畜牧兽医学报  2018, Vol. 49 Issue (9): 1810-1817. DOI: 10.11843/j.issn.0366-6964.2018.09.002    PDF    
基于转录组学筛选与哺乳动物睾丸发育相关基因及调控网络的研究进展
孙武1, 罗静1, 李发弟1,2, 李万宏1, 乐祥鹏1     
1. 兰州大学草地农业生态系统国家重点实验室, 兰州大学农业农村部草牧业创新重点实验室, 兰州大学草地农业科技学院, 兰州 730020;
2. 甘肃省肉羊繁育生物技术工程实验室, 民勤 733300
摘要:睾丸正常发育是雄性哺乳动物精子发生及有效繁殖力的先决条件,其发育过程极其精细和复杂,受到许多因素的影响及调控,但遗传调控占主导地位。哺乳动物睾丸的发育首先会受到大量蛋白编码基因的严格调控,非编码RNA(miRNA、lncRNA和piRNA)也在睾丸发育及精子发生过程扮演重要角色。近年来,以mRNA、miRNA、lncRNA、piRNA为主的转录组学在解析哺乳动物睾丸发育以及精子发生分子机制得到充分应用,并且取得了很大进展。本文从睾丸发育相关mRNA、miRNA、lncRNA、piRNA等方面对哺乳动物睾丸发育研究现状进行介绍与阐述,旨在为深入挖掘睾丸发育基因组变化以及畜牧业中动物育种提供重要理论依据。
关键词mRNA    miRNA    lncRNA    piRNA    睾丸发育    精子生成    
Progress of Screening Genes and Regulating Network Related to Testis Development in Mammals Based on Transcriptomics
SUN Wu1, LUO Jing1, LI Fa-di1,2, LI Wan-hong1, YUE Xiang-peng1     
1. State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
2. Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, China
Abstract: Testis maturation and development are a prerequisite for spermatogenesis and effective reproduction in mammals, the process of maturation is extremely complex, which was affected by multiple factors, especially genetic factors. Testis development process was strictly regulated by lots of protein-coding genes, while growing evidences showed that non-coding RNAs(miRNAs, lncRNAs and piRNAs)also played an important roles in testicular development and spermatogenesis. In recent years, the study of transcriptome based on mRNA, miRNA, lncRNA and piRNA have been successfully applied in exploring molecular mechanism of mammalian testicular development and spermatogenesis, and have made great progress. In this review, we summarized the current status of testis development research in mammals from the aspect of testicular developmental-related genes, miRNAs, lncRNAs and piRNA in order to provide reference and theoretical basis for understanding global genome expression change in testicular development and better guide in animal breeding in the livestock industry.
Key words: mRNA     miRNA     lncRNA     piRNA     testicular development     spermatogenesis    

睾丸作为雄性哺乳动物特有的生殖器官,具有生成精子、分泌雄性激素等重要功能,其正常的结构和生理机能是繁殖活动的基础。此外,公畜睾丸大小,一般以阴囊周长(scrotal circumference,SC)来表示,因其测量简单,遗传力高,选择效果好等优点成为遗传改良公畜及其半同胞母畜的一个重要指标[1-3]。在不同的哺乳动物中,均发现睾丸大小与射精量、精子密度、精子活力等呈显著正相关,与精子畸形率紧密负相关[1, 4-5]。鉴于睾丸大小的遗传力高达0.67[6],因此通过睾丸大小对种公畜进行选择被认为是遗传改良群体固有繁殖力最快和最有效的方法。睾丸的发育是一个高度复杂而精密的过程,涉及生殖细胞的增殖分化、支持细胞和间质细胞的发育与成熟等[7],成为动物繁殖学领域的一项重大课题。

近些年来,随着生物科学技术的不断进步,各种组学技术日新月异,以mRNA、miRNA、lncRNA、piRNA等为主的转录组学研究得到了广泛关注。研究证实它们在机体生长、发育和凋亡等过程中具有重要的调控意义[8]。同机体其它器官和组织一样,睾丸的正常发育和精子生成也会受到蛋白编码基因和非编码RNA的严格调控。目前,哺乳动物睾丸发育相关mRNA、miRNA、lncRNA和piRNA等为主的测序以及对睾丸发育精子生成起调控作用的分子功能研究已经被广泛报道。本文综述了近年来睾丸发育相关mRNA、miRNA、lncRNA和piRNA等的研究进展,以期为后续科学研究以及生产实践提供参考和理论依据。

