著低于易感的野生型tvas/s个体(P < 0.05)(表 3),说明tvamut502-516对鸡只的生长性状、饲料效率及其他屠体性状没有显著影响。

表 2 F2群体中tvamut502-516与生长、饲料效率和屠体性状的相关性 Table 2 Association between tvamut 502-516 and growth, feed efficiency and carcass traits in the F2 population
表 3 BH × FCYB F2群体中tvamut502-516对腹脂的影响 Table 3 Effect of tvamut502-516 on abdominal fat in the BH × FCYB F2 population
3 讨论

目前许多与疾病抗性相关的分子标记可以应用于动物育种领域[18]tvar3tvar4tvar5tvar6位于tva基因的第一内含子区域,任一突变型中的缺失突变均可导致剪接分歧点(branch point,BP)失效,而使第一内含子在剪切过程中保留下来[10],从而导致翻译读码框发生改变,致使tva基因产生无义突变,而提高了宿主对ALV-A的抗性[19]。同样,tvbr1tvbr2也由于导致TVB蛋白氨基酸结构变化而使宿主对ALV-B产生了抗性[20-21]。已有研究表明,动物的抗病突变或多或少都会对动物的经济性状产生一定的影响。比如说,马立克氏病是由MHCGH1、SCA2多个基因控制[22-25],这些基因不仅可以调节宿主对马立克氏病的抗性,还会对宿主的生长和生理学功能产生不良的影响[12, 26-27]。而本研究发现,tvar3tvar4tvar5tvar6 4种突变型可以提高宿主对病毒的抗性,且抗性位点与研究群体的经济性状没有显著相关性。由此可见,针对不同的病毒,其抗性位点对经济性状的影响各不相同。因此,进行抗病选择性育种时都应该对抗病位点和经济性状间进行关联分析,评估该位点是否可以用于选择性抗病育种。

ALV通过病毒囊膜上的表面蛋白识别并结合宿主细胞膜上相应受体,启动病毒跨膜蛋白的构象变化,致使病毒与受体融合,并通过胞吞作用侵入到宿主细胞内进行繁衍,最终导致禽白血病的发生和发展[7]。因此,TVA作为ALV-A的受体蛋白,决定着宿主对ALV-A的抗病能力。除此之外,tva基因也称作CD320基因,该基因在鸡中的功能尚不清楚,而人类的CD320基因主要在B淋巴细胞和滤泡树突状细胞中表达,其表达促进B淋巴细胞增殖和免疫球蛋白的分泌[28],提示,在鸡中tva基因亦可能与免疫有关。本研究中,tva抗性突变虽然破坏了TVA受体蛋白结构,但是对宿主的生长发育没有产生不良的影响,这可能是由于TVA受体蛋白属于低密度脂蛋白受体家族(LDLRs)[9, 29],当TVA受体蛋白被破坏时,产生了补偿效应,该家族的其他蛋白填补了TVA受体蛋白破坏时的功能缺失,这一猜想还需要进一步的深入研究进行验证。

4 结论

tvamut502-516可以显著降低肉鸡的腹脂重和腹脂率,并且对肉鸡的生长、饲料转化率和其他屠体性状没有产生显著的不良影响,因此tvamut502-516作为A亚型禽白血病抗病育种的遗传抗性位点,可以兼顾抗性和生长发育,适合应用于抗病育种中。

