畜牧兽医学报  2019, Vol. 50 Issue (10): 2041-2052. DOI: 10.11843/j.issn.0366-6964.2019.10.010    PDF    
代乳粉添加枯草芽孢杆菌对7~28日龄湖羊羔羊胃肠道发育的影响
郑琛1, 李发弟2,3, 李飞2, 周巨旺1, 段鹏伟1, 刘绘汇1, 樊海苗1, 朱威力1, 刘婷1     
1. 甘肃农业大学动物科学技术学院, 兰州 730070;
2. 兰州大学草地农业科技学院草地农业生态系统国家重点实验室, 农业农村部草牧业创新重点实验室, 兰州 730020;
3. 甘肃省肉羊繁育生物技术工程实验室, 民勤 733300
摘要:旨在观察代乳粉中添加枯草芽孢杆菌(Bacillus Subtilis)对7~28日龄湖羊羔羊胃肠道生长发育的影响。本研究选择健康、生长发育正常的7日龄湖羊公羔(双羔)30只,按同质性原则随机分为2组,每组15只,每只为1个重复,分别饲喂枯草芽孢杆菌含量为0和0.2%的代乳粉,试验期21 d。28日龄时每组随机选择8只羔羊进行屠宰,称量各胃室和各肠段内容物重量和净重量,量取各肠段长度,计算各段的相对重量和相对长度及内容物分布。采集皱胃胃底腺区及十二指肠、空肠和回肠中段的组织样品,用多聚甲醛固定后用于组织形态学测定,并测定小肠上皮细胞凋亡率。同时采集十二指肠、空肠和回肠黏膜,测定闭锁蛋白(occludin)、闭锁小带1(zonula occludens-1,ZO-1)和紧密连接蛋白1(claudin 1)mRNA表达量。结果表明:1)枯草芽孢杆菌显著降低7~28日龄湖羊羔羊十二指肠指数(占活体重量百分比,P=0.037)、空肠相对长度(占全肠长度百分比,P=0.009)和十二指肠绒毛宽度(P=0.001),显著升高羔羊结肠相对长度(占全肠长度百分比,P=0.012)、空肠内容物相对重量(占全肠内容物重量百分比,P=0.003)、回肠绒毛高度(P=0.010)和隐窝深度(P=0.034);2)枯草芽孢杆菌显著上调十二指肠黏膜ZO-1蛋白mRNA表达量(P=0.012),此外,枯草芽孢杆菌有上调羔羊回肠黏膜occludin蛋白mRNA表达量以及降低回肠上皮细胞凋亡率的趋势(P=0.053,P=0.079);3)枯草芽孢杆菌对其他胃肠段的相对重量(占活体重量、总胃重量、总肠重量和总胃肠重量百分比)及其内容物相对重量(占活体重量、总胃内容物重量、总肠内容物重量和总胃肠内容物重量百分比)、肠道相对长度(占全肠长度百分比)以及皱胃和小肠组织形态与小肠黏膜occludin蛋白、ZO-1蛋白和claudin 1蛋白mRNA表达量和小肠其他肠段上皮细胞凋亡率均未产生显著影响(P>0.05)。枯草芽孢杆菌对7~28日龄湖羊羔羊胃肠道生长发育基本无显著影响,但可提高小肠屏障功能并减少上皮细胞凋亡,有利于保持小肠结构和功能完整。
关键词枯草芽孢杆菌    羔羊    代乳粉    胃肠道    发育    
Effects of Bacillus Subtilis Supplementation into Milk Replacer on the Development of Gastrointestinal Tract of 7-28 Day-old Hu Lambs
ZHENG Chen1, LI Fadi2,3, LI Fei2, ZHOU Juwang1, DUAN Pengwei1, LIU Huihui1, FAN Haimiao1, ZHU Weili1, LIU Ting1     
1. College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
2. State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation of Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
3. Engineering Laboratory of Mutton Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China
Abstract: The purpose of this study was to investigate the effects of Bacillus Subtilis supplementation into milk replacer on the development of gastrointestinal tract of 7-28 day-old Hu lambs. Thirty 7 day-old Hu male lambs(double lambs) were chosen and divided into 2 groups randomly, fifteen lambs in each group and each lamb as a repeat. Lambs in the 2 groups were fed milk replacer with 0 and 0.2% Bacillus Subtilis, respectively. The test lasted for 21 days. Eight lambs were selected from each group randomly and slaughtered at 28 day-old. The weight and net weight of content in the each stomach chamber and each intestinal segment, the length of the intestinal tracts were measured, and the relative weight, relative length and content distribution were calculated. The tissue samples from fundus gland region of the abomasum, the middle part of duodenum, jejunum and ileum were fixed in paraformaldehyde to analyse the histomorphology, and the apoptotic rate of small intestinal epithelial cells was detected. And the mRNA expression of occludin, ZO-1 and claudin 1 in duodenum, jejunum and ileum mucosa were measured. The results showed that:1) Bacillus Subtilis significantly decreased the duodenum index (percentage to body weight, P=0.037), relative length of jejunum (percentage to intestinal tract length, P=0.009) and villus width of duodenum of 7-28 day-old Hu lambs (P=0.001), and increased relative length of colon (percentage to intestinal tract length, P=0.012), relative weight of jejunum content (percentage to intestinal tract content weight, P=0.003), villus height and crypt depth of ileum (P=0.010, P=0.034); 2) Bacillus Subtilis significantly increased the mRNA expression of ZO-1 protein in duodenum mucosa of lambs (P=0.012), in addition, there was a tendency that Bacillus Subtilis up-regulated mRNA expression of oocludin protein in ileum mucosa (P=0.053) and reduced the apoptotic rate of ileum epithelial cells of lambs (P=0.079); 3) Bacillus Subtilis did not affect the relative weights of stomach, intestine segments (percentage to body weight, percentage to stomach weight, percentage to intestinal tract weight and percentage to gastrointestinal tract weight), relative weights of content of stomach and intestinal tract (percentage to body weight, percentage to stomach content weight, percentage to intestinal tract content weight and percentage to gastrointestinal tract content weight), gut relative lengths (percentage to intestinal tract length), histomorphology of abomasum and intestinal tract, mRNA expression of occludin, ZO-1 and claudin 1 proteins in intestine mucosa, and epithelial cells apoptosis rate of other parts of small intestine (P>0.05). It indicates that Bacillus Subtilis almost does not significantly influence the gastrointestinal tract developments of 7-28 day-old Hu lambs, but improves the barrier function of small intestine and decreases the apoptotic rate of small intestinal epithelial cells, beneficial for maintaining normal structure and function of intestinal tract.
Key words: Bacillus Subtilis     lamb     milk replacer     gastrointestinal tract     development    