1 睾丸发育过程mRNA的鉴定及差异表达研究

揭示哺乳动物睾丸发育机制首要工作是得到其完整的睾丸mRNA表达谱。近几年来,RNA-seq技术的发展对揭示各种生物发育过程mRNA的动态变化机制十分奏效,尤其是哺乳动物睾丸发育的研究。睾丸发育过程mRNA表达谱的鉴定主要集中于小鼠、人类、猪、牛。睾丸发育过程中比较重要的两个阶段是性成熟前包括胎儿期、幼年期和性成熟后[9]。性成熟前,睾丸组织的支持细胞、间质细胞和生精细胞都处于快速增殖分化状态,而性成熟之后增殖状态进入平台期。Gong等[10]对6日龄、4周龄和10周龄小鼠睾丸组织进行RNA-seq研究,鉴定出18 837个基因,并且幼龄期睾丸基因表达模式显著的区别于性成熟期和成年期,发现绝大部分差异表达基因均与睾丸发育及精子发生相关,其中筛选到的差异表达基因VIM (vimentin)随着发育阶段的推后表达量逐步降低,在小鼠、猪、人等物种中都发现类似的结论。该基因属于支持细胞与间质细胞的细胞骨架成分,故推测其参与支持细胞-生精细胞间的物质和信息交流,对精子发生及维持支持细胞形态起重要作用[11]。在4周龄小鼠睾丸中超高表达的INSL3(insulin-like factor 3),是间质细胞产生的一种激素,与睾丸引带发育和睾丸下降有关[12]。Pitia等[13]以牛、绵羊和山羊为研究对象,进一步探讨INSL3基因对睾丸发育以及精子功能的影响,结果表明,正常公牛睾丸INSL3的表达水平显著高于低繁殖力公牛(P < 0.05),并且通过HE染色进一步发现其在低繁殖力公牛精母细胞中表达水平显著低于高繁殖力公牛(P < 0.05)。这些证据表明,INSL3可以作为早期公畜选择的候选基因。Ran等[14]分别对60和90胚龄猪胚胎、产后30和180日龄猪的睾丸组织进行RNA-Seq分析,鉴定出8 343个差异表达基因,通过GO富集分析得到了与睾丸发育相关的重要候选基因(SOX9、GATA4、FOG2、INHBASrySPAG6、RanBP9、TGF-β家族)以及调控睾丸发育、精子生成的一些重要通路(MAPK、Hedgehog、Wnt/β-catenin、PI3K-Akt)。Song等[15]对产后60和180日龄大白猪的睾丸组织进行RNA-seq,鉴定出242个参与精子发生的关键基因,包括PIWILSPATAKITINHBASPAG6、RanBP9等。大量研究证实[16]INHBA基因在性成熟前表达量显著地高于性成熟后,并且对生殖细胞和间质细胞的物质交流很重要。Parker等[17]利用GWAS方法揭示INHBA基因的一个SNP(rs6279141)与小鼠睾丸重量显著关联(P=4.51×10-18),推测该基因可以显著影响小鼠睾丸形态发生,睾丸细胞增殖和睾丸重量。这些研究暗示,INHBA基因可能是决定睾丸发育的重要候选分子。RanBP9基因对雄性生殖细胞发育和雄性生育能力有重要作用[18]。将RanBP9敲除后,RanBP9-/-雄性小鼠在发育过程中出现精原细胞的增殖能力显著下降、生精小管管腔变小、生殖细胞迅速减少甚至消失等现象。

Li等[19]利用高通量测序技术(next generation sequencing, NGS)对两个猪品种性成熟前后的睾丸组织进行转录组测序,得到了许多决定睾丸发育以及精子发生的候选基因,比如SMAD4、c-kitGPR54等。SMAD4基因通过调节间质细胞和支持细胞的增殖分化进而调控公畜的生殖系统。c-kit作为生精过程中重要的信号传递受体,对生殖细胞(germ cell,GC)的存活、迁移和精原细胞的维持及分化起关键作用[20]GPR54参与下丘脑-垂体-性腺轴(hypothalamus-pituitary gland axis,HPG)生殖调控,通过GnRH调控LH和FSH水平。GPR54基因敲除雄性小鼠表现出睾丸和阴茎不能正常发育,并且不能产生精子,由此推测,GPR54缺失和突变切断了GnRH的脉冲性释放,进而导致动物生殖功能的丧失[21]

钟金城等[22]通过RNA-seq对犏牛和牦牛睾丸组织做了比较研究,分别获得18 529和17 784个蛋白编码基因,其中共表达基因17 120个,新基因478个,同样发现差异表达的基因均与精子发生相关,包括SPEF2、MBL2等。郭芳等[23]研究表明,SPEF2在初生和成年公牛睾丸组织中差异表达,并且其可变剪切体和功能性SNP位点与公牛精液品质密切相关。白井岩等[24]发现,公牛MBL2基因多态性与精液品质及后裔生产性能有显著关联性。同时,将牦牛和犏牛睾丸组织中获得的差异表达基因进行KEGG分析发现,32条显著富集的代谢通路(P < 0.01),几乎全部通路均与睾丸发育过程密切相关[22]。Chang等[25]对牛20日龄、8月龄、2周岁的睾丸组织进行NGS测序,在Y染色体雄性特异区鉴定到1 274个差异表达转录本,并呈现不同的表达模式,表明Y染色体基因可能在睾丸的发育和雄性繁殖力上起关键作用。以上研究表明,哺乳动物睾丸发育过程存在许多差异表达基因,并且它们存在阶段依赖性,蛋白编码基因可以通过多种作用方式对睾丸发育起到关键的调控作用,通过一些遗传变异,包括单核苷酸多态性(single nucleotide polymorphisms, SNPs)、拷贝数变异(copy number variations, CNVs)、插入缺失(insert and deletion, Indel)影响基因表达,进而影响了睾丸发育过程以及精子生成过程,这种调控作用在物种之间可能具有差异性,其原因推测,可能与哺乳动物的驯化、迁徙、基因渗透、生存环境显著相关。

