畜牧兽医学报  2018, Vol. 49 Issue (9): 1928-1939. DOI: 10.11843/j.issn.0366-6964.2018.09.014    PDF    
添加不同形式亚麻油对肉羊生产性能、肉品质、脂肪酸含量及脂代谢相关酶基因mRNA表达量的影响
张秋旭, 张润厚, 史晓雪, 李刚, 高爱琴     
内蒙古农业大学动物科学学院, 呼和浩特 010018
摘要:旨在研究日粮中添加不同形式亚麻油对肉羊生产性能、肉品质、肉中脂肪酸含量及脂代谢关键调节因子和脂代谢相关酶mRNA表达量的影响。本研究选取日龄((100±10)d)和体重((27±2.17)kg)相近的健康杜泊(♂)×小尾寒羊(♀)杂交F2代公羔24只,采用单因素试验设计,随机分为4组,每组6只。试验处理CON组为对照组,饲喂基础日粮;LO、L、LOM组为试验组,分别添加含油量为4%的亚麻油、亚麻籽、亚麻油微胶囊脂末。饲养试验过程记录肉羊体重、干物质采食量等生产性能指标,屠宰后测定肌肉pH、剪切力等肉品质指标,采用烘干法、凯氏定氮法、索氏提取法、高温灰化法分别测定肉中干物质、蛋白质、脂肪及灰分的含量,并利用气相色谱法和实时荧光定量法分别测定肉中脂肪酸含量和脂代谢相关基因mRNA的表达量。结果表明:1)亚麻油不同添加形式对肉羊平均日增重有影响,LO组日增重显著低于CON、LOM和L组(P < 0.05),添加油脂组肌肉脂肪含量显著高于CON组(P < 0.05),但其他营养成分并无显著变化(P>0.05)。与CON组相比,LOM组显著降低了肌肉剪切力,提高了肌肉嫩度(P < 0.05),但亚麻油的不同添加形式对肌肉的pH、滴水损失、蒸煮损失、失水率的影响并不显著(P>0.05);2)试验组较对照组显著增加了肌肉中ALA、CLA和AA的含量,显著改善了n-6/n-3的比例(P < 0.05),LOM组CLA含量较CON组、LO组、L组显著提高375%、171%和58%,L及LOM组比CON组n-3 PUFA显著提高151%、178%(P < 0.05);3)日粮添加不同形式的亚麻油对脂代谢关键调节因子PPARγSREBP1 mRNA表达量有影响显著,LO、LOM和L组与CON组相比分别上调PPARγ mRNA表达量53%、68%及36%,对SREBP1 mRNA表达量下调47%、49%、53%(P < 0.05);试验组对脂代谢相关酶中FASSCD基因的表达量有抑制作用,LOM组SCD表达量显著高于L组(P < 0.05),并且显著上调LPL基因mRNA的表达量,是CON组的2.7倍(P < 0.05),但对ACC表达量无显著影响(P>0.05)。添加富含亚麻油物质有利于PUFA沉积,并能够促进PPARγLPL基因表达,抑制SREBP1、SCDFAS基因表达,亚麻油微胶囊脂末能够通过提高肌肉中PUFA,尤其是CLA含量,改善肉品质,增加肌肉嫩度,较亚麻油及亚麻籽可更好的提高舍饲羊肌肉中的PUFA含量。
关键词肉羊    亚麻油    微胶囊    脂肪酸    基因表达    
Effects of Supplementation of Different Forms of Linseed Oil on Growth Performance, Meat Quality, Fatty Acid Content and mRNA Abundance of Lipid Metabolism Related Enzymes in Sheep
ZHANG Qiu-xu, ZHANG Run-hou, SHI Xiao-xue, LI Gang, GAO Ai-qin     
College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract: The aim of this study was to investigate the effects of different forms of linseed oil on the growth performance, meat quality, fatty acid content in muscle and mRNA abundance of lipid metabolism key regulation factors and lipid metabolism related enzymes in sheep. A single-factor experimental design was used. Twenty-four healthy Dorper(♂)×Small-Tailed Han sheep(♀) F2 male lambs with similar days of age((100±10) d) and body weight((27±2.17) kg) were allocated into 4 groups with 6 sheep in each group. The lambs in control(CON) group were fed with basal diet, the lambs in experimental groups were fed the diets with the same fat content(4%) of linseed oil(LO), linseed(L), linseed oil microcapsule(LOM), respectively. The growth performance indexes such as body weight and dry matter intake of sheep were recorded and the meat quality indexes such as pH and shear force were measured after slaughter. The contents of dry matter, protein, fat and ash in meat were measured by drying, Kjeldahl nitrogen method, Soxhlet extraction and high temperature ash, in addition, the content of fatty acids and the expression of mRNA of lipid metabolism related regulation factors and enzymes in meat were determined by gas chromatography and real-time quantitative PCR. The results showed that:1)The different forms of linseed oil had an effect on sheep ADG, and the ADG of LO group was significantly lower than that of CON, LOM and L groups(P < 0.05), the fat content in muscle of the test groups were significantly higher than that of the control group(P < 0.05), there was no significant change in other nutritional components in muscle(P>0.05), compared with CON group, muscle shearing force was significantly decreased and tenderness was significantly increased in LOM group (P < 0.05), however, the different forms of linseed oil had no significant effect on pH, dripping loss, cooking loss and water loss rate of muscle(P>0.05). 2) Compared with CON group, the addition of different forms of linseed oil significantly increased the content of ALA, CLA and AA in muscle, and significantly improved the ratio of PUFA n-6/n-3(P < 0.05), the CLA content of LOM group was significantly increased by 375%, 171% and 58% compared with CON, LO and L groups (P < 0.05), and the n-3 PUFA content of L and LOM groups were significantly increased by 151% and 178% compared with CON group(P < 0.05). 3) The addition of different forms of linseed oil in diets significantly affected the PPARγ and SREBP1 mRNA expression, compared with group CON, LO, LOM and L groups could increase the expression of PPARγ mRNA by 53%, 68% and 36%, respectively, and down-regulated the expression of SREBP1 mRNA by 47%, 49%, 53%(P < 0.05). The addition of linseed oil in each group inhibited the expression of FAS and SCD genes, the expression levels of SCD in LOM group were significantly higher than that in L group(P < 0.05), and significantly increased the expression of mRNA of LPL gene, which was 2.7 times higher than that in CON group(P < 0.05), but had no significant effect on ACC expression(P>0.05). The addition of linseed oil is beneficial to the deposition of PUFA, promote the expression of PPARγ, LPL genes, and inhibit the expression of SREBP-1, SCO and FAS genes. Linseed oil microcapsule can increase the content of PUFA in muscle, especially the content of CLA, improve the meat quality, increase muscle tenderness, its effect is better in increasing the content of PUFA in muscle of mutton sheep.
Key words: mutton sheep     linseed oil     microcapsule     fatty acids     gene expression    