可饲喂微生物(direct-fed microbials, DFM)是在抗生素大规模禁用背景下发展起来的研究热点,在维持动物肠道健康和提高生产性能方面起重要作用[1],作为活菌制剂,适量和有规律饲喂可促进动物健康[2]。目前较为常用的DFM包括乳酸菌属(Lactobacillus spp.)、双歧杆菌属(Bifidobacterium spp.)、丙酸菌属(Propionbacterium spp.)、肠球菌属(Enterococcus spp.)、片球菌属(Pediococcus spp.)和芽孢杆菌属(Bacillus spp.)等[3]。其中芽孢杆菌属DFM起到多项有益作用,如提高饲料转化效率[4-5]、提高采食量[6]、提高养分消化率[7-8]、分泌胞外酶[8]以及降低甲烷和氨排放[6, 9]等。

枯草芽孢杆菌(Bacillus Subtilis)是一种消化道中的暂住微生物,对动物无致病性,能形成耐酸、耐热和耐寒的孢子,在饲粮中的稳定性很高[10-13]。饲粮中添加枯草芽孢杆菌可提高单胃动物[14-18]和反刍动物[19]的生产性能。枯草芽孢杆菌还可增强肠道中的厌氧环境,有利于乳酸菌产生更多乳酸及阻止病原菌的生长[12, 20],且有利于增强动物免疫功能[19]。此外,枯草芽孢杆菌还可促进仔猪小肠绒毛发育[21-23]。鉴于枯草芽孢杆菌在单胃动物胃肠道发育中所表现出的积极作用,本研究假设添加枯草芽孢杆菌对羔羊胃肠道发育也具有一定的作用。

本试验选择7日龄湖羊羔羊作为试验动物,研究代乳粉中添加枯草芽孢杆菌对羔羊胃肠道生长发育的影响,为羔羊生产中枯草芽孢杆菌的应用提供基础数据。

1 材料与方法 1.1 试验设计及动物

采用对照试验设计。从金昌中天羊业有限公司选择健康、生长发育正常的7日龄湖羊公羔(双羔)30只,按组间初生体重相近的原则随机分为2个处理组,每组15只,每只为1个重复。对照组羔羊饲喂羔羊专用代乳粉(北京精准动物营养研究中心,代乳粉营养水平见表 1),枯草芽孢杆菌组羔羊饲喂添加0.2%枯草芽孢杆菌(GutCare®,赢创德固赛(中国)投资有限公司,有效活菌含量≥2.0×1010 CFU·g-1)的代乳粉。所有羔羊仅饲喂代乳粉,不饲喂其他饲料。试验期21 d,28日龄时每组随机选择8只羔羊进行屠宰。

表 1 羔羊代乳粉营养成分表(风干基础) Table 1 The chemical composition of lamb milk replacer (air-dry basis)
1.2 羔羊饲养管理

羔羊出生后随母羊吸吮初乳,执行羊场常规饲养管理规定。4日龄开始用奶瓶训饲代乳粉,并与母羊分离。7日龄早晨空腹称重后将全同胞的2只公羔随机分入2个处理组,每组15只,保证7日龄体重组间无显著差异(对照组(4.09±0.66)kg,枯草芽孢杆菌组(3.82±0.59)kg)。8日龄开始,接受对照组代乳粉或添加0.2%枯草芽孢杆菌代乳粉饲喂,代乳粉以1:5的比例用温水溶解,每日饲喂4次(6:00、12:00、18:00和24:00),饲喂量为体重的2%。羔羊单笼饲养,自由饮水。