2 睾丸发育过程miRNA的鉴定及调控

microRNA是一种内源性的非编码小RNA,通常与靶基因的3′UTR、CDS和5′UTR相结合来负调节靶基因的转录[26-29]。miRNA在不同哺乳动物睾丸发育及精子发生过程中扮演重要角色,并且其表达还具有种属特异性和时间特异性。Sree等[30]对8、16、24日龄小鼠睾丸组织进行NGS测序,并且构建miRNA-mRNA调控网络,找到一些枢纽miRNA,如miR-34c、miR-221、miR-222、miR-20和miR-106a等。研究发现,miR-34c主要表达于粗线期精母细胞和圆形精子细胞,并且可以和精子发生重要转录因子TGIF2和NOTCH2互作,共同调控精子发生的进程[31]。因此,推测miR-34c是精子发生的一个关键调节器,miR-34c能够下调p53通路下游RARGSTRA8与c-MYC的表达,进而抑制奶山羊雄性生殖干细胞的增殖[32-33]。miR-221和miR-222在转录后水平负调控c-kit的表达,同时miR-221和miR-222过表达会诱导未分化的精原干细胞转变为c-kit阳性分化的精原细胞[34]。miR-20和miR-106a存在于精原干细胞(spermatogonial stem cell, SSC),并且通过在转录后水平靶向STAT3和Ccnd1参与SSC自我更新和精原细胞的分化[35]

在猪上,Huang等[36]发现miR-375和miR-499在军牧1号白猪1和6月龄睾丸组织存在差异表达;进一步通过双荧光素酶报告基因法、实时荧光定量和蛋白免疫印迹等方法发现miR-375和miR-499可分别负向调控靶基因DIAPH2和QKI[37-38],结合睾丸组织发育HE染色切片,推测不同发育阶段的miR-375/499及其各自的靶基因的差异表达可能和睾丸组织发育程度有关。随后,许多学者在不同发育阶段猪睾丸组织中鉴定到大批差异表达mRNA和miRNA,并通过构建miRNA-mRNA互作调控网路筛选出了许多核心miRNA,包括miR-18、miR-21、miR-135a等[14, 39-40]。miR-18在精子发生过程中以热休克因子2(heat shock factor 2,HSF2)为靶目标,而HSF2是一个广泛影响发育过程的重要转录因子;输精管中miR-18下调会增加HSF2 mRNA的表达,进而改变HSF2蛋白表达水平[41]。miR-135a和miR-21可以分别通过靶向FoxO1和ETV5,从而促进SSC的增值和维持SSC数量[42-43]

廖珂[44]进行牦牛、普通牛、犏牛睾丸组织的miRNA鉴定及生物学功能研究发现,差异表达miRNA(bta-miR-125a、bta-miR-125b、bta-miR-26a、bta-miR-26b)调控的靶基因涉及细胞凋亡机制,可能与犏牛精子发生阻滞相关。综上所述,miRNA表达模式在哺乳动物体内是固定的,但由于物种、组织的不同,这种固定表达模式也随之变化;miRNA表达谱鉴定以及miRNA与mRNA调控网络的互作分析对于解析哺乳动物的睾丸发育以及精子发生过程遗传机制提供了一定的理论基础。

3 睾丸发育过程lncRNA的鉴定及调控

长链非编码RNA(long non-coding RNA,lncRNA)是一类长度>200 nt的非编码RNA,其来源于基因组,并且占有很大的比例,是最近几年研究的一个热点[45]。LncRNA在睾丸发育和雄性生殖细胞增殖中起到很重要的作用。Nishant等[46]发现了一个长度为2.4 kb的Mrhl-lncRNA,其在小鼠GC1期精原细胞的核仁中特异性表达,通过与p68蛋白相互作用阻断Wnt信号通路,从而调控精子发生过程。Anguera等[47]发现,Tsx-lncRNA在粗线期精母细胞中特异性表达,暗示Tsx在生殖细胞减数分裂起调节作用。Sun等[48]以6日龄和8周龄小鼠的睾丸组织为研究对象,筛选出8 265个lncRNA,其中3 025个差异表达。同时,发现大量lncRNA(Ovol1、Ovol2、Lhx1、Sox3、Sox9、Plzfc-KitWt1、Sycp2、Prm1和Prm2)跟一些关键转录因子相互毗邻,共同参与精子发生过程。

