畜牧兽医学报  2019, Vol. 50 Issue (1): 203-210. DOI: 10.11843/j.issn.0366-6964.2019.01.023    PDF    
日粮补充棕榈酸对泌乳早期荷斯坦奶牛泌乳性能、血液生化指标和激素水平的影响
张海波     
宜春学院生命科学与资源环境学院, 宜春 336000
摘要:旨在研究日粮补充棕榈酸对泌乳早期奶牛泌乳性能、血液生化指标和激素水平的影响。本研究选用体重((598.49±30.98)kg)、胎次(2~4胎)、泌乳时期(产犊15~37天)和泌乳量((20.76±3.32)kg)相近的健康中国荷斯坦奶牛30头,对照组饲喂基础日粮,试验组分别在基础日粮上补充2.0%和4.0%棕榈酸,每组设10个重复,每个重复1头牛,试验期为60 d。在试验开始和结束时采集奶样和血液样品,测定乳成分,同时测定血液生化指标和激素浓度。结果表明:1)3个处理组之间的日均干物质采食量、初始产奶量、饲料效率、初始乳脂率、乳蛋白率、乳非脂固形物率和乳糖含量和初始的游离脂肪酸、葡萄糖、乙酰乙酸、β-羟丁酸、胰岛素样生长因子1(IGF-1)浓度以及胰岛素、胰高血糖素和瘦素含量差异不显著(P>0.05)。2)与对照组相比,2.0%和4.0%棕榈酸组显著提高产奶量、标准乳(FCM)产量和试验后乳脂率、葡萄糖、胰岛素和IGF-1浓度(P < 0.05),显著降低试验后乙酰乙酸、β-羟丁酸、游离脂肪酸、胰高血糖素和瘦素浓度(P < 0.05)。3)2.0%与4.0%棕榈酸组之间的产奶量、FCM、乳蛋白、乳非脂固形物率、乳糖、葡萄糖、乙酰乙酸、β-羟丁酸、游离脂肪酸、IGF-1、胰岛素、胰高血糖素和瘦素浓度差异不显著(P>0.05)。结果提示,日粮补充2.0%或4.0%棕榈酸可通过调节泌乳早期奶牛体内激素分泌,使酮体生成量减少,提高产奶量,改善乳品质。本试验条件下,综合考虑效果最佳剂量为日粮补充2.0%棕榈酸。
关键词泌乳早期奶牛    棕榈酸    泌乳性能    乳品质    激素浓度    
Effects of Dietary Supplementation of Palmitic Acid on Lactation Performance, Blood Biochemical Indexes and Hormone Concentration in Early Lactation Holstein Dairy Cows
ZHANG Haibo     
College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China
Abstract: This experiment was conducted to study the effects of dietary supplementation of palmitic acid on lactation performance, blood biochemical indexes and hormone concentration in early lactation Holstein dairy cows. Thirty healthy Chinese Holstein dairy cows with similar body weight ((598.49±30.98) kg), parity (2-4 fetuses), lactation stage(15-37 days of calving) and lactation production ((20.76±3.32) kg) were randomly divided into 3 groups, each group with 10 cows and one cow in each replicate. Cows in the control group were fed the basal diet, and cows in the experimental groups were supplemented with 2.0% and 4.0% palmitic acid in the basal diet, respectively. The trial lasted for 60 days. Milk samples and blood samples were taken at the beginning and end of the test to determine the milk compositions and the blood biochemical indexes and hormone concentrations. The results showed that:1) The daily dry matter intake, initial milk yield, feed efficiency, initial milk fat rate, milk protein rate, milk non-fat solid (NFS) rate, and the the contents of initial lactose, free fatty acids, glucose, acetoacetic acid, β-hydroxybutyrate, insulin-like growth factor 1 (IGF-1), insulin, glucagon and leptin were not significantly different among the 3 treatment groups (P>0.05); 2) Compared with the control group, 2.0% and 4.0% palmitic acid groups significantly increased milk yield, standard milk (FCM) yield and the post-treatment milk fat rate, glucose, insulin and IGF-1 concentrations (P < 0.05), and significantly decreased the post-treatment acetoacetic acid, β-hydroxybutyrate, free fatty acid, glucagon and leptin concentrations (P < 0.05); 3) There was no significant difference in milk yield, FCM yield, milk protein rate, milk NFS rate and lactose, glucose, acetoacetic acid, β-hydroxybutyrate, free fatty acid, IGF-1, insulin, glucagon and leptin concentrations between the 2.0% and 4.0% palmitic acid groups (P>0.05). These results indicated that dietary supplementation of 2.0% or 4.0% palmitic acid could reduce the ketone body production, improve milk production and quality by regulating hormone secretion in early lactation dairy cows. Under the conditions of this test, the best dose for the effect is to supplement the diet with 2.0% palmitic acid.
Key words: early lactation cows     palmitic acid     lactation performance     milk quality     hormone concentration    