1.3 羔羊屠宰及胃肠道发育指标测定

羔羊不禁食禁水。28日龄称量羔羊宰前活体重后,颈静脉放血致死。立即打开腹腔,将胃分为瘤胃、网胃、瓣胃和皱胃,将小肠分为十二指肠、空肠和回肠,将大肠分为盲肠、结肠和直肠,结扎各部位连接处[24]。连同内容物一起称量各部位重量后,排空内容物,称量各部位净重量。计算胃肠道各段的相对重量(占活体重量、总胃重量、总肠重量和总胃肠重量百分比)及其内容物相对重量(占活体重量、总胃内容物重量、总肠内容物重量和总胃肠内容物重量百分比)。量取各肠段长度,计算相对长度(占全肠长度百分比)。

1.4 组织样品采集及切片制作

分离胃肠道后,用剪刀分别从皱胃胃底腺区以及十二指肠、空肠和回肠中部采集约1 cm2组织块,迅速放置于多聚甲醛固定液中。形态学测定委托成都里来生物科技有限公司完成。

1.5 组织切片测定指标与方法

运用Olympus-DP71(奥林巴斯有限责任公司,日本)显微照相系统观察羔羊皱胃、十二指肠、空肠以及回肠黏膜组织形态并拍照。用Image-Pro Express 6.0图像处理软件测定皱胃黏膜层厚度和肌层厚度,以及十二指肠、空肠和回肠的绒毛高度和宽度、隐窝深度以及肌层厚度。每张切片选取4个典型视野,每个视野测定3组数据,结果取平均值。

1.6 小肠上皮细胞凋亡率测定

选用固定于多聚甲醛中的十二指肠、空肠和回肠样品,采用Tunel方法测定小肠上皮细胞凋亡率[25-26],委托成都里来生物科技有限公司进行测定。

1.7 小肠黏膜紧密连接蛋白mRNA表达量测定

羔羊屠宰后取十二指肠、空肠和回肠中段,用载玻片刮取黏膜样品,迅速置于液氮冷冻,-80 ℃冰箱冷冻,用于测定小肠黏膜闭锁蛋白(occludin)、闭锁小带1(zonula occludens-1,ZO-1)和紧密连接蛋白1(claudin 1) mRNA表达量。按照TRIzol Reagent(Ambion® 15596-026)说明书分别提取十二指肠、空肠和回肠黏膜样品总RNA。用超微量紫外-可见光分光光度计(Thermo ScientificTM NanoDropTM One)检测RNA浓度和纯度。参照反转录试剂盒TransScript® All-in-One First-Strand cDNA Synthesis SuperMix for qPCR(TransGene Biotech公司)将各样品RNA反转录为cDNA。应用引物设计软件Oligo 7.0设计引物,以β-actin为内参基因。RT-PCR使用20 μL扩增体系:10 μL 2×Biogold qPCR SuperMix(2×Biogold qPCR Mixture,浙江博而金科技股份有限公司),上下游引物(表 2)各0.4 μL,1 μL cDNA,8.2 μL ddH2O。RT-PCR在Roche LightCycler® 480II进行,反应条件为:95℃预变性3 min;95 ℃变性10 s,60 ℃退火20 s,72 ℃延伸10 s,40个循环;72 ℃延伸10 min。目的基因的相对表达量用2-ΔΔCt法计算。

表 2 紧密连接蛋白基因引物序列 Table 2 Sequences of primers for intercellular tight junction protein genes
1.8 数据统计分析

用SPSS 22.0统计分析软件对数据进行独立样本t检验,以P≤0.05表示差异显著,以0.05<P≤0.10表示差异具有显著趋势。

2 结果 2.1 枯草芽孢杆菌对羔羊胃肠道相对重量的影响 2.1.1 枯草芽孢杆菌对羔羊胃肠指数的影响

表 3可以看出,枯草芽孢杆菌显著降低羔羊十二指肠指数(占活体重量百分比,P=0.037),对羔羊胃室和其他肠段指数未产生显著影响(P>0.05)。

表 3 枯草芽孢杆菌对羔羊胃肠指数的影响(占活体重量百分比) Table 3 Effects of Bacillus Subtilis on gastrointestinal indexes of lambs (percentage to body weight)
2.1.2 枯草芽孢杆菌对羔羊胃肠相对重量的影响

表 4可以看出,枯草芽孢杆菌对羔羊胃肠相对重量(占全胃重量、全肠重量和全胃肠重量百分比)均未产生显著影响(P>0.05)。

表 4 枯草芽孢杆菌对羔羊胃肠相对重量的影响 Table 4 Effects of Bacillus Subtilis on relative weight of gastrointestinal tract of lambs
2.1.3 枯草芽孢杆菌对羔羊肠道相对长度的影响

表 5可以看出,枯草芽孢杆菌显著降低羔羊空肠相对长度(占全肠长度百分比,P=0.009),显著升高结肠相对长度(占全肠长度百分比,P=0.012),对羔羊其他肠段相对长度无显著影响(P>0.05)。