参考文献
[1] PAYNE L N, NAIR V. The long view:40 years of avian leukosis research[J]. Avian Pathol, 2012, 41(1): 11–19. DOI: 10.1080/03079457.2011.646237
[2] LI X J, LIN W C, CHANG S, et al. Isolation, identification and evolution analysis of a novel subgroup of avian leukosis virus isolated from a local Chinese yellow broiler in South China[J]. Arch Virol, 2016, 161(10): 2717–2725. DOI: 10.1007/s00705-016-2965-x
[3] RAO M Z R, ZHAO Z J Z, YUAN L X Y, et al. The construction and application of a cell line resistant to novel subgroup avian leukosis virus (ALV-K) infection[J]. Arch Virol, 2018, 163(1): 89–98. DOI: 10.1007/s00705-017-3563-2
[4] KREAGER K S. Chicken industry strategies for control of tumor virus infections[J]. Poult Sci, 1998, 77(8): 1213–1216. DOI: 10.1093/ps/77.8.1213
[5] LAI H Z, ZHANG H N, NING Z Y, et al. Isolation and characterization of emerging subgroup J avian leukosis virus associated with hemangioma in egg-type chickens[J]. Vet Microbiol, 2011, 151(3-4): 275–283. DOI: 10.1016/j.vetmic.2011.03.037
[6] GAO Y L, YUN B L, QIN L T, et al. Molecular epidemiology of avian leukosis virus subgroup J in layer flocks in China[J]. J Clin Microbiol, 2012, 50(3): 953–960. DOI: 10.1128/JCM.06179-11
[7] FENG M, ZHANG X Q. Immunity to avian leukosis virus:Where are we now and what should we do?[J]. Front Immunol, 2016, 7: 624.
[8] PHOCAS F, BELLOC C, BIDANEL J, et al. Review:Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes:Ⅰ-selection goals and criteria[J]. Animal, 2016, 10(11): 1749–1759. DOI: 10.1017/S1751731116000926
[9] BATES P, YOUNG J A T, VARMUS H E. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor[J]. Cell, 1993, 74(6): 1043–1051. DOI: 10.1016/0092-8674(93)90726-7
[10] REINIŠOVÁ M, PLACHY J, TREJBALOVÝ K, et al. Intronic deletions that disrupt mRNA splicing of thetva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A[J]. J Virol, 2012, 86(4): 2021–2030. DOI: 10.1128/JVI.05771-11
[11] CHEN WG, LIU Y, LI H X, et al. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A[J]. Sci Rep, 2015, 5: 9900. DOI: 10.1038/srep09900
[12] NIE Q, SUN B, ZHANG D, et al. High diversity of the chicken growth hormone gene and effects on growth and carcass traits[J]. J Hered, 2005, 96(6): 698–703. DOI: 10.1093/jhered/esi114
[13] PICKERING N K, DODDS K G, BLAIR H T, et al. Genetic parameters for production traits in New Zealand dual-purpose sheep, with an emphasis on dagginess[J]. J Anim Sci, 2012, 90(5): 1411–1420. DOI: 10.2527/jas.2011-4163
[14] EADY S J, WOOLASTON R R, PONZONI R W, et al. Resistance to nematode parasites in Merino sheep:Correlation with production traits[J]. Aust J Agr Res, 1998, 49(8): 1201–1211. DOI: 10.1071/A98069
[15] HENRYON M, JOKUMSEN A, BERG P, et al. Erratum to "Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout"[Aquaculture 209(2002) 59-6][J]. Aquaculture, 2003, 216(1-4): 387–388. DOI: 10.1016/S0044-8486(02)00492-1
[16] GITTERLE T, RYE M, SALTE R, et al. Genetic (co)variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions[J]. Aquaculture, 2005, 243(1-4): 83–92. DOI: 10.1016/j.aquaculture.2004.10.015
[17] SHENG Z Y, PETTERSSON M E, HU X X, et al. Genetic dissection of growth traits in a Chinese indigenous×commercial broiler chicken cross[J]. BMC Genomics, 2013, 14: 151. DOI: 10.1186/1471-2164-14-151
[18] SMITH J, GHEYAS A, BURT D W. Animal genomics and infectious disease resistance in poultry[J]. Rev Sci Tech, 2016, 35(1): 105–119. DOI: 10.20506/rst.issue.35.1.2412
[19] CHEN W G, LIU Y, LI H X, et al. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A[J]. Sci Rep, 2015, 5: 9900. DOI: 10.1038/srep09900
[20] KLUCKING S, ADKINS H B, YOUNG J A T. Resistance to infection by subgroups B, D, and E avian sarcoma and leukosis viruses is explained by a premature stop codon within a resistance allele of the tvb receptor gene[J]. J Virol, 2002, 76(15): 7918–7921. DOI: 10.1128/JVI.76.15.7918-7921.2002
[21] REINIŠOVÁ M, ŠENIGL F, YIN X Q, et al. A single-amino-acid substitution in the TvbS1 receptor results in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroups B and D and resistance to infection by subgroup E in vitro and in vivo[J]. J Virol, 2008, 82(5): 2097–2105. DOI: 10.1128/JVI.02206-07
[22] LIU H C, KUNG H J, FULTON J E, et al. Growth hormone interacts with the Marek's disease virus SORF2 protein and is associated with disease resistance in chicken[J]. Proc Natl Acad Sci U S A, 2001, 98(16): 9203–9208. DOI: 10.1073/pnas.161466898
[23] LIU H C, NⅡKURA M, FULTON J E, et al. Identification of chicken lymphocyte antigen 6 complex, locus E (LY6E, alias SCA2) as a putative Marek's disease resistance gene via a virus-host protein interaction screen[J]. Cytogenet Genome Res, 2003, 102(1-4): 304–308. DOI: 10.1159/000075767
[24] DALGAARD T S, VITVED L, SKJØDT K, et al. Molecular characterization of major histocompatibility complex class Ⅰ (B-F) mRNA variants from chickens differing in resistance to marek's disease[J]. Scand J Immunol, 2005, 62(3): 259–270. DOI: 10.1111/sji.2005.62.issue-3
[25] GOTO R M, WANG Y J, TAYLOR R L Jr, et al. BG1 has a major role in MHC-linked resistance to malignant lymphoma in the chicken[J]. Proc Natl Acad Sci U S A, 2009, 106(39): 16740–16745. DOI: 10.1073/pnas.0906776106
[26] LAMONT S J. Impact of genetics on disease resistance[J]. Poult Sci, 1998, 77(8): 1111–1118. DOI: 10.1093/ps/77.8.1111
[27] SCANES C G. Perspectives on the endocrinology of poultry growth and metabolism[J]. Gen Comp Endocrinol, 2009, 163(1-2): 24–32. DOI: 10.1016/j.ygcen.2009.04.013
[28] LI L, ZHANG X, KOVACIC S, et al. Identification of a human hollicular dendritic cell molecule that stimulates germinal benter B cell growth[J]. J Exp Med, 2000, 191(6): 1077–1084. DOI: 10.1084/jem.191.6.1077
[29] YOUNG J A, BATES P, VARMUS H E. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses[J]. J Virol, 1993, 67(4): 1811–1816.