奶牛在泌乳早期这一特殊生理阶段,泌乳量增加使其对能量需要增多,但同时较低采食量限制能量摄入,奶牛必须动用体脂肪来满足泌乳对能量的需要,使机体处于能量负平衡状态[1-4]。奶牛在泌乳早期过多动用体脂肪,可引起乙酰乙酸、β-羟丁酸、游离脂肪酸等代谢物质在肝蓄积,导致产生脂肪肝、酮病等,从而直接影响经济效益[5-8]。日粮中补充脂肪可有效缓解奶牛泌乳早期能量负平衡问题[9-13]。棕榈酸是高度饱和惰性脂肪酸,不含可被瘤胃微生物加氢饱和的双键,因而在瘤胃中不发生变化,直接进入后段消化道被消化吸收[14-15]。目前,日粮补充棕榈酸可提高产奶量,但对乳成分、血液生化指标和激素浓度的影响报道结果并不一致[11, 16]。如张海波[11]在奶牛泌乳早期日粮中添加1.5%棕榈酸可提高奶牛产奶量、乳脂率、血糖和胰岛素浓度;Mathews等[16]给泌乳中期奶牛日粮中添加4.0%棕榈酸提高了奶牛产奶量,但对乳成分、血糖和胰岛素浓度影响不显著。

本试验旨在研究奶牛泌乳早期日粮中补充棕榈酸对泌乳性能、血液生化指标和能量代谢相关激素浓度的影响,为奶牛泌乳早期合理添加棕榈酸提供理论依据和基本参数。

1 材料与方法 1.1 试验设计与饲养管理

本研究选用体重((598.49±30.98) kg)、胎次(2~4胎)、泌乳时期(产犊15~37天)和泌乳量((20.76±3.32) kg)相近的中国荷斯坦奶牛30头,按照单因素试验设计原则分为3个处理组,对照组饲喂基础日粮,试验组分别在基础日粮中补充2.0%和4.0%棕榈酸,每组设10个重复,每个重复1头牛,试验时间为60 d。棕榈酸添加剂量参考Zhang等[17]、Piantoni等[18]和Rico等[19]的试验。棕榈酸纯度大于97%,主要为高饱和脂肪酸,原产地马来西亚,其商品名称为棕榈酸1699。按照NRC(2001)产奶量20 kg、乳脂率3.5%和体重600 kg泌乳奶牛的需要量配制基础日粮[20],日粮组成及营养水平见表 1。试验牛散栏饲养,自由活动和饮水。每天早、中和晚各饲喂1次,饲喂时先粗料后精料,饲喂后挤奶1次。

表 1 日粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of basal diets (air-dry basis)
1.2 采样与分析 1.2.1 饲料样品采集与分析

每天记录投入饲料和剩余饲料重量,根据每周测定1次投入饲料和剩余饲料干物质含量计算出每周内日均干物质采食量,最后用平均每周内每天的干物质采食量计算出整个试验期内日均干物质采食量(DMI)。采用张丽英[21]的方法测定饲料中粗蛋白、酸性洗涤纤维、粗脂肪和中性洗涤纤维含量。