表 5 枯草芽孢杆菌对羔羊肠道相对长度的影响(占全肠长度百分比) Table 5 Effects of Bacillus Subtilis on relative length of intestinal tract of lambs (percentage to intestinal tract length)
2.2 枯草芽孢杆菌对羔羊胃肠道内容物分布的影响 2.2.1 枯草芽孢杆菌对羔羊胃肠内容物相对活体重量(占活体重量百分比)的影响

表 6可以看出,枯草芽孢杆菌对羔羊胃肠内容物相对活体重量(占活体重量百分比)没有产生显著影响(P>0.05)。

表 6 枯草芽孢杆菌对羔羊胃肠内容物相对活体重量的影响(占活体重量百分比) Table 6 Effects of Bacillus Subtilis on relative weight of gastrointestinal content to body weight of lambs (percentage to body weight)
2.2.2 枯草芽孢杆菌对羔羊胃肠内容物相对总胃/肠内容物及总胃肠内容物相对重量(占全胃内容物重量、全肠内容物重量和全胃肠内容物重量百分比)的影响

表 7可以看出,枯草芽孢杆菌显著升高羔羊空肠内容物相对重量(占全肠内容物重量百分比,P=0.003),有降低羔羊结肠内容物相对重量的趋势(占全肠内容物重量百分比,P=0.091),对羔羊胃室和其他肠段内容物相对重量、相对总胃/肠内容物及总胃肠内容物相对重量(占全胃内容物重量、全肠内容物重量和全胃肠内容物重量百分比)均未产生显著影响(P>0.05)。

表 7 枯草芽孢杆菌对羔羊胃肠内容物相对全胃/肠内容物及全胃肠内容物相对重量的影响 Table 7 Effects of Bacillus Subtilis on relative weight of each part of stomach and intestinal content to total stomach/intestinal tract content and gastrointestinal tract content of lambs
2.3 枯草芽孢杆菌对羔羊皱胃和小肠组织形态的影响

表 8可以看出,枯草芽孢杆菌极显著降低羔羊十二指肠绒毛宽度(P=0.001),并显著升高回肠绒毛高度和隐窝深度(P=0.010,P=0.034),枯草芽孢杆菌对羔羊皱胃和小肠其他发育指标未产生显著影响(P>0.05)。

表 8 枯草芽孢杆菌对羔羊皱胃和小肠组织形态的影响 Table 8 Effects of Bacillus Subtilis on abomasum and intestinal tract histomorphology of lambs

表 9可以看出,枯草芽孢杆菌显著上调羔羊十二指肠ZO-1蛋白mRNA表达量(P=0.012),且有上调回肠occludin蛋白mRNA表达量以及降低回肠上皮细胞凋亡率的趋势(P=0.053,P=0.079)。枯草芽孢杆菌对羔羊十二指肠和空肠occludin蛋白和claudin 1蛋白mRNA表达量以及上皮细胞凋亡率、回肠claudin 1蛋白mRNA表达量均没有产生显著影响(P>0.05)。

表 9 枯草芽孢杆菌对羔羊小肠黏膜紧密连接蛋白mRNA表达量及上皮细胞凋亡率的影响 Table 9 Effects of Bacillus Subtilis on mRNA expression of intercellular tight junction protein in intestinal tract mucosa and apoptotic rate of intestinal epithelial cells of lambs
3 讨论 3.1 枯草芽孢杆菌对羔羊胃肠道相对重量的影响

反刍动物消化道发育通常由内分泌腺介导,是一个有序过程,受品种、年龄、饲粮组成和其他一些因素的调控[27-30]。消化器官的发育与反刍动物的年龄和饲粮有关,如初生反刍动物肠道占胃肠道的80%,随年龄增长而逐渐降低[28];反刍动物出生时,瘤胃和网胃容积约等于皱胃的一半,8周后与皱胃容积相等,而4月龄时为皱胃容积的4倍[24, 31];饲粮组成,尤其是蛋白质品质决定幼龄反刍动物消化器官发育等[32]。本试验中,枯草芽孢杆菌除对羔羊十二指肠指数(占活体重量百分比)以及空肠和结肠相对长度(占全肠长度百分比)有显著影响外,对羔羊胃肠道相对重量和相对长度均没有产生显著影响。这主要是因为本次试验全期都用液态代乳粉饲喂羔羊,并未饲喂固体开食料,而食管沟反射会直接将液体饲料吸入皱胃,造成前胃缺乏发酵底物,且没有固体饲料的刺激作用,导致羔羊胃肠道发育均表现出延滞现象[33-34]。李辉[35]指出,与乳蛋白相比,日粮植物性蛋白可促进犊牛瘤胃和网胃的发育;与饲喂谷物及干草相比,只吮食乳液的幼龄反刍动物前胃达不到有效发育[36],这些结果也与本试验结果一致。此外,枯草芽孢杆菌作为一种益生菌,对羔羊胃肠道微生物区系调节及肠道组织形态发育方面具有一定的有益作用[23],但不足以对羔羊胃肠道整体生长发育产生影响。