羊肉中多饱和脂肪酸(polyunsaturated fatty acid, PUFA)含量受日粮组成影响较大,由于舍饲肉羊短期育肥过程需摄取高比例的精料,导致羊肉中饱和脂肪酸(saturated fatty acid, SFA)和n-6 PUFA含量高于放牧肉羊[1],而高SFA/PUFA和n-6 PUFA/n-3 PUFA将增加人们罹患心血管疾病的风险[2-3]。根据以往研究发现,提高反刍动物肌肉中CLA的水平主要归结于日粮中不饱和脂肪酸(unsaturated fatty acid, UFA)的含量,UFA在瘤胃中的氢化程度以及组织中SCD酶的活力这3个方面。对亚麻油进行过瘤胃保护处理可减少瘤胃对UFA的氢化作用,由于肉中CLA主要来自日粮CLA沉积、瘤胃氢化菌对亚油酸(linoleic acid, LA)和α-亚麻酸(alpha~Linolenic acid ALA)的异构化以及其前体物反-11十八碳二烯酸(t-11 C18:2, TVA)在组织中的去饱和作用[4],因此日粮UFA的过瘤胃保护在减少氢化作用同时使其壁材具备一定的缓释作用,利用氢化菌对日粮脂肪酸的异构化使更多的CLA沉积于动物产品中[5]。微胶囊脂末过瘤胃效果介于未保护油脂和整粒油籽之间,且具有一定的缓释作用,是过瘤胃脂肪中增加PUFA,尤其是CLA含量较好的添加方式[6],但是目前还未见亚麻油微胶囊在反刍动物生产方面的应用报道,对其作用效果也并不明确。

n-3 PUFA包含ALA、二十碳五烯酸(eicosapentaenoic acid, EPA)和二十二碳六烯酸(docosahexaenoic acid, DHA)。研究发现,n-3 PUFA可直接作用于胞内信号通路,激活包含过氧化物酶体增殖物激活受体(peroxisome proliferators activated receptor PPAR)、固醇调节元件结合蛋白(sterol regulatory element binding proteins, SREBP)在内的多种转录因子发挥作用[7]。亚麻籽中n-3 PUFA含量丰富,可上调肌肉中PPARγ mRNA的表达。PPARγ参加脂代谢的调节及脂肪细胞的分化,激活PPARγ过表达可上调SREBP1、脂蛋白脂酶(lipoprotein lipase,LPL)、硬脂酰辅酶A去饱和酶(stearoyl-CoA desaturase, SCD)等脂肪相关基因的表达,从而上调脂肪酸去饱和系数,使UFA和PUFA含量增加[8-9]。n-3 PUFA可通过抑制细胞核内SREBP1丰度而降低脂肪合成基因的表达, 研究表明,n-3 PUFA加速SREBP1 mRNA的降解,减少脂质生成,有益于细胞内能量平衡,减轻胰岛素抵抗[10]SREBP1可激活与脂类和胆固醇合成与转运相关的基因,其靶基因主要包括SCD、脂肪酸合成酶(fatty acid synthetase, FAS)、乙酰辅酶A羧化酶(acetyl-CoA carboxylase, ACC)。

本研究以不同形式的亚麻油(亚麻油、亚麻油微胶囊脂末、亚麻籽)为试验材料,在相同油脂添加量下,初步比较研究其对肉羊生产性能、肌肉营养成分、肉品质及脂肪酸含量的影响,并根据脂肪代谢相关调节因子(PPARγSREBP1)及关键酶(LPLFASACCSCD)mRNA在绵羊背最长肌中表达量的变化,探讨亚麻油不同添加形式对肌肉中脂类代谢的影响,以期为亚麻油微胶囊脂末在生产富含PUFA羊肉的应用中提供基础依据。