1.2.2 牛乳样品采集与分析

在试验开始前测定初始产奶量和乳成分。每周固定一天测定早、中和晚产奶量,最后计算出日均产奶量。在测定产奶量的同时,按照4:3:3比例采集早、中和晚混合乳样50 mL,用于乳成分测定。用FOSS红外乳成分测定仪测定混合乳样中乳蛋白、乳非脂固形物、乳糖和乳脂含量。按“0.4×产奶量(kg)+15×乳脂产量(kg)”计算标准乳(4%FCM)产量。

1.2.3 血液样品采集与分析

试验奶牛分别在试验开始和结束空腹时尾静脉采集血液15 mL,3 500 g离心15 min后收集血清,存入-20 ℃冰箱,用于血液指标测定。血清葡萄糖含量采用全自动生化分析仪分析测定。血清乙酰乙酸含量采用水杨醛比色法测定。血清β-羟丁酸、胰高血糖素、游离脂肪酸、胰岛素、瘦素和胰岛素样生长因子1(IGF-1)含量参照试剂盒说明书测定,试剂盒购买于南京建成生物工程公司。

1.3 数据处理与统计分析

数据经SPSS 19.0统计软件中的单因素方差分析后,用Duncan氏方法进行多重比较。试验结果用“平均值±标准差”表示。P < 0.05表示差异显著。

2 结果 2.1 日粮补充棕榈酸对奶牛产奶量与饲料效率的影响

表 2可知,3个处理组之间DMI、初始产奶量和饲料效率差异不显著(P>0.05)。与对照组相比,2.0%和4.0%棕榈酸组显著提高产奶量和标准乳(4%FCM)产量(P < 0.05),而2.0%与4.0%棕榈酸组间差异不显著(P>0.05)。

表 2 日粮补充棕榈酸对奶牛泌乳性能的影响 Table 2 Effects of dietary supplementation of palmitic acid on lactation performance in lactating Holstein cows
2.2 日粮补充棕榈酸对奶牛乳成分的影响

表 3可知,3个处理组之间的乳脂率、乳蛋白率、总固形物含量和乳糖含量的初始值差异不显著(P>0.05)。与对照组相比,2.0%和4.0%棕榈酸组显著提高试验后乳脂率(P < 0.05)。2.0%与4.0%棕榈酸组之间的乳蛋白率、乳非脂固形物率和乳糖含量差异不显著(P>0.05)。

表 3 日粮补充棕榈酸对奶牛乳成分的影响 Table 3 Effects of dietary supplementation of palmitic acid on milk composition in lactating Holstein cows
2.3 日粮补充棕榈酸对奶牛血液生化指标的影响

表 4可知,3个处理组之间游离脂肪酸、葡萄糖、乙酰乙酸和β-羟丁酸的初始值差异不显著(P>0.05)。与对照组相比,2.0%和4.0%棕榈酸组显著提高试验后葡萄糖含量(P < 0.05),显著降低试验后乙酰乙酸、β-羟丁酸和游离脂肪酸浓度(P < 0.05)。2.0%与4.0%棕榈酸组之间葡萄糖、乙酰乙酸、β-羟丁酸和游离脂肪酸浓度差异不显著(P>0.05)。

表 4 日粮补充棕榈酸对奶牛血液生化指标的影响 Table 4 Effects of dietary supplementation of palmitic acid on blood biochemical indexes in lactating Holstein cows
2.4 日粮补充棕榈酸对奶牛能量代谢相关激素浓度的影响

表 5可知,3个处理组之间IGF-1、胰岛素、胰高血糖素和瘦素浓度的初始值差异不显著(P>0.05)。与对照组相比,2.0%和4.0%棕榈酸组显著提高试验后胰岛素和IGF-1浓度(P < 0.05),显著降低试验后胰高血糖素和瘦素浓度(P < 0.05)。2.0%与4.0%棕榈酸组之间的IGF-1、胰岛素、胰高血糖素和瘦素浓度差异不显著(P>0.05)。