3.2 枯草芽孢杆菌对羔羊胃肠道内容物分布的影响

动物必须不断从外界摄入食物,吸收各种养分,以满足机体生长发育和新陈代谢的需要,其中胃肠道承担着最重要的养分消化吸收任务[37]。食糜在胃肠道中与消化液混合,并在胃肠道运动的作用下向后推送,而胃肠道的节律运动受多种因素调控,如消化道平滑肌的舒缩运动、肌间神经丛和黏膜下神经丛以及交感神经和副交感神经的调节、胃肠肽和脑-肠肽的调节以及食糜物理化学性质和压差等[37]。本试验中,枯草芽孢杆菌显著升高羔羊空肠内容物相对重量(占全肠内容物重量百分比),对羔羊胃室和其他肠段内容物相对重量、相对全胃/肠内容物及全胃肠内容物相对重量(占全胃内容物重量、全肠内容物重量和全胃肠内容物重量百分比)均没有产生显著影响。这也说明羔羊胃肠道中的内容物分布仍然由平滑肌运动和神经体液调节以及食糜的物理化学性质所决定,枯草芽孢杆菌作为外源添加的益生菌,仅能通过调节肠道中微生物菌群,如拮抗病原菌,促进有益菌增殖等[23, 38-40],间接改变部分肠段的内容物滞留时间,作用非常微弱。王彩莲等[41]报道,枯草芽孢杆菌显著提高了羔羊皱胃内容物分布并降低小肠内容物分布,与本试验结果不同,可能与本试验羔羊只饲喂液体代乳粉而其试验中羔羊饲喂添加枯草芽孢杆菌的固体开食料有关。

3.3 枯草芽孢杆菌对羔羊皱胃和小肠组织形态的影响

哺乳期反刍动物靠食管沟反射将吮吸的乳汁直接由食管流入瓣胃,养分的消化主要在皱胃和小肠完成[33]。肠绒毛与养分消化吸收密切相关,绒毛越长且隐窝越浅表明肠道的吸收功能越好[42]。通常,小肠上皮细胞从隐窝向肠腔表面迁移并逐渐分化成熟,在绒毛顶端分化成熟后,具备分泌和吸收的能力,因此,绒毛高度和隐窝深度以及绒毛高度/隐窝深度(V/C)比值是反映小肠组织形态及评价其养分消化吸收能力的重要指标[35, 42]。同时,胃肠道黏膜和肌层厚度有助于动物提高屏障能力而减少各种肠道疾病[43]。本试验中,枯草芽孢杆菌显著降低羔羊十二指肠绒毛宽度并升高回肠绒毛高度和隐窝深度,且有提高羔羊十二指肠肌层厚度的趋势,小肠3个肠段的绒毛高度和V/C比值均高于对照组羔羊,表明枯草芽孢杆菌有助于促进羔羊小肠绒毛发育并提高养分消化吸收能力,与前人在仔猪上的试验结果一致[21-23]。本试验中,枯草芽孢杆菌显著上调羔羊十二指肠ZO-1蛋白mRNA表达量,且有上调回肠occludin蛋白mRNA表达量以及降低回肠上皮细胞凋亡率的趋势,也印证了肠道组织形态学的检测结果。消化道的黏膜结构由覆盖其上的上皮细胞组成,上皮细胞的紧密连接有助于消除细胞间隙,形成基本屏障,而如果屏障功能受损,将导致病原菌及各种有害物质破坏上皮细胞而进入循环系统,引发各种疾病[44]。同时,小肠上皮细胞的更新速度很快,因此,细胞增殖和凋亡须保证精确平衡才能保障肠道结构和功能的完整[44],而肠道中的多种激素和生长因子共同调控上皮细胞的增殖、分化和凋亡[25]。本试验中,枯草芽孢杆菌上调小肠紧密连接蛋白mRNA表达量并降低上皮细胞凋亡率,主要是由于枯草芽孢杆菌可通过促进有益菌增殖且拮抗病原菌定植而改善羔羊肠道微生物区系[23, 38-40]。目前已有多项研究证实,肠道中的益生菌可通过维护细胞骨架并上调ZO-1和occludin蛋白表达来增强动物肠道黏膜屏障功能,并上调Akt蛋白激酶B表达和下调P38丝裂原活化蛋白激酶表达来降低上皮细胞凋亡率[45-48],而本试验中枯草芽孢杆菌正是通过促进羔羊肠道有益菌增殖,来保障肠道结构和功能的完整性。

4 结论

枯草芽孢杆菌显著降低7~28日龄湖羊羔羊十二指肠指数、空肠相对长度和十二指肠绒毛宽度,显著提高结肠相对长度、空肠内容物相对重量、回肠绒毛高度和隐窝深度并上调十二指肠ZO-1蛋白mRNA表达量,有上调回肠occludin蛋白mRNA表达量及降低回肠上皮细胞凋亡率的趋势。表明枯草芽孢杆菌对7~28日龄湖羊羔羊胃肠道发育基本无显著影响,但可提高小肠屏障功能并减少上皮细胞凋亡,有利于保持小肠结构和功能完整。