1 材料与方法 1.1 试验材料

亚麻油微胶囊脂末由大连医诺生物有限公司提供,壁材为大豆蛋白、麦芽糊精和亚麻籽胶混合物,芯材为亚麻油,含油率50%。亚麻籽、亚麻油由呼和浩特土默特左旗榨油厂提供。

1.2 试验动物与饲养管理

选择24只日龄((100±10) d)和体重((27±2.17) kg)相近的健康杜泊(♂)×小尾寒羊(♀)杂交F2代公羔,随机分为4组,每组6只。羔羊进栏前统一进行疫苗注射及驱虫,单栏饲养,每日早晚饲喂,自由饮水,记录采食量。试验共计50 d,预试期15 d,正试期35 d。

1.3 试验设计及日粮营养水平

采用单因子完全随机设计,分别饲喂4种日粮,基础日粮由全混合颗粒料组成,精粗比6:4。对照组(CON)饲喂基础日粮,试验组分别在饲喂基础日粮的同时添加含油量为4%的亚麻油(LO)、亚麻油微胶囊脂末粉(LOM)和亚麻籽炒粒(L),添加量分别为精料的4%、8%和10%。玉米及亚麻饼作为补充日粮中的能量和蛋白原料,4种日粮为等能等氮水平。各组日粮的原料组成及营养水平见表 1。试验日粮和添加油脂的脂肪酸组成采用气相色谱法(PE,Clarus 680, Perkin Elmer)进行测定,见表 2

表 1 试验日粮组成和营养水平(风干基础) Table 1 The composition and nutrient levels of experimental diets(air-dry basis)
表 2 试验日粮及添加油脂的脂肪酸组成 Table 2 Fatty acids composition of diets and lipid supplements
1.4 屠宰及样品的采集

饲养试验结束后所有羊只统一屠宰,宰前禁食24 h,禁水2 h,采集200 g左右背最长肌用于进行营养成分及肉品质检测;另取少量背肌置于液氮,-80 ℃冰箱保存,用于脂肪酸含量的测定及脂肪代谢相关酶基因mRNA表达量的分析。

1.5 测定指标及方法 1.5.1 生产性能的测定

记录试验初始体重和终末体重,计算平均日增重(average daily gain, ADG)、干物质采食量(dry matter intake, DMI)和料肉比(feed-gain ratio, FGR)。

1.5.2 肉中营养成分与肉品质指标的测定

采用烘干法、凯氏定氮法、索氏提取法和高温灰化法分别测定肉中干物质、粗蛋白、粗脂肪及粗灰分含量;用梅特勒-托利多(GB-T11165) pH计测定背最长肌45 min和24 h的pH,并立即测定滴水损失、蒸煮损失;利用C-LM3B型嫩度计和全自动压肉仪测定背肌剪切力和系水力。

1.5.3 脂肪酸含量的测定

肌肉样品的预处理:用氯仿/甲醇(3:1)溶液超声抽提肌肉10 min,离心机离心(1 800 r·min-1 10 min)收集脂肪,氮气吹干;加入3 mL 6% KOH的甲醇溶液,室温过夜(密封),加入2 mL正己烷,摇匀,震荡离心,弃上层萃取液,剩下水相液体转移至带盖玻璃管中氮气吹干,加入约2 mL BF3-MeOH,充入氮气后密闭,90 ℃加热2 h,冷却,加入约1 mL NaCl溶液(5%),用2 mL正己烷萃取3次,并转移到2 mL进样瓶中,氮气吹干,待分析。采用气相色谱法测定背最长肌中主要脂肪酸的组成和含量。气相色谱条件:气相色谱仪(Thermo Fisher);色谱柱:TG-5 MS(30 m×0.25 mm ×0.25 μm);进样口温度290 ℃;进样量1 μL。

1.5.4 基因表达量的分析

利用Trizol提取试剂(TaKaRa,Japan)从肉中提取总RNA,OD260 nm/OD280 nm值为1.8~2.1的样品用于反转录反应,琼脂糖凝胶电泳检测RNA完整度。采用Prime ScriptTM RT Reagent Kit with gDNA Eraser(TaKaRa,Japan)反转录试剂盒于PCR仪中合成cDNA,反应条件:37 ℃转录反应15 min,85 ℃反转录酶失活5 s,4 ℃时结束,-80 ℃冰箱保存。参考GenBank提供的绵羊引物序列,由北京六合华大基因科技有限公司合成。引物序列见表 3

表 3 荧光定量引物信息 Table 3 The informations of primers for real-time quantitative PCR

采用SYBR Premix Ex TaqTM Ⅱ(TaKaRa,Japan)进行实时荧光定量PCR扩增的检测。反应体系为25 μL:SYBR Premix Ex TaqTM Ⅱ12.5 μL,上、下游引物各1 μL,cDNA模板2 μL和无酶水8.5 μL。以GADPH基因为内参基因。实时荧光定量的反应程序:95 ℃ 30 s;95 ℃ 5 s,60 ℃退火30 s,40个循环。采用2-ΔΔCt法进行基因相对定量分析。

1.6 数据处理

试验数据经Excel 2007进行初步整理后,采用SAS 9.2 GLM模型进行分析,并进行Duncan氏多重比较检验,所有指标以每只肉羊为统计单位。结果以“平均值±标准差”表示,以P<0.05为差异显著性判断标准。