表 5 日粮补充棕榈酸对奶牛能量代谢相关激素浓度的影响 Table 5 Effects of dietary supplementation of palmitic acid on energy metabolism-related hormones in lactating Holstein cows
3 讨论 3.1 日粮补充棕榈酸对奶牛泌乳性能和乳品质的影响

奶牛泌乳早期日粮能量浓度对泌乳性能起至关重要作用。本试验中,相较于对照组,日粮补充2.0%和4.0%棕榈酸对DMI无明显影响,但提高泌乳量和标准乳量。其可能原因是日粮补充2.0%和4.0%棕榈酸对DMI无明显影响的前提下,提高了奶牛能量进食绝对量,可在一定程度上满足奶牛泌乳对能量的需求,进而提高了泌乳量和标准乳量。张海波[11]研究发现,在泌乳早期奶牛日粮中添加1.5%棕榈酸对DMI无明显影响,但显著提高了泌乳量和标准乳量。Rico等[19]研究结果表明,在泌乳中期奶牛日粮中补充4.0%棕榈酸可显著提高泌乳量和标准乳量。

乳脂合成受到日粮脂肪酸饱和度以及添加剂量调控。本试验中,与对照组相比,日粮补充2.0%和4.0%棕榈酸提高了乳脂率。其可能原因是棕榈酸是高度饱和脂肪酸,与瘤胃微生物不发生氢化反应,直接过瘤胃进入肠道,在肠道被分解为长链脂肪酸进入血液后被运输到乳腺,而长链脂肪酸是乳脂合成前体之一,最终表现为提高乳脂率。并且,相较于对照组,本试验也发现,日粮添加2.0%和4.0%棕榈酸对乳糖、乳蛋白和乳非脂固形物率无明显影响。Piantoni等[18]研究发现,在日粮中添加2.0%棕榈酸提高了奶牛乳脂率,对乳糖、乳蛋白和总固形物含量影响不显著。Rico等[19]研究结果表明,在泌乳中期奶牛日粮中补充4.0%棕榈酸可显著提高乳脂率。

3.2 日粮补充棕榈酸对奶牛血液生化指标的影响

血清葡萄糖含量变化最直接反映机体能量代谢状况。由于泌乳早期奶牛采食量较低,使丙酸等糖异生作用合成血清葡萄糖减少,发生糖异生障碍,机体处于能量负平衡状态。本试验中,相较于对照组,日粮补充2.0%和4.0%棕榈酸提高了血清葡萄糖含量。Zhang等[17]也发现,可以通过添加1.5%棕榈酸提高泌乳早期奶牛血清葡萄糖含量。这可能是因为日粮补充棕榈酸在肠道被消化成长链脂肪酸后进入血液,而长链脂肪酸可以生成脂酰辅酶A从而降低乙酰辅酶A活性,减少乙酰辅酶A生成,进而降低葡萄糖氧化,起到节约葡萄糖作用,最终提高血清葡萄糖含量。并且,与对照组相比,本试验也发现,日粮添补充2.0%和4.0%棕榈酸减少了β-羟丁酸、游离脂肪酸和乙酰乙酸含量,可能是因为补充棕榈酸使脂酰辅酶A生成增加,乙酰辅酶A的生成减少,从而减少β-羟丁酸、游离脂肪酸和乙酰乙酸含量。以上研究结果表明,日粮补充棕榈酸能够缓解泌乳早期奶牛能量负平衡状态,减少酮体生成量,降低酮病发生率,促进奶牛体况恢复。