Ran等[49]对猪30和180日龄的睾丸组织进行了lncRNA测序,共鉴定出777个lncRNA,其中735个为共有lncRNA,并且筛选到101个差异表达lncRNA,其中,20个在幼年睾丸特异性表达,22个在成年睾丸中特异性表达;33个GO条目和7个通路被显著富集,主要通路有TNF、AMPK和Estrogen。韩聪[50]发现,幼龄陕北白绒山羊睾丸组织lncRNA表达显著区别于性成熟期和成年期,差异表达的lncRNA可能通过各种途径调控生精细胞的发育。综上,lncRNA作为一种调节分子已证实与机体发育[51-52]、X染色体失活[53-54]、基因组印记[55]及疾病[56-57]等方面至关重要,但它到底是如何调控哺乳动物睾丸的发育,还有待进一步深入研究,因此阐明lncRNA对睾丸组织发育及精子生成过程的影响对分子育种具有重要科学意义。

4 睾丸发育过程piRNA的鉴定及调控

piRNA是一类特异性在动物生殖细胞中表达的非编码小分子RNA,和Piwi蛋白特异性结合在一起,参与生殖干细胞和生殖细胞发育的调控[58]。在精子发生的各个不同阶段,该分子通过与PIWI亚家族蛋白的3个成员偶联发挥其调控作用。piRNA分子首次在小鼠睾丸组织被发现,后续在人、大鼠、猪、马等[59]哺乳动物中也发现了piRNA的存在。Yang等[60]在正常人睾丸组织中鉴定到20 121个piRNA,其序列的来源基因包含TDRG1和CYP19A1。TDRG1属于睾丸特异性表达基因,阶段性的调控精子发生进程[61]CYP19A1是将雄激素转化为雌激素的关键酶,也是性别分化相关miRNAs的一个重要潜在靶基因[62]

相关研究分别对性成熟前后猪睾丸组织的差异piRNA进行了鉴定,发现它们毗邻的mRNA都参与精子发生、能量代谢、细胞生长调节、细胞黏附、信号转导、细胞-细胞连接等繁殖相关的生物学过程,证实了piRNA对睾丸发育及精子发生有调控作用[63-64]。此外道楞[65]对性成熟前后蒙古马睾丸组织进行NGS发现,性成熟前睾丸组织比性成熟后睾丸组织piRNA的种类更加丰富,这一结论与小鼠[66]、人[60]、猪[19]等物种上的报道相似,暗示piRNA在哺乳动物睾丸发育以及精子发生过程中扮演着重要角色。此外,道楞[65]获得的差异表达piRNA来源基因包含PIWIL1和PIWIL2,其中PIWIL1和piRNA在马睾丸中的表达量随着个体的发育而增加,在狗中也发现相同的结果[67]PIWIL1基因是在人中最早发现在睾丸组织特异性表达的PIWI家族蛋白,已经在人、恒河猴等物种中证实,在精母细胞和成熟精子中高表达,并阶段性调控生精过程[68]。因此可推测, piRNA与PIWI同源蛋白PIWIL1相互作用共同调控精子的发生过程。PIWIL2参与维持生殖干细胞自我更新、甲基化介导转座子抑制、染色质重组等生物过程,并在piRNA的前体起源及转录调控中发挥着重要作用。顾垚[69]研究表明,PIWIL2基因在黄牛和牦牛睾丸组织中特异性表达,并且该基因5′UTR区域的甲基化状态与犏牛精子发生障碍、雄性不育密切相关。

由于piRNA在雄性生殖系统中起着多种重要的作用,被视为哺乳动物生殖系统发育的关键调控因子之一,随着研究的不断深入,越来越多的证据显示,piRNA以多种不同机制参与精子发生相关基因的表达调控,为人们深入理解哺乳动物睾丸发育和精子发生的分子机制及调控网络提供了一个很好的视角。

5 存在的问题与展望 5.1 存在的问题

本文综述了睾丸发育的转录组学研究进展,包括睾丸发育相关mRNA、miRNA、lncRNA、piRNA。转录组学在动物睾丸发育以及精子发生中取得了很大的进展,但目前的研究仍然存在一定的局限性。1)mRNA、miRNA、lncRNA、piRNA组学的研究比较独立,没有得到有效的整合分析,使得大量的测序数据没有得到有效利用。2)目前,哺乳动物Y染色体鉴定的基因很有限,主要是Y染色体大量的重复序列导致测序难度很大;3)研究主要集中在人以及小鼠、猪等模式动物,而对于驯化家畜睾丸转录组学的研究很有限;4)利用NGS技术确实筛选到了许多差异基因、差异miRNA、差异lncRNA、差异piRNA,但是对这些候选分子的功能验证还很有限。需进一步对候选分子进行后功能基因组组学研究,筛选出睾丸发育相关候选分子,并在细胞水平或结合体内、体外验证试验,从而较全面的、精确地解析候选基因对睾丸发育的调控过程。