2 结果 2.1 亚麻油不同添加形式对肉羊生产性能的影响

表 4可见,试验开始时各组体重接近,结束时体重差异显著(P<0.05),与对照组相比LOM显著提高7.94%,为40.78 kg(P<0.05);与其他试验组相比,LO组显著降低ADG水平(P<0.05),为0.25 kg·d-1,LOM组最高,为0.34 kg·d-1;各组羔羊DMI接近(P>0.05),亚麻油不同添加形式对FGR没有显著影响(P>0.05),但LO组FGR高于其他组,影响羔羊的饲料报酬。

表 4 亚麻油不同添加形式对肉羊生产性能的影响 Table 4 Effects of supplementation of different forms of linseed oil on growth performance of mutton sheep
2.2 添加不同形式亚麻油对肉羊肌肉营养成分及肉品质的影响

表 5可见,日粮添加油脂可显著提高肉羊肌肉中脂肪含量,试验组均比CON组显著提高(P<0.05);试验组肌肉中粗蛋白含量高于CON组,但差异不显著(P>0.05);添加不同形式亚麻油对肉羊肌肉水分和灰分含量无显著影响(P>0.05)。

表 5 添加不同形式亚麻油对肉羊肌肉营养成分的影响 Table 5 Effects of supplementation of different forms of linseed oil on nutrtient contents in muscle of mutton sheep

表 6可见,与CON组相比,LOM组显著降低了背肌的剪切力(P<0.05),其他各组间差异不显著(P>0.05);总体上来看,添加不同形式亚麻油对肌肉的pH、剪切力、滴水损失、蒸煮损失、失水率的影响并不显著(P>0.05),但LOM组较CON组降低了滴水损失和升高了蒸煮损失。

表 6 添加不同形式亚麻油对肉羊肉品质的影响 Table 6 Effects of supplementation of different forms of linseed oil on meat quality of mutton sheep
2.3 添加不同形式亚麻油对肉羊肌肉中主要脂肪酸含量的影响

表 7显示,添加不同形式亚麻油对TFA含量没有显著影响(P>0.05),但试验组TFA比CON组高20%左右;日粮没有显著影响C14~C18 SFA和总SFA含量(P>0.05);试验组对MUFA影响主要表现在C16:1上,亚麻籽可显著提高C16:1含量(P<0.05),但对C17:1、C18:1、TVA及总MUFA含量没有明显影响(P>0.05),在PUFA方面,试验组与CON组相比可显著增加肌肉CLA、ALA、花生四烯酸(arachidonic Acid, AA)的含量(P<0.05),其中LOM组CLA较CON、LO、L组显著提高375%、171%和58%(P<0.05);L、LOM组n-3 PUFA含量比CON组显著提高151%、178%,较LO组显著提高39%、54%(P<0.05),但对n-6 PUFA影响并不显著(P>0.05);添加油脂对SFA、PUFA及PUFA/SFA含量没有显著影响(P>0.05),但与CON组相比,显著降低了n-6/n-3水平,亚麻油的添加使羊肉n-6/n-3比例符合人们对膳食脂肪酸n-6/n-3的健康需求,弥补舍饲肉羊n-6 PUFA高于n-3 PUFA的营养缺陷。

表 7 添加不同形式亚麻油对肉羊肌肉中主要脂肪酸含量的影响 Table 7 Effects of supplementation of different forms of linseed oil on fatty acids content in muscle of mutton sheep
2.4 添加不同形式亚麻油对绵羊肌肉中脂代谢关键调节因子和相关酶mRNA表达量的影响

表 8可知,不同添加形式的亚麻油可显著影响脂代谢关键调节因子PPARγSREBP1 mRNA表达,与CON组相比,LO、LOM及L组中PPARγ mRNA表达量分别上调53%、68%及36%,而SREBP1 mRNA表达量下调47%、49%、53%(P<0.05);LOM的PPARγ mRNA表达量高于LO、L组,但各处理组之间的PPARγ表达量差异并不显著(P>0.05),而L组SREBP1 mRNA的表达量低于LO、LOM组,各组间SREBP1 mRNA表达量差异也不显著(P>0.05)。

表 8 添加不同形式亚麻油对绵羊肌肉中脂代谢关键调节因子基因表达的影响 Table 8 Effect of supplementation of different forms of linseed oil on mRNA abundance of key regulatory factors in fatty acids synthesis in the muscle of sheep

表 9可见,日粮添加亚麻油物质对肌肉FASSCD、LPL mRNA表达量影响显著(P<0.05),试验LO、LOM、L组FAS表达量显著低于CON组,分别下调32%、45%、41%,但试验各组间差异并不显著(P>0.05),与CON组相比,试验各组均可下调SCD mRNA的表达,其中L组最低,下调幅度达63%,与LOM组差异显著(P<0.05);各试验组显著上调LPL mRNA表达水平,其中LOM组最高,是CON组的2.7倍,但各试验组间差异不显著(P>0.05);与CON组相比,添加不同形式的亚麻油并未对ACC mRNA的表达量产生显著影响,但具有一定的下调趋势(P=0.051)。

表 9 添加不同形式亚麻油对绵羊肌肉中脂代谢相关酶基因表达的影响 Table 9 Effect of supplementation of different forms of linseed oil on mRNA abundance of lipid metabolism related enzymes in the muscle of sheep
3 讨论 3.1 亚麻油不同添加形式对肉羊生产性能的影响