3.3 日粮补充棕榈酸对奶牛能量代谢相关激素浓度的影响

胰岛素对奶牛体内能量代谢起重要调节作用,能够促进细胞高效利用葡萄糖,促进脂肪合成和抑制脂肪分解,促使脂肪沉积[22]。本试验中,与对照组相比,日粮补充2.0%和4.0%棕榈酸可提高胰岛素浓度。相关研究也发现,在奶牛日粮中添加1.5%棕榈酸[11]、长链脂肪酸钙[23]可提高胰岛素浓度。可能原因是日粮补充棕榈酸通过提高血清葡萄糖含量,使胰岛β细胞分泌胰岛素的功能增强,进而分泌更多胰岛素。并且,相较于对照组,本试验也发现,日粮添补充2.0%和4.0%棕榈酸提高了IGF-1浓度,这与日粮添加1.5%棕榈酸升高IGF-1浓度的结果一致[11]。IGF-1也对调控奶牛体内能量代谢起重要作用,具有类似于胰岛素的功能,主要是提高葡萄糖利用效率,有利于体脂肪沉积[24]。并且IGF-1通过与受体结合作用于调控乳腺发育成熟和促进乳汁分泌[25],与泌乳量呈正相关[26-28]。在泌乳早期奶牛体内,胰岛素和IGF-1浓度较低,葡萄糖利用效率不高,脂肪分解作用加强,机体处于能量负平衡状态,而本试验中,日粮补充2.0%和4.0%棕榈酸提高了胰岛素和IGF-1浓度,表明其提高了血清葡萄糖利用效率,减少脂肪动员,提高奶牛的体况。

胰高血糖素是调控奶牛体内能量代谢的激素之一,其作用与胰岛素相反,主要降低细胞利用葡萄糖的效率,促进脂肪分解[29]。本试验中,相较于对照组,日粮补充2.0%和4.0%棕榈酸降低了胰高血糖素浓度。可能原因是补充棕榈酸通过提高血清葡萄糖含量,使胰岛α细胞分泌胰高血糖素功能减弱,进而分泌胰高血糖素减少。瘦素参与体内能量代谢的调控,可负反馈调节胰岛素分泌,其主要功能是促进脂肪分解和抑制脂肪合成,增加能量消耗[30]。并且,与对照组相比,本试验也发现,日粮补充2.0%和4.0%棕榈酸降低了瘦素浓度。可能是因为补充棕榈酸通过促进胰岛素分泌来抑制瘦素分泌。在泌乳早期奶牛体内胰高血糖和瘦素浓度较高,葡萄糖利用效率降低,促进脂肪分解,而本试验中,日粮补充2.0%和4.0%棕榈酸降低了胰高血糖素和瘦素浓度,表明其提高了血清葡萄糖利用效率,使脂肪分解减少,对奶牛体况恢复有利。

4 结论

日粮补充2.0%或4.0%棕榈酸提高了胰岛素和IGF-1浓度,降低了胰高血糖素和瘦素浓度,使葡萄糖利用率提高,酮体生成减少,促进奶牛体况恢复,提高产奶量,提升乳品质。本试验条件下,综合考虑日粮补充棕榈酸的最佳剂量为2.0%。