参考文献
[1] BLAVI L, JØRGENSEN J N, STEIN H H. Effects of Bacillus amyloliquefaciens and Bacillus subtilis on ileal digestibility of AA and total tract digestibility of CP and gross energy in diets fed to growing pigs[J]. J Anim Sci, 2019, 97(2): 727–734. DOI: 10.1093/jas/sky432
[2] CHAUCHEYRAS-DURAND F, DURAND H. Probiotics in animal nutrition and health[J]. Benef Microbes, 2010, 1(1): 3–9. DOI: 10.3920/BM2008.1002
[3] BUNTYN J O, SCHMIDT T B, NISBET D J, et al. The role of direct-fed microbials in conventional livestock production[J]. Annu Rev Anim Biosci, 2016, 4: 335–355. DOI: 10.1146/annurev-animal-022114-111123
[4] JAWORSKI N W, OWUSU-ASIEDU A, WALSH M C, et al. Effects of a 3 strain Bacillus-based direct-fed microbial and dietary fiber concentration on growth performance and expression of genes related to absorption and metabolism of volatile fatty acids in weanling pigs[J]. J Anim Sci, 2017, 95(1): 308–319.
[5] JØRGENSEN J N, LAGUNA J S, MILLÁN C, et al. Effects of a Bacillus-based probiotic and dietary energy content on the performance and nutrient digestibility of wean to finish pigs[J]. Anim Feed Sci Technol, 2016, 221: 54–61. DOI: 10.1016/j.anifeedsci.2016.08.008
[6] WANG Y, CHO J H, CHEN Y J, et al. The effect of probiotic BioPlus 2B® on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs[J]. Livest Sci, 2009, 120(1-2): 35–42. DOI: 10.1016/j.livsci.2008.04.018
[7] CAI L, INDRAKUMAR S, KIARIE E, et al. Effects of a multi-strain Bacillus species-based direct-fed microbial on growth performance, nutrient digestibility, blood profile, and gut health in nursery pigs fed corn-soybean meal-based diets[J]. J Anim Sci, 2015, 93(9): 4336–4342. DOI: 10.2527/jas.2015-9056
[8] SANTOSO U, TANAKA K, OHANIAND S, et al. Effect of fermented product from Bacillus subtilis on feed conversion efficiency, lipid accumulation and ammonia production in broiler chicks[J]. Asian-Australas J Anim Sci, 2001, 14(3): 333–337. DOI: 10.5713/ajas.2001.333
[9] PRENAFETA-BOLDÚ F X, FERNÁNDEZ B, VIÑAS M, et al. Effect of Bacillus spp. direct-fed microbial on slurry characteristics and gaseous emissions in growing pigs fed with high fibre-based diets[J]. Animal, 2017, 11(2): 209–218. DOI: 10.1017/S1751731116001415
[10] CARLIN F. Origin of bacterial spores contaminating foods[J]. Food Microbiol, 2011, 28(2): 177–182.
[11] CUTTING S M. Bacillus probiotics[J]. Food Microbiol, 2011, 28(2): 214–220. DOI: 10.1016/j.fm.2010.03.007
[12] SANDERS M E, MORELLI L, TOMPKINS T A. Sporeformers as human probiotics, Bacillus, Sporolactobacillus, and Brevibacillus[J]. Compr Rev Food Sci F, 2003, 2(3): 101–110.
[13] HOA N T, BACCIGALUPI L, HUXHAM A, et al. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders[J]. Appl Environ Microbiol, 2000, 66(12): 5241–5247. DOI: 10.1128/AEM.66.12.5241-5247.2000
[14] FRITTS C A, KERSEY J H, MOTL M A, et al. Bacillus subtilis C-3102(Calsporin) improves live performance and microbiological status of broiler chickens[J]. J Appl Poult Res, 2000, 9(2): 149–155. DOI: 10.1093/japr/9.2.149
[15] HOOGE D. Bacillus subtilis spores may.Nutrition & health, poultry[J]. Feedstuffs, 2008, 22-23: 21.
[16] LEE S H, INGALE S L, KIM J S, et al. Effects of dietary supplementation with Bacillus subtilis LS 1-2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig[J]. Anim Feed Sci Technol, 2014, 188: 102–110. DOI: 10.1016/j.anifeedsci.2013.12.001
[17] ZHANG Z F, CHO J H, KIM I H. Short communication:effects of Bacillus subtilis UBT-MO2 on growth performance, relative immune organ weight, gas concentration in excreta, and intestinal microbial shedding in broiler chickens[J]. Livest Sci, 2013, 155(2-3): 343–347. DOI: 10.1016/j.livsci.2013.05.021
[18] ZHANG Z F, ZHOU T X, AO X, et al. Effects of β-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize-soybean meal based diets[J]. Livest Sci, 2012, 150(1-3): 419–424. DOI: 10.1016/j.livsci.2012.10.003