目前国内外对于日粮添加油脂对反刍动物DMI的影响尚无定论,Martin等[11]在奶牛日粮中添加含油量为5.8%的亚麻籽、挤压亚麻籽与亚麻油发现,天然亚麻籽对奶牛的DMI无显著影响,而挤压亚麻籽与亚麻油中DMI显著降低。赵天章[4]发现,在巴美肉羊日粮中添加2.4%的鱼油、大豆油及混合油脂对肉羊的DMI没有显著影响。本试验对DMI的研究结果与其一致,不同添加形式的亚麻油对肉羊DMI无明显影响,这可能与本试验中使用全混合颗粒料,添加油脂的日粮适口性与对照组无明显区别有关,而添加挤压亚麻籽与亚麻油的全混合日粮带有特殊的苦味,日粮适口性差致使DMI降低。日粮脂肪添加对ADG结果影响的报道并不一致,但均表明高PUFA日粮可提高日增重[12-14]。本试验发现,未经包被的LO组ADG显著低于其他组,可能是直接向日粮中添加未保护的植物油,对瘤胃发酵有一定抑制作用,影响瘤胃粗纤维降解率[15],而导致ADG的降低,与此对应的经过壁材、种皮保护的LOM和L组的ADG含量明显上升,这与Gillis和许蕾蕾等[16-17]在肉牛中添加过瘤胃脂肪以及亚麻籽增加ADG的研究较为一致,过瘤胃亚麻油能够提高能量利用率而增加肉羊日增重。

3.2 添加不同形式亚麻油对肉羊肌肉营养成分及肉品质的影响

多数研究表明,动物品种、年龄对肉中营养成分影响较大,日粮因素对其影响并不明显[18]。但日粮营养水平高时,可增加肉中肌内脂肪的含量,而其嫩度也随之增加,Mapiye等[19]在日粮中添加15%亚麻籽可增加肉牛肌肉脂肪含量,但对水分、蛋白和灰分等营养物质没有影响。本试验与以上结果一致,添加油脂的试验组脂肪含量高于对照组,但对其他营养物质没有显著影响。反刍动物日粮中添加亚麻籽对肉品质有一定的改善作用,李秋凤等[20]研究表明,添加5%、10%亚麻籽可显著提高牛肉嫩度,而对其他肉品指标没有影响,但也有研究发现,添加10%亚麻籽不会对绵羊剪切力、失水率等肉质指标产生影响[21],本试验中,除LOM组的剪切力显著低于其余各组外,不同亚麻油的添加形式对pH、蒸煮损失、失水率等肉质指标同样没有显著影响。肌肉中蛋白和脂肪的含量决定羊肉的嫩度,水分含量与肉中多汁性有关,试验各组肉中蛋白和水分含量相当,因此并不会对肉质产生过多影响。虽然添加油脂使肌内脂肪含量高于对照组,但各组嫩度呈现低于对照组的趋势,羊肉肌肉中脂肪所占比例低于牛肉,因此添加亚麻籽对肉牛肌内脂肪影响效果更为显著,嫩度也随之变化,而LOM对嫩度的影响原因可能是壁材对亚麻油的保护作用而增加脂肪酸在肉中沉积效率进而增加肌肉嫩度,但具体原因还需进一步在嫩度方面的研究。

3.3 添加不同形式亚麻油对肉羊肌肉中主要脂肪酸含量的影响

人类膳食脂肪酸推荐的n-6 PUFA/n-3 PUFA应小于5,但舍饲肉羊的n-6 PUFA含量相对较高,导致肉中n-6/n-3往往高于这一范围[22]。本试验结果显示,日粮添加壁材和种皮保护的亚麻油可增加肉中CLA、ALA n-3系列PUFA,但对总n-6系列含量没有产生影响,肉中n-6/n-3符合膳食脂肪酸健康标准。Facciolongo等[23]研究报道称,日粮中添加富含ALA类物质能够增加畜产品中的n-3 PUFA含量,本试验发现,日粮添加保护性亚麻油对提高n-3 PUFA含量,降低n-6/n-3比值具有良好的效果,直接添加亚麻油饲喂肉羊其肌肉中n-3 PUFA含量的增加幅度低于添加亚麻油微胶囊和亚麻籽,一方面由于亚麻油在运输、储藏过程中高UFA含量极易氧化而使PUFA量减少[24],亚麻油与日粮添加亚麻籽为同批次籽实,但从表 2日粮脂肪酸含量可以看出,经饲料加工、饲喂后亚麻油中n-3 PUFA较亚麻籽降低达30%,针对上述问题本试验对亚麻油进行壁材保护处理,以解决日粮亚麻油添加困难的问题;另一方面,日粮UFA在未保护下进入瘤胃中,微生物自身采用氢化脱毒方式将UFA加氢为SFA,大量功能性不饱和脂肪酸不能有效沉积在肌肉组织中[7],虽然对UFA具有氢化反应,但并不彻底氢化中间产物及未经氢化的n-6、n-3 PUFA,其仍可以沉积到肌肉中[25],故受保护亚麻油可减少氢化,增加肉中n-3 PUFA含量,改善舍饲羊肉n-6/n-3比例以满足人类对膳食脂肪酸的健康需求。此外Ferreira等[12, 26]研究指出,增加CLA前提物TVA(C18:1T)的底物可提高羊肉中CLA含量,与本试验日粮添加亚麻油微胶囊脂末提高羊肉肌肉n-3 PUFA含量,特别是CLA含量的结果类似,亚麻油微胶囊在瘤胃中释放油脂的效果介于亚麻油与亚麻籽之间[27],一部分UFA经壁材保护避免氢化到达小肠后直接被机体吸收、代谢产生CLA沉积肉中,另一少部分PUFA氢化产生中间产物,在SCD等去饱和酶作用下生成CLA沉积到肌肉中[28],故添加亚麻籽微胶囊对CLA在肉中的沉积比添加亚麻油及亚麻籽油具有更好的作用效果。