参考文献
[1] DE SOUZA J, BATISTEL F, SANTOS F A P. Effect of sources of calcium salts of fatty acids on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows[J]. J Dairy Sci, 2017, 100(2): 1072–1085. DOI: 10.3168/jds.2016-11636
[2] WANG D M, ZHANG B X, WANG J K, et al. Short communication:Effects of dietary 5, 6-dimethylbenzimidazole supplementation on vitamin B12 supply, lactation performance, and energy balance in dairy cows during the transition period and early lactation[J]. J Dairy Sci, 2018, 101(3): 2144–2147. DOI: 10.3168/jds.2017-13725
[3] VAN HOEIJ R J, DIJKSTRA J, BRUCKMAIER R M, et al. The effect of dry period length and postpartum level of concentrate on milk production, energy balance, and plasma metabolites of dairy cows across the dry period and in early lactation[J]. J Dairy Sci, 2017, 100(7): 5863–5879. DOI: 10.3168/jds.2016-11703
[4] 王聪, 黄应祥, 刘强, 等. 丙三醇对泌乳早期奶牛采食量、泌乳性能和代谢产物的影响[J]. 畜牧兽医学报, 2009, 40(4): 507–514.
WANG C, HUANG Y X, LIU Q, et al. Effects of glycerol supplementation on feed intake, lactation performance and metabolites in early lactation Holstein dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2009, 40(4): 507–514. DOI: 10.3321/j.issn:0366-6964.2009.04.009 (in Chinese)
[5] GERSPACH C, IMHASLY S, GUBLER M, et al. Altered plasma lipidome profile of dairy cows with fatty liver disease[J]. Res Vet Sci, 2017, 110: 47–59. DOI: 10.1016/j.rvsc.2016.10.001
[6] MCART J A A, NYDAM D V, OETZEL G R. Epidemiology of subclinical ketosis in early lactation dairy cattle[J]. J Dairy Sci, 2012, 95(9): 5056–5066. DOI: 10.3168/jds.2012-5443
[7] RUTHERFORD A J, OIKONOMOU G, SMITH R F. The effect of subclinical ketosis on activity at estrus and reproductive performance in dairy cattle[J]. J Dairy Sci, 2016, 99(6): 4808–4815. DOI: 10.3168/jds.2015-10154
[8] 孙玲伟, 张洪友, 夏成, 等. 奶牛酮病的血浆代谢组学分析[J]. 畜牧兽医学报, 2013, 44(10): 1667–1674.
SUN L W, ZHANG H Y, XIA C, et al. Serum metabonomic studies of ketosis in dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(10): 1667–1674. (in Chinese)
[9] VARGAS-BELLO-PÉREZ E, FEHRMANN-CARTES K, Í IGUEZ-GONZLEZ G, et al. Short communication:Chemical composition, fatty acid composition, and sensory characteristics of Chanco cheese from dairy cows supplemented with soybean and hydrogenated vegetable oils[J]. J Dairy Sci, 2015, 98(1): 111–117. DOI: 10.3168/jds.2014-8831
[10] HASHEMZADEH-CIGARI F, GHORBANI G R, KHORVASH M, et al. Supplementation of herbal plants differently modulated metabolic profile, insulin sensitivity, and oxidative stress in transition dairy cows fed various extruded oil seeds[J]. Prev Vet Med, 2015, 118(1): 45–55. DOI: 10.1016/j.prevetmed.2014.10.013
[11] 张海波. 日粮添加不同脂肪酸对泌乳早期奶牛糖和脂肪代谢的影响[J]. 中国畜牧杂志, 2018, 54(1): 85–88.
ZHANG H B. Effects of dietary supplementing different fatty acids on glucose and lipid metabolism in early lactating cows[J]. Chinese Journal of Animal Science, 2018, 54(1): 85–88. (in Chinese)
[12] 徐晓燕, 王加启, 卜登攀, 等. 日粮添加不同来源脂肪酸对奶牛脂质代谢及激素水平的影响[J]. 中国粮油学报, 2012, 27(3): 71–75.
XU X Y, WANG J Q, BU D P, et al. Effect of supplementing different sources of fatty acids on lipid metabolism and endocrine response of mid-lactating Holstein cows[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(3): 71–75. DOI: 10.3969/j.issn.1003-0174.2012.03.016 (in Chinese)
[13] 王建平, 王加启, 李发弟, 等. 饱和脂肪酸对泌乳中期热应激奶牛产奶性能、采食量和能量代谢的影响[J]. 中国粮油学报, 2010, 25(2): 101–106.
WANG J P, WANG J Q, LI F D, et al. Effects of supplemental saturated fatty acids on mid-lactating heat stress dairy cows[J]. Journal of the Chinese Cereals and Oils Association, 2010, 25(2): 101–106. (in Chinese)