[19] SUN P, WANG J Q, ZHANG H T. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves[J]. J Dairy Sci, 2010, 93(12): 5851–5855. DOI: 10.3168/jds.2010-3263
[20] MARUTA K, MIYAZAKI H, MASUDA S, et al. Exclusion of intestinal pathogens by continuous feeding with Bacillus subtilis C-3102 and its influence on the intestinal microflora in broilers[J]. Anim Sci Technol, 1996, 67(3): 273–280.
[21] 兰青.仔猪主要肠道菌群分布的研究和益生菌对仔猪生长发育及免疫功能的影响[D].雅安: 四川农业大学, 2008.
LAN Q.The study of the major flora's distribution in the baby pigs' intestinal tract and the probiotics' influence on the baby pigs' growth and development and immune function[D]. Ya'an: Sichuan Agricultural University, 2008.(in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10626-2008198074.htm
[22] 彭霞. 枯草芽孢杆菌在养猪生产上的应用[J]. 广东饲料, 2010, 19(2): 26–27.
PENG X. Application of Bacillus subtilis in the pig production[J]. Guangdong Feed, 2010, 19(2): 26–27. DOI: 10.3969/j.issn.1005-8613.2010.02.011 (in Chinese)
[23] 邓军, 李云锋, 杨倩. 枯草芽孢杆菌和猪源乳酸杆菌混合饲喂对仔猪肠绒毛发育的影响[J]. 畜牧兽医学报, 2013, 44(2): 295–301.
DENG J, LI Y F, YANG Q. Effects of co-administration of Bacillus subtilis and porcine Lactobacillus salivarius on intestinal villus of piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(2): 295–301. (in Chinese)
[24] 马仲华. 家畜解剖学及组织胚胎学[M]. 3版. 北京: 中国农业出版社, 2001.
MA Z H. Animal anatomy, histology and embryology[M]. 3rd ed. Beijing: China Agriculture Press, 2001. (in Chinese)
[25] 王远孝.IUGR猪的生长与肠道发育及L-精氨酸和大豆卵磷脂的营养调控研究[D].南京: 南京农业大学, 2011.
WANG Y X.Effect of IUGR on the growth and the intestinal development in postnatal pigs and the nutritioin reguation by L-arginine and soya lecithine[D]. Nanjing: Nanjing Agricultural University, 2011.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10307-1014122449.htm
[26] MIYAZAWA K, ASO H, KANAYA T, et al. Apoptotic process of porcine intestinal m cells[J]. Cell Tissue Res, 2006, 323(3): 425–432. DOI: 10.1007/s00441-005-0086-z
[27] LIU J H, XU T T, LIU Y J, et al. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats[J]. Am J Physiol Regul Integr Comp Physiol, 2013, 305(3): R232–R241. DOI: 10.1152/ajpregu.00068.2013
[28] 孙娟.育肥方式对呼伦贝尔及呼杜杂交羔羊消化道组织形态及酶活的影响[D].呼和浩特: 内蒙古农业大学, 2014.
SUN J.The effects of fattening patterns on enzyme activities and gastrointestinal tract morphology of Hulun Buir lambs and F1 hybrid lambs between Hulun Buir and Dorper sheep[D]. Huhhot: Inner Mongolia Agricultural University, 2014.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2600718
[29] 郭江鹏, 潘建忠, 李发弟, 等. 不同早期断奶日龄对舍饲肉用羔羊胃组织形态发育变化的影响[J]. 畜牧兽医学报, 2018, 49(5): 971–985.
GUO J P, PAN J Z, LI F D, et al. Effect of different early weaned day on morphological development of stomach for housed lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(5): 971–985. (in Chinese)
[30] 郭江鹏, 张元兴, 李发弟, 等. 0~56日龄舍饲肉用羔羊胃肠道发育特点研究[J]. 畜牧兽医学报, 2011, 42(4): 513–520.
GUO J P, ZHANG Y X, LI F D, et al. Developmental characteristics of gastrointestinal tract in confined lambs at the age 0-56 days[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42(4): 513–520. (in Chinese)
[31] 郭江鹏, 郝正里, 李发弟, 等. 早期断奶对舍饲肉用羔羊消化器官发育的影响[J]. 畜牧兽医学报, 2013, 44(7): 1078–1089.
GUO J P, HAO Z L, LI F D, et al. Effect of early weaning on development of digestive organs of barn feeding lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(7): 1078–1089. (in Chinese)
[32] GUILLOTEAU P, ZABIELSKI R, BLUM J W. Gastrointestinal tract and digestion in the young ruminant:ontogenesis, adaptations, consequences and manipulations[J]. J Physiol Pharmacol, 2009, 60(Suppl 3): 37–46.
[33] 韩正康, 陈杰. 反刍动物瘤胃的消化和代谢[M]. 北京: 科学出版社, 1988.
HAN Z K, CHEN J. The ruminal digestion and metabolism of ruminants[M]. Beijing: Science Press, 1988. (in Chinese)
[34] ØRSKOV E R, BENZIE D, KAY R N B. The effects of feeding procedure on closure of the oesophageal groove in young sheep[J]. Br J Nutr, 1970, 24(3): 785–795. DOI: 10.1079/BJN19700080