3.4 添加不同形式亚麻油对绵羊肌肉中脂代谢关键调节因子和相关酶mRNA表达量的影响

日粮PUFA通过影响细胞膜信息传递途径和激活肌肉转录因子PPARγSREBP1参与调控LPLFASACCSCD等脂代谢相关酶基因的表达。ALA、CLA作为PPARγ的天然配体通过特异性激活PPARγ,调节线粒体与脂肪酸氧化相关基因的表达,其主要的靶基因为LPL[29]。有研究表明,日粮中补饲亚麻籽可提高背肌中PPARγLPL的mRNA表达水平,尤其是低比例n-6/n-3可上调PPARγ mRNA的表达[30-31],本试验日粮添加不同形式的亚麻油发现,肌肉中PPARγLPL基因的表达水平高于对照组,并与肉中n-3的含量的变化趋势一致。PPARγLPL表达上调可诱导间质细胞向脂肪细胞的分化,本试验发现,试验组肉中粗脂肪、TFA含量高于对照组,添加亚麻油对PPARγLPL基因的表达是一种正向反馈调节,n-3 PUFA激活PPARγ核调控因子,上调LPL酶基因表达,并促进脂肪酸的沉积,增加肉中PUFA的含量。SREBP1是主要参与脂肪合成基因转录的调节因子,研究表明,在脂质合成过程中PUFA尤其是CLA可抑制SREBP1的表达,并使相关代谢酶基因ACCFASSCD mRNA表达水平下降,目前CLA抑制机制主要是直接阻断SREBP1蛋白的裂解活化过程,使其无法与自身启动子上的SRE位点结合,抑制转录过程,形成一个正反馈自调节系统,PPARγ核调控因子同样可调控SREBP1的表达,但具体机制尚不明确[32-33]。陈娜和Urrutia等[30, 34]用添加10%亚麻籽的日粮饲喂反刍动物,抑制了其背最长肌中SREBP1基因的表达,同时也下调了FASACCSCD的mRNA表达水平,与本试验结果较为一致,本试验中,亚麻油的不同添加形式可显著下调SREBP1、SCDFAS基因的表达量,而亚麻籽组的SCD mRNA表达水平低于其他两组,其原因可能是相较于亚麻油与亚麻油微胶囊脂末,整粒亚麻籽中90%脂质直接过瘤胃后被消化道吸收,肉中CLA沉积主要来源于机体SCD酶的去饱和化[35],而亚麻油微胶囊组的CLA一部分来源于机体内代谢,另一部分为在瘤胃中经微生物对ALA等PUFA作异构化生成CLA前体物TVA等物质再经组织去饱和,而绝大多数亚麻油经瘤胃时被微生物氢化,其CLA主要来源于前提物在组织中去饱和的代谢途径[36]。添加亚麻籽使机体组织合成CLA底物的能力高于其他两组,故其对SCD下调酶基因的表达更为明显,而亚麻油微胶囊脂末因瘤胃氢化产生CLA,虽含量高于亚麻籽组但并未抑制SCD酶的表达,推测可能相较亚麻籽其具有高SCD酶活,进而沉积CLA,具体作用机制还有待进行具体的研究。但总体上反映出添加亚麻籽微胶囊脂末可更好的提供PUFA底物,使更多CLA有效沉积于羊肉中。