5.2 展望

睾丸的正常发育对哺乳动物繁殖力的提高和优良种公畜精液的充分利用具有十分重要的作用。睾丸发育过程极其复杂,受到遗传因素和环境因素共同作用。特异性表达mRNA、miRNA、lncRNA、piRNA在睾丸组织发育和精子生成的各个阶段均发挥重要作用,因此,对这些调控分子的研究意义重大。

睾丸发育研究作为生物繁殖学领域的重要课题。通过对睾丸发育转录组学的研究,探讨特异性表达基因与睾丸发育的相关性,极大地提高了人们对睾丸发育、生精过程等重要生理过程的认识,可以更全面地了解睾丸发育过程中重要基因的表达模式、转录因子及RNA结合蛋白活化模式及激素调节方式,一方面,可以为探索人以及犏牛等哺乳动物雄性不育、睾丸发育不完全综合征等疾病的遗传机制奠定理论基础,另一方面,对于牛、羊、猪等优秀种公畜的早期选育提供一定的理论参考依据。

参考文献
[1] JACYNO E, KAWĘCKA M, PIETRUSZKA A, et al. Phenotypic correlations of testes size with semen traits and the productive traits of young boars[J]. Reprod Domest Anim, 2015, 50(6): 926–930. DOI: 10.1111/rda.2015.50.issue-6
[2] GONZÁLEZ-PEÑA D, KNOX R V, MACNEIL M D, et al. Genetic gain and economic values of selection strategies including semen traits in three-and four-way crossbreeding systems for swine production[J]. J Anim Sci, 2015, 93(3): 879–891. DOI: 10.2527/jas.2014-8035
[3] YTOURNEL F, BRUNET E, DERKS P, et al.Testes size as predictor for semen production of boars and relation to female reproductive traits[C]//Proceedings of 10th World Congress on Genetics Applied To Livestock Production.Vancouver BC: American Society of Animal Science, 2014.
[4] ALMAGUER Y, FONT H, CABRERA S, et al. Relationship between body and testicular measurements in young buffalo bulls in Cuba[J]. Rev Colomb Cienc Pec, 2017, 30(2): 138–146. DOI: 10.17533/udea.rccp.v30n2a05
[5] HAGIYA K, HANAMURE T, HAYAKAWA H, et al. Genetic correlations between yield traits or days open measured in cows and semen production traits measured in bulls[J]. Animal, 2017: 1–5. DOI: 10.1017/S1751731117003470
[6] COULTER G H, FOOTE R H. Bovine testicular measurements as indicators of reproductive performance and their relationship to productive traits in cattle:A review[J]. Theriogenology, 1979, 11(4): 297–311. DOI: 10.1016/0093-691X(79)90072-4
[7] PARK S Y, JAMESON J L. Minireview:Transcriptional regulation of gonadal development and differentiation[J]. Endocrinology, 2005, 146(3): 1035–1042. DOI: 10.1210/en.2004-1454
[8] LIU C, ZHANG Y H, DENG Q, et al. Cancer-related triplets of mRNA-lncRNA-miRNA revealed by integrative network in uterine corpus endometrial carcinoma[J]. Biomed Res Int, 2017, 2017: 3859582.
[9] SHARPE R M, MCKINNELL C, KIVLIN C, et al. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood[J]. Reproduction, 2003, 125(6): 769–784. DOI: 10.1530/rep.0.1250769
[10] GONG W, PAN L L, LIN Q, et al. Transcriptome profiling of the developing postnatal mouse testis using next-generation sequencing[J]. Sci China Life Sci, 2013, 56(1): 1–12. DOI: 10.1007/s11427-012-4411-y
[11] MRUK D D, CHENG C Y. Sertoli-sertoli and sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis[J]. Endocr Rev, 2004, 25(5): 747–806. DOI: 10.1210/er.2003-0022
[12] SOZUBIR S, BARBER T, WANG Y, et al. Loss of Insl3:A potential predisposing factor for testicular torsion[J]. J Urol, 2010, 183(6): 2373–2379. DOI: 10.1016/j.juro.2010.02.2390
[13] PITIA A M, UCHIYAMA K, SANO H, et al. Functional insulin-like factor 3 (INSL3) hormone-receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility[J]. Anim Sci J, 2017, 88(4): 678–690. DOI: 10.1111/asj.2017.88.issue-4
[14] RAN M L, CHEN B, WU M S, et al. Integrated analysis of miRNA and mRNA expression profiles in development of porcine testes[J]. RSC Adv, 2015, 5(78): 63439–63449. DOI: 10.1039/C5RA07488F
[15] SONG H B, ZHU L H, LI Y, et al. Exploiting RNA-sequencing data from the porcine testes to identify the key genes involved in spermatogenesis in Large White pigs[J]. Gene, 2015, 573(2): 303–309. DOI: 10.1016/j.gene.2015.07.057
[16] SUN Z, LI Z, ZHANG Y. Adult testicular dysgenesis of Inhba conditional knockout mice may also be caused by disruption of cross-talk between Leydig cells and germ cells[J]. Proc Natl Acad Sci U S A, 2010, 107(35): E135. DOI: 10.1073/pnas.1008771107