[35] 李辉.蛋白水平与来源对早期断奶犊牛消化代谢及胃肠道结构的影响[D].北京: 中国农业科学院, 2008.
LI H.Effects of protein level and source on nutrient utilization and gastrointestinal characteristics in early-weaning calves[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-82101-2008130397.htm
[36] BALDWIN VI R L, MCLEOD K R, KLOTZ J L, et al. Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant[J]. J Dairy Sci, 2004, 87(Suppl 1): E55–E65.
[37] 赵茹茜. 动物生理学[M]. 5版. 北京: 中国农业出版社, 2011.
ZHAO R Q. Animal physiology[M]. 5th ed. Beijing: China Agricultural Press, 2011. (in Chinese)
[38] 王佩, 范燕茹, 金鑫, 等. 枯草芽孢杆菌对绵羊瘤胃上皮细胞β-防御素-1表达的影响[J]. 畜牧兽医学报, 2015, 46(5): 760–767.
WANG P, FAN Y R, JIN X, et al. Effects of Bacillus subtilis on the expression of SBD-1 in cultured ruminal epithelial cells of sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(5): 760–767. (in Chinese)
[39] 李云锋, 邓军, 张锦华, 等. 枯草芽孢杆菌对仔猪小肠局部天然免疫及TLR表达的影响[J]. 畜牧兽医学报, 2011, 42(4): 562–566.
LI Y F, DENG J, ZHANG J H, et al. The effects of Bacillus subtilis on local innate immune and expression of TLR of pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42(4): 562–566. (in Chinese)
[40] 王晓霞, 易中华, 计成, 等. 果寡糖和枯草芽孢杆菌对肉鸡肠道菌群数量、发酵粪中氨气和硫化氢散发量及营养素利用率的影响[J]. 畜牧兽医学报, 2006, 37(4): 337–341.
WANG X X, YI Z H, JI C, et al. Effects of fructo-oligosaccharide and Bacillus subtilis on intestinal microflora, fecal emission of ammonia and sulfureted hydrogen and nutrient availability in broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2006, 37(4): 337–341. DOI: 10.3321/j.issn:0366-6964.2006.04.006 (in Chinese)
[41] 王彩莲, 宋淑珍, 郎侠, 等. 枯草芽孢杆菌制剂和紫雏菊提取物对育肥羔羊胃肠道发育及其内容物分布的影响[J]. 中国草食动物科学, 2018, 38(5): 13–18.
WANG C L, SONG S Z, LANG X, et al. Effects of Bacillus Subtilis additive and Echinacea extractive on gastrointestinal development and their content distribution in fattening lambs[J]. China Herbivore Science, 2018, 38(5): 13–18. DOI: 10.3969/j.issn.2095-3887.2018.05.003 (in Chinese)
[42] 杨春涛.热带假丝酵母与桑叶黄酮对犊牛生长和胃肠道发育的影响[D].北京: 中国农业科学院, 2016.
YANG C T.Effects of Candida tropicalis and mulberry leaf flavonoids on growth and gastrointestinal development in calves[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-82101-1016171400.htm
[43] LE GALL M, GALLOIS M, SÈVE B, et al. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets[J]. Br J Nutr, 2009, 102(9): 1285–1296. DOI: 10.1017/S0007114509990213
[44] 刘琳娜.大黄多糖对肠上皮细胞损伤的修复作用及其机制研究[D].西安: 第四军医大学, 2005.
LIU L N.Healing effect of Rheum Tanguticum Polysaccharides (RTP) on intestinal epithelial cell injury and its possible mechanism[D]. Xi'an: The Fourth Military Medical University, 2005.(in Chinese) http://cdmd.cnki.com.cn/article/cdmd-90026-2005092296.htm
[45] PUTHENEDAM M, WILLIAMS P H, LAKSHMI B S, et al. Modulation of tight junction barrier function by outer membrane proteins of enteropathogenic Escherichia coli:role of F-actin and junctional adhesion molecule-1[J]. Cell Biol Int, 2007, 31(8): 836–844. DOI: 10.1016/j.cellbi.2007.01.036
[46] 杨俊, 张中伟, 秦环龙. 乳酸菌对肠上皮细胞侵袭性大肠杆菌损伤的保护作用[J]. 世界华人消化杂志, 2008, 16(30): 3394–3399.
YANG J, ZHANG Z W, QIN H L. Protective role of Lactobacillus plantarun in regulating intestinal epithelial cells response to pathogenic bacteria[J]. World Chinese Journal of Digestology, 2008, 16(30): 3394–3399. DOI: 10.3969/j.issn.1009-3079.2008.30.006 (in Chinese)
[47] 尚沁沁, 李雅丽, 史艳云, 等. 益生菌对动物肠上皮细胞免疫功能的研究进展[J]. 中国畜牧杂志, 2014, 50(13): 87–90.
SHANG Q Q, LI Y L, SHI Y Y, et al. Research progress on probiotics for the immune function of intestinal epithelial cells in animal[J]. Chinese Journal of Animal Science, 2014, 50(13): 87–90. DOI: 10.3969/j.issn.0258-7033.2014.13.018 (in Chinese)
[48] YAN F, POLK D B. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells[J]. J Biol Chem, 2002, 277(52): 50959–50965. DOI: 10.1074/jbc.M207050200