4 结论 4.1

日粮添加亚麻油对肉羊生产性能产生负面影响,降低绵羊平均日增重;添加油脂可增加肌肉中脂肪含量,而亚麻油微胶囊脂末可降低剪切力,提高绵羊肌肉嫩度。

4.2

添加不同形式亚麻油可提高肉羊肌肉中PUFA含量,尤其是添加亚麻籽微胶囊脂末可更好的增加功能性脂肪酸CLA的含量。

4.3

日粮添加富含亚麻油物质能够上调PPARγLPL基因的表达水平,并抑制SREBP1、SCDFAS基因mRNA的表达。

参考文献
[1] DE FREITAS A K, LOBATO J F P, CARDOSO L L, et al. Nutritional composition of the meat of Hereford and Braford steers finished on pastures or in a feedlot in southern Brazil[J]. Meat Sci, 2014, 96(1): 353–360. DOI: 10.1016/j.meatsci.2013.07.021
[2] OTHMAN R A, SUH M, FISCHER G, et al. A comparison of the effects of fish oil and flaxseed oil on cardiac allograft chronic rejection in rats[J]. Am J Physiol Heart Circ Physiol, 2008, 294(3): H1452–H1458. DOI: 10.1152/ajpheart.01280.2007
[3] SIMOPOULOS A P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases[J]. Exp Biol Med, 2008, 233(6): 674–688. DOI: 10.3181/0711-MR-311
[4] 赵天章.日粮油脂类型对羊肉脂肪酸和肌内脂肪含量的影响及其机理[D].北京: 中国农业大学, 2014.
ZHAO T Z.Effect and the initial mechanism research of dietary oil sources on fatty acid and intramucular fat contents of lamb[D].Beijing: China Agricultural University, 2014.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10019-1014221308.htm
[5] DURMIC Z, MCSWEENEY C S, KEMP G W, et al. Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids[J]. Anim Feed Sci Technol, 2008, 145(1-4): 271–284. DOI: 10.1016/j.anifeedsci.2007.05.052
[6] 滕佳伍.过瘤胃脂肪对反刍动物瘤胃代谢功能的影响研究[D].杨凌: 西北农林科技大学, 2006.
TENG J W.The effects of rumen protected fat on the function of rumen metabolism[D].Yangling: Northwest A&F University, 2006.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10712-2006179648.htm
[7] SHINGFIELD K J, LEE M R F, HUMPHRIES D J, et al. Effect of linseed oil and fish oil alone or as an equal mixture on ruminal fatty acid metabolism in growing steers fed maize silage-based diets[J]. J Anim Sci, 2011, 89(11): 3728–3741. DOI: 10.2527/jas.2011-4047
[8] 吕玉珊, 罗玮, 宋佳, 等. n-6/n-3多不饱和脂肪酸对3T3-L1脂肪细胞脂联素及PPARγ表达的调节作用[J]. 营养学报, 2016, 38(2): 152–156.
LV Y S, LUO W, SONG J, et al. Effects of n-6/n-3 polyunsaturated fatty acids composition on expressions of adiponectin and PPARγ in 3T3-L1 adipocytes[J]. Acta Nutrimenta Sinica, 2016, 38(2): 152–156. (in Chinese)
[9] 蔡传江, 车向荣, 赵克斌, 等. 亚麻油对育肥猪肉品质及脂肪组织脂肪酸组成的影响[J]. 畜牧兽医学报, 2009, 40(12): 1755–1760.
CAI C J, CHE X R, ZHAO K B, et al. Effects of linseed oil on meat quality and fatty acid compositon of adipose tissue in finishing pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2009, 40(12): 1755–1760. (in Chinese)
[10] PONUGOTI B, KIM D H, XIAO Z, et al. SIRT1 Deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism[J]. J Biol Chem, 2010, 285(44): 33959–33970. DOI: 10.1074/jbc.M110.122978
[11] MARTIN C, ROUEL J, JOUANY J P, et al. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil[J]. J Anim Sci, 2008, 86(10): 2642–2650. DOI: 10.2527/jas.2007-0774
[12] FERREIRA E M, PIRES A V, SUSIN I, et al. Growth, feed intake, carcass characteristics, and meat fatty acid profile of lambs fed soybean oil partially replaced by fish oil blend[J]. Anim Feed Sci Technol, 2014, 187: 9–18. DOI: 10.1016/j.anifeedsci.2013.09.016
[13] ROY A, MANDAL G P, PATRA A K. Evaluating the performance, carcass traits and conjugated linoleic acid content in muscle and adipose tissues of Black Bengal goats fed soybean oil and sunflower oil[J]. Anim Feed Sci Technol, 2013, 185(1-2): 43–52. DOI: 10.1016/j.anifeedsci.2013.07.004
[14] KOTT R W, HATFIELD P G, BERGMAN J W, et al. Feedlot performance, carcass composition, and muscle and fat CLA concentrations of lambs fed diets supplemented with safflower seeds[J]. Small Rumin Res, 2003, 49(1): 11–17. DOI: 10.1016/S0921-4488(03)00052-X
[15] JENKINS T C. Lipid metabolism in the rumen[J]. J Dairy Sci, 1993, 76(12): 3851–3863. DOI: 10.3168/jds.S0022-0302(93)77727-9
[16] GILLIS M H, DUCKETT S K, SACKMANN J R. Effects of supplemental rumen-protected conjugated linoleic acid or corn oil on fatty acid composition of adipose tissues in beef cattle[J]. J Anim Sci, 2004, 82(5): 1419–1427. DOI: 10.2527/2004.8251419x
[17] 许蕾蕾, 李秋凤, 李建国, 等. 亚麻籽对育肥期肉牛生长性能和血液指标的影响[J]. 中国牛业科学, 2012, 38(1): 5–9.
XU L L, LI Q F, LI J G, et al. Effects of Flax-seed on performance and blood biochemical parameters in finishing beef[J]. China Cattle Science, 2012, 38(1): 5–9. DOI: 10.3969/j.issn.1001-9111.2012.01.003 (in Chinese)
[18] CHEN X J, MAO H L, LIU J, et al. Effects of supplemental soybean oil and vitamin E on carcass quality and fatty acid profiles of meat in Huzhou lamb[J]. Acta Agric Scand A Anim Sci, 2008, 58(3): 129–135.