[17] PARKER C C, GOPALAKRISHNAN S, CARBONETTO P, et al. Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice[J]. Nat Genet, 2016, 48(8): 919–926. DOI: 10.1038/ng.3609
[18] SCHUBERT C. Scaffold for splicing[J]. Biol Reprod, 2015, 92(3): 59. DOI: 10.1095/biolreprod.114.127720
[19] LI Y, LI J L, FANG C C, et al. Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages[J]. Sci Rep, 2016, 6: 26852. DOI: 10.1038/srep26852
[20] 萨初拉, 孔群芳, 吴应积. 哺乳动物睾丸中c-kit基因表达对生精细胞发育的影响[J]. 中国细胞生物学学报, 2013, 35(5): 703–711.
SACHLA, KONG Q F, WU Y J. The effects of c-kit on development of male germ cells in the mammal's testis[J]. Chinese Journal of Cell Biology, 2013, 35(5): 703–711. (in Chinese)
[21] 孙兆贵, 顾正, 王健. KiSS-1/GPR54系统的生殖内分泌功能研究进展[J]. 生殖与避孕, 2009, 29(6): 374–384.
SUN Z G, GU Z, WANG J. Research advances in functions of Kiss-1/GPR54 system in reproductive endocrinology[J]. Reproduction & Contraception, 2009, 29(6): 374–384. (in Chinese)
[22] 钟金城, 姬秋梅, 柴志欣, 等.基于转录组测序对犏牛和牦牛睾丸组织的分析研究[C]//中国遗传学会第9次全国会员代表大会暨学术研讨会论文集.哈尔滨: 中国遗传学会, 2013.
ZHONG J C, JI Q M, CHAI Z X, et al.Analysis of Yak and Yak testicles based on transcriptome sequencing[C]//Proceedings of the 9th National Member Congress and Academic Seminar of the Chinese Society of Genetics.Harbin: Genetics Society of China, 2013. (in Chinese)
[23] 郭芳, 罗国静, 鞠志花, 等. SPEF2基因可变剪切体和功能性SNP鉴定及其与公牛精液性状的相关性研究[J]. 南京农业大学学报, 2014, 37(3): 119–125.
GUO F, LUO G J, JU Z H, et al. Association of SPEF2 gene splices variant and functional SNP with semen quality traits in Chinese Holstein bulls[J]. Journal of Nanjing Agricultural University, 2014, 37(3): 119–125. (in Chinese)
[24] 白井岩, 吴洁, 蒋小强, 等. 公牛MBL2基因多态性与精液品质及后裔生产性能的相关性研究[J]. 畜牧兽医学报, 2013, 44(10): 1561–1568.
BAI J Y, WU J, JIANG X Q, et al. Association of polymorphisms of MBL2 gene with semen quality and progeny performance of bulls[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(10): 1561–1568. (in Chinese)
[25] CHANG T C, YANG Y, RETZEL E F, et al. Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development[J]. Proc Natl Acad Sci U S A, 2013, 110(30): 12373–12378. DOI: 10.1073/pnas.1221104110
[26] GUO Z W, XIE C, YANG J R, et al. MtiBase:A database for decoding microRNA target sites located within CDS and 5'UTR regions from CLIP-Seq and expression profile datasets[J]. Database, 2015, 2015.pii: bav102.
[27] LIN Y H, BUNDSCHUH R. RNA structure generates natural cooperativity between single-stranded RNA binding proteins targeting 5' and 3'UTRs[J]. Nucleic Acids Res, 2015, 43(2): 1160–1169. DOI: 10.1093/nar/gku1320
[28] WONGFIENG W, JUMNAINSONG A, CHAMGRAMOL Y, et al. 5'-UTR and 3'-UTR regulation of MICB expression in human cancer cells by novel microRNAs[J]. Genes, 2017, 8(9): 213. DOI: 10.3390/genes8090213
[29] 王天宇, 董园园, 李海燕, 等. microRNAs的分子进化与调控机制[J]. 遗传, 2010, 32(9): 874–880.
WANG T Y, DONG Y Y, LI H Y, et al. Molecular evolution and regulatory mechanism of microRNAs[J]. Hereditas, 2010, 32(9): 874–880. (in Chinese)
[30] SREE S, RADHAKRISHNAN K, INDU S, et al. Dramatic changes in 67 miRNAs during initiation of first wave of spermatogenesis in Mus musculus testis:Global regulatory insights generated by miRNA-mRNA network analysis[J]. Biol Reprod, 2014, 91(3): 69.
[31] 李东伟, 屈长青, 刘洪瑜. miR-34c在哺乳动物生殖发育过程中的功能探讨[J]. 阜阳师范学院学报:自然科学版, 2014, 31(4): 58–61.
LI D W, QU C Q, LIU H Y. Function of miR-34c in process of mammalian reproductive development[J]. Journal of Fuyang Teachers College:Natural Science, 2014, 31(4): 58–61. (in Chinese)
[32] LI M Z, YU M, LIU C, et al. Expression of miR-34c in response to overexpression of Boule and Stra8 in dairy goat male germ line stem cells (mGSCs)[J]. Cell Biochem Funct, 2013, 31(4): 281–288. DOI: 10.1002/cbf.v31.4