[14] DE SOUZA J, LOCK A L. Long-term palmitic acid supplementation interacts with parity in lactating dairy cows:Production responses, nutrient digestibility, and energy partitioning[J]. J Dairy Sci, 2018, 101(4): 3044–3056. DOI: 10.3168/jds.2017-13946
[15] LOFTEN J R, LINN J G, DRACKLEY J K, et al. Invited review:Palmitic and stearic acid metabolism in lactating dairy cows[J]. J Dairy Sci, 2014, 97(8): 4661–4674. DOI: 10.3168/jds.2014-7919
[16] MATHEWS A T, RICO J E, SPRENKLE N T, et al. Increasing palmitic acid intake enhances milk production and prevents glucose-stimulated fatty acid disappearance without modifying systemic glucose tolerance in mid-lactation dairy cows[J]. J Dairy Sci, 2016, 99(11): 8802–8816. DOI: 10.3168/jds.2016-11295
[17] ZHANG H, WANG Z, LIU G, et al. Effect of dietary fat supplementation on milk components and blood parameters of early-lactating cows under heat stress[J]. Slovak J Anim Sci, 2011, 44(2): 52–58.
[18] PIANTONI P, LOCK A L, ALLEN M S. Palmitic acid increased yields of milk and milk fat and nutrient digestibility across production level of lactating cows[J]. J Dairy Sci, 2013, 96(11): 7143–7154. DOI: 10.3168/jds.2013-6680
[19] RICO J E, MATHEWS A T, LOVETT J, et al. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge[J]. J Dairy Sci, 2016, 99(11): 8817–8830. DOI: 10.3168/jds.2016-11296
[20] N RC. Nutrient requirements of dairy cattle[M]. 7th ed. Washington, D.C.: National Academy Press, 2001.
[21] 张丽英. 饲料分析及饲料质量检测技术[M]. 3版. 北京: 中国农业大学出版社, 2007.
ZHANG L Y. Feed analysis and quality inspection technology[M]. 3rd ed. Beijing: China Agricultural University Press, 2007. (in Chinese)
[22] ABENI F, CALAMARI L, STEFANINI L. Metabolic conditions of lactating Friesian cows during the hot season in the Po valley.1.Blood indicators of heat stress[J]. Int J Biometeorol, 2007, 52(2): 87–96. DOI: 10.1007/s00484-007-0098-3
[23] CHOI B R, PALMQUIST D L, ALLEN M S. Cholecystokinin mediates depression of feed intake in dairy cattle fed high fat diets[J]. Domest Anim Endocrinol, 2000, 19(3): 159–175. DOI: 10.1016/S0739-7240(00)00075-8
[24] CLEMMONS D R. Role of insulin-like growth factor iin maintaining normal glucose homeostasis[J]. Horm Res, 2004, 62 Suppl 1: 77–82.
[25] NAWATHE A R, CHRISTIAN M, KIM S H, et al. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders[J]. Clin Epigenetics, 2016, 8: 11. DOI: 10.1186/s13148-016-0178-5
[26] BACH L A. Insulin-like growth factor binding proteins-an update[J]. Pediatr Endocrinol Rev, 2015, 13(2): 521–530.
[27] MURNEY R, STELWAGEN K, WHEELER T T, et al. The effects of milking frequency on insulin-like growth factor I signaling within the mammary gland of dairy cows[J]. J Dairy Sci, 2015, 98(8): 5422–5428. DOI: 10.3168/jds.2015-9425
[28] HERNÁNDEZ H, FLORES J A, DELGADILLO J A, et al. Effects of exposure to artificial long days on milk yield, maternal insulin-like growth factor 1 levels and kid growth rate in subtropical goats[J]. Anim Sci J, 2016, 87(4): 484–491. DOI: 10.1111/asj.2016.87.issue-4
[29] MADSBAD S. The role of glucagon-like peptide-1 impairment in obesity and potential therapeutic implications[J]. Diabetes Obes Meta, 2014, 16(1): 9–21. DOI: 10.1111/dom.2014.16.issue-1
[30] EHRHARDT R A, FOSKOLOS A, GIESY S L, et al. Increased plasma leptin attenuates adaptive metabolism in early lactating dairy cows[J]. J Endocrinol, 2016, 229(2): 145–157. DOI: 10.1530/JOE-16-0031