[19] MAPIYE C, TURNER T D, ROLLAND D C, et al. Adipose tissue and muscle fatty acid profiles of steers fed red clover silage with and without flaxseed[J]. Livest Sci, 2013, 151(1): 11–20. DOI: 10.1016/j.livsci.2012.10.021
[20] 李秋凤, 许蕾蕾, 李建国, 等. 亚麻籽对育肥牛肉品质及脂肪酸的影响[J]. 草业学报, 2013, 22(5): 272–279.
LI Q F, XU L L, LI J G, et al. Effects of flax seed on beef quality and fatty acids in fattening cattle[J]. Acta Prataculturae Sinica, 2013, 22(5): 272–279. (in Chinese)
[21] NGUYEN D V, FLAKEMORE A R, OTTO J R, et al. Nutritional value and sensory characteristics of meat eating quality of Australian prime lambs supplemented with pelleted canola and flaxseed oils:fatty acid profiles of muscle and adipose tissues[J]. Intern Med Rev, 2017, 3(3): 1–21.
[22] 茅慧玲, 刘建新. 反刍动物肌肉脂肪酸营养调控研究进展[J]. 饲料工业, 2010, 31(23): 30–34.
MAO H L, LIU J X. Research advance on nutrition manipulation of fatty acids of muscle for ruminant[J]. Feed Industry, 2010, 31(23): 30–34. DOI: 10.3969/j.issn.1001-991X.2010.23.009 (in Chinese)
[23] FACCIOLONGO A M, LESTING A, COLONNA M A, et al. Effect of diet lipid source (linseed vs. soybean) and gender on performance, meat quality and intramuscular fatty acid composition in fattening lambs[J]. Small Rumin Res, 2018, 159: 11–17. DOI: 10.1016/j.smallrumres.2017.11.015
[24] 方昭西.加工及储存条件对亚麻油关键性风味物质及氧化稳定性影响的研究[D].广州: 华南理工大学, 2015.
FANG Z X.Study of pressing process and stora geconditionson key aroma compounds and oxidation stability of linseed oil[D].Guangzhou: South China University of Technology, 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10561-1015988503.htm
[25] WOOD J D, ENSER M, FISHER A V, et al. Fat deposition, fatty acid composition and meat quality:a review[J]. Meat Sci, 2008, 78(4): 343–358. DOI: 10.1016/j.meatsci.2007.07.019
[26] FRIEDRICHS P, SAREMI B, WINAND S, et al. Energy and metabolic sensing G protein-coupled receptors during lactation-induced changes in energy balance[J]. Domest Anim Endocrinol, 2014, 48: 33–41. DOI: 10.1016/j.domaniend.2014.01.005
[27] 刘斯博.亚麻籽油微胶囊的制备及其释放性能研究[D].郑州: 河南工业大学, 2016.
LIU S B.Preparation and release behavior of flaxseed oil microencapsulation[D].Zhengzhou: Henan University of Technology, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10463-1016183851.htm
[28] DOHME F, FIEVEZ V, RAES K, et al. Increasing levels of two different fish oils lower ruminal biohydrogenation of eicosapentaenoic and docosahexaenoic acid in vitro[J]. Anim Res, 2003, 52(4): 309–320. DOI: 10.1051/animres:2003028
[29] SCHUPP M, LAZAR M A. Endogenous ligands for nuclear receptors:digging deeper[J]. J Biol Chem, 2010, 285(52): 40409–40415. DOI: 10.1074/jbc.R110.182451
[30] 陈娜.补饲亚麻籽对延边黄牛肌内共轭脂肪酸构成及其相关基因表达的影响[D].延吉: 延边大学, 2015.
CHEN N.Effect of linseed on intramuscular conjugated fatty acid composition and its related gene expression in Yanbian Yellow cattle[D].Yanji: Yanbian University, 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10184-1015622281.htm
[31] EBRAHIMI M, RAJION M A, MENG G Y, et al. Diet high in α-linolenic acid up-regulate PPAR-α gene expression in the liver of goats[J]. Electron J Biotechnol, 2015, 18(3): 210–214. DOI: 10.1016/j.ejbt.2015.03.009
[32] TAKEUCHI Y, YAHAGI N, IZUMIDA Y, et al. Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit[J]. J Biol Chem, 2010, 285(15): 11681–11691. DOI: 10.1074/jbc.M109.096107
[33] FERNÁNDEZ-ALVAREZ A, ALVAREZ M S, GONZALEZ R, et al. Human SREBP1c expression in liver is directly regulated by peroxisome proliferator-activated receptor α (PPARα)[J]. J Biol Chem, 2011, 286(24): 21466–21477. DOI: 10.1074/jbc.M110.209973
[34] URRUTIA O, MENDIZABAL J A, INSAUSTI K, et al. Effects of addition of linseed and marine algae to the diet on adipose tissue development, fatty acid profile, lipogenic gene expression, and meat quality in lambs[J]. PLoS One, 2016, 11(6): e0156765. DOI: 10.1371/journal.pone.0156765
[35] 于伽.亚麻籽对延边黄牛体组织脂代谢关键酶、调节因子及相关调控激素基因表达的影响[D].延吉: 延边大学, 2017.
YU J.The effects of Flaxseed acid on the gene expression of the key enzymes, regulatory factor and regulating hormone level in Yanbian Yellow Cattle body tissue[J].Yanji:Yanbian University, 2017.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10184-1017121654.htm
[36] BAUMAN D E, GRⅡNARI J M. Nutritional regulation of milk fat synthesis[J]. Annu Rev Nutr, 2003, 23: 203–227. DOI: 10.1146/annurev.nutr.23.011702.073408