[33] LI M, YU M, LIU C, et al. miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis[J]. Cell Prolif, 2013, 46(2): 223–231. DOI: 10.1111/cpr.2013.46.issue-2
[34] YANG Q E, RACICOT K E, KAUCHER A V, et al. microRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells[J]. Development, 2013, 140(2): 280–290. DOI: 10.1242/dev.087403
[35] HE Z P, JIANG J J, KOKKINAKI M, et al. miRNA-20 and miRNA-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1[J]. Stem Cells, 2013, 31(10): 2205–2217. DOI: 10.1002/stem.1474
[36] HUANG L Z, MA J, SUN Y K, et al. Altered splenic miRNA expression profile in H1N1 swine influenza[J]. Arch Virol, 2015, 160(4): 979–985. DOI: 10.1007/s00705-015-2351-0
[37] 张晓军, 李传民, 赵伟, 等. 猪睾丸组织中miR-375的表达及靶基因预测[J]. 中国兽医学报, 2014, 34(11): 1846–1849.
ZHANG X J, LI C M, ZHAO W, et al. The expression of miR-375 and its target genes prediction in testicular tissue of junmu No.1 white pig[J]. Chinese Journal of Veterinary Science, 2014, 34(11): 1846–1849. (in Chinese)
[38] ZHANG X J, LI C M, LIU X, et al. Differential expression of miR-499 and validation of predicted target genes in the testicular tissue of swine at different developmental stages[J]. DNA Cell Biol, 2015, 34(7): 464–469. DOI: 10.1089/dna.2014.2728
[39] WENG B, RAN M L, CHEN B, et al. Systematic identification and characterization of miRNAs and piRNAs from porcine testes[J]. Genes Genom, 2017, 39(10): 1047–1057. DOI: 10.1007/s13258-017-0573-0
[40] LIAN C J, SUN B X, NIU S L, et al. A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing[J]. FEBS J, 2012, 279(6): 964–975. DOI: 10.1111/j.1742-4658.2012.08480.x
[41] BJÖRK J K, SANDQVIST A, ELSING A N, et al. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis[J]. Development, 2010, 137(19): 3177–3184. DOI: 10.1242/dev.050955
[42] MORITOKI Y, KOJIMA Y, MIZUNO K, et al. 260 the role of mir-135a via regulation of foxo1 gene expression in maintenance of spermatogonial stem cells[J]. J Urol, 2013, 189(4): e106–e107.
[43] EO J, SONG H, LIM H J. Etv5, a transcription factor with versatile functions in male reproduction[J]. Clin Exp Reprod Med, 2012, 39(2): 41–45. DOI: 10.5653/cerm.2012.39.2.41
[44] 廖珂.牦牛、普通牛和犏牛睾丸组织microRNA的比较研究[D].成都: 西南民族大学, 2016.
LIAO K.Comparative analysis of microRNA in yak, ordinary cattle and cattle-yak testis tissue[D].Chengdu: Southwest Minzu University, 2016. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10656-1016776881.htm
[45] REN H X, WANG G F, LEI C, et al. Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus)[J]. BMC Genomics, 2016, 17: 67. DOI: 10.1186/s12864-016-2365-3
[46] NISHANT K T, RAVISHANKAR H, RAO M R S. Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA[J]. Mol Cell Biol, 2004, 24(12): 5620–5634. DOI: 10.1128/MCB.24.12.5620-5634.2004
[47] ANGUERA M C, MA W Y, CLIFT D, et al. Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain[J]. PLoS Genet, 2011, 7(9): e1002248. DOI: 10.1371/journal.pgen.1002248
[48] SUN J, LIN Y, WU J. Long non-coding RNA expression profiling of mouse testis during postnatal development[J]. PLoS One, 2013, 8(10): e75750. DOI: 10.1371/journal.pone.0075750
[49] RAN M, CHEN B, LI Z, et al. Systematic identification of long noncoding RNAs in immature and mature porcine testes[J]. Biol Reprod, 2016, 94(4): 77.
[50] 韩聪.山羊生精细胞发育及睾丸组织lncRNA差异表达分析[D].杨凌: 西北农林科技大学, 2017.
HAN C.The development of spermatogenic cells and the analysis of lncRNA differential expression in goats[D].Yangling: Northwest A&F University, 2017. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3224112
[51] PARALKAR V R, MISHRA T, LUAN J, et al. Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development[J]. Blood, 2014, 123(12): 1927–1937. DOI: 10.1182/blood-2013-12-544494
[52] ZHAO W M, MU Y L, MA L, et al. Systematic identification and characterization of long intergenic non-coding RNAs in fetal porcine skeletal muscle development[J]. Sci Rep, 2015, 5: 8957. DOI: 10.1038/srep08957
[53] ZHAO J, SUN B K, ERWIN J A, et al. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome[J]. Science, 2008, 322(5902): 750–756. DOI: 10.1126/science.1163045
[54] BISCHOFF S R, TSAI S Q, HARDISON N E, et al. Differences in X-chromosome transcriptional activity and cholesterol metabolism between placentae from swine breeds from Asian and Western origins[J]. PLoS One, 2013, 8(1): e55345. DOI: 10.1371/journal.pone.0055345
[55] SLEUTELS F, ZWART R, BARLOW D P. The non-coding Air RNA is required for silencing autosomal imprinted genes[J]. Nature, 2002, 415(6873): 810–813. DOI: 10.1038/415810a
[56] ZHOU Y, WU K, JIANG J P, et al. Integrative analysis reveals enhanced regulatory effects of human long intergenic non-coding RNAs in lung adenocarcinoma[J]. J Genet Genomics, 2015, 42(8): 423–436. DOI: 10.1016/j.jgg.2015.07.001
[57] CUI W R, QIAN Y L, ZHOU X K, et al. Discovery and characterization of long intergenic non-coding RNAs (lincRNA) module biomarkers in prostate cancer:An integrative analysis of RNA-Seq data[J]. BMC Genomics, 2015, 16: S3.
[58] 毛军, 张贤生. piRNA通路与精子发生的研究进展[J]. 中华男科学杂志, 2016, 22(10): 923–927.
MAO J, ZHANG X S. The piRNA pathway and spermatogenesis:Advances in studies[J]. National Journal of Andrology, 2016, 22(10): 923–927. (in Chinese)
[59] 李春艳, 任春环, 刘秋月, 等. piRNA的形成及其在雌性动物中生物学功能研究进展[J]. 畜牧兽医学报, 2017, 48(10): 1785–1795.
LI C Y, REN C H, LIU Q Y, et al. Research progress on piRNA formation and function in female animals[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(10): 1785–1795. (in Chinese)
[60] YANG Q L, HUA J, WANG L, et al. microRNA and piRNA profiles in normal human testis detected by next generation sequencing[J]. PLoS One, 2013, 8(6): e66809. DOI: 10.1371/journal.pone.0066809
[61] JIANG X Z, LI D J, YANG J F, et al. Characterization of a novel human testis-specific gene:Testis developmental related gene 1 (TDRG1)[J]. Tohoku J Exp Med, 2011, 225(4): 311–318. DOI: 10.1620/tjem.225.311
[62] LAZAROS L, XITA N, KAPONIS A, et al. The association of aromatase (CYP19) gene variants with sperm concentration and motility[J]. Asian J Androl, 2011, 13(2): 292–297. DOI: 10.1038/aja.2010.144
[63] YAO L, LI J L, FANG C C, et al. Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages[J]. Sci Rep, 2016, 6: 26852. DOI: 10.1038/srep26852
[64] LIU G, LEI B, LI Y, et al. Discovery of potential piRNAs from next generation sequences of the sexually mature porcine testes[J]. PLoS One, 2012, 7(4): e34770. DOI: 10.1371/journal.pone.0034770
[65] 道楞.蒙古马睾丸发育及精子生成相关piRNA的鉴定及表达调控研究[D].呼和浩特: 内蒙古农业大学, 2017.
DAO L.Identification and expression regulation of piRNA in Mongolian horse testis development and spermatogenesis[D].Hohhot: Inner Mongolia Agricultural University, 2017. (in Chinese)
[66] PILLAI R S, CHUMA S. piRNAs and their involvement in male germline development in mice[J]. Dev Growth Differ, 2012, 54(1): 78–92. DOI: 10.1111/dgd.2012.54.issue-1
[67] STALKER L, RUSSELL S J, CO C, et al. PIWIL1 is expressed in the Canine testis, increases with sexual maturity, and binds small RNAs[J]. Biol Reprod, 2016, 94(1): 17.
[68] 李玥, 赵少志, 江雪, 等. 恒河猴piwil1基因的表达[J]. 应用与环境生物学报, 2012, 18(1): 60–64.
LI Y, ZHAO S Z, JIANG X, et al. Expression of piwil1 gene in Macaca mulatta[J]. Chinese Journal of Applied & Environmental Biology, 2012, 18(1): 60–64. (in Chinese)
[69] 顾垚.黄牛、犏牛Piwi通路相关基因以及睾丸组织基因组甲基化分析[D].南京: 南京农业大学, 2012.
GU Y.Methylation status of Piwi genes and genome in testis of cattle and cattle yaks[D].Nanjing: Nanjing Agricultural University, 2012.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2360540