畜牧兽医学报  2018, Vol. 49 Issue (7): 1451-1459. DOI: 10.11843/j.issn.0366-6964.2018.07.014    PDF    
PCBP2促进口蹄疫病毒增殖的机制研究
何艳春1, 杨文萍2, 付绍祖2, 郑海学2, 杨孝朴1     
1. 甘肃农业大学 动物医学院, 兰州 730070;
2. 中国农业科学院 兰州兽医研究所 家畜疫病病原微生物学 口蹄疫流行病学国家重点实验室, 兰州 730046
摘要:多聚胞嘧啶结合蛋白2(PCBP2)是一个能特异性结合RNA和DNA Poly(C)片段的蛋白,具有维持mRNA稳定和调节翻译的功能;同时,PCBP2能负调控VISA介导的信号转导通路,抑制Ⅰ型干扰素(IFNs)的产生。前期研究表明,PCBP2能调节口蹄疫病毒(foot-and-mouth disease virus,FMDV)的增殖,但具体机制不清楚。作者对此进行了研究,发现:1)免疫共沉淀和GST pull-down试验证实,PCBP2能与FMDV结构蛋白VP0、VP2、2B、2C和3D相互作用;2)进一步用双荧光素酶报告系统试验证明,PCBP2负调控VISA介导的信号通路,并且2C、3D、VP0和2B促进PCBP2的负调控作用;3)通过Western blot试验表明,FMDV VP0蛋白能促进PCBP2对VISA的特异性降解。总之,PCBP2与FMDV VP0相互作用,促进PCBP2降解天然免疫接头蛋白VISA,抑制IFN-β的产生,从而有利于FMDV在细胞中的繁殖和生长。
关键词口蹄疫病毒    天然免疫    多聚胞嘧啶结合蛋白2    VISA    VP0    
The Research on Molecular Mechanism of PCBP2 Promoting the Multiplication of Foot-and-mouth Disease Virus
HE Yan-chun1, YANG Wen-ping2, FU Shao-zu2, ZHENG Hai-xue2, YANG Xiao-pu1     
1. College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070;
2. State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
Abstract: Poly(rC) binding protein 2(PCBP2) belongs to a class of proteins that bind to poly(C) stretches of both RNA and DNA. PCBP2 has roles in maintaining mRNA stability and regulating translation. Meanwhile PCBP2 is a negative regulator in VISA-mediated antiviral signaling to reduce production of IFN-β. Previous study have shown that PCBP2 can affect the multiplication of foot-and-mouth disease virus(FMDV), but the specific mechanism is unclear. Here, we investigated the molecular mechanisms about PCBP2 promoting the multiplication of FMDV. Results:1) We found that FMDV structural protein VP0, 2B, VP2, 2C and 3D can interact with PCBP2 via Co-IP and GST pull-down tests. 2) Further study revealed that PCBP2 is a negative regulator in VISA-mediated antiviral signaling, and 2C, 3D, VP0 and 2B can promote the negative regulation of PCBP2 on VISA-mediated antiviral signaling via the Dual-Luciferase Reporter Assay. 3) Meanwhile we found that FMDV VP0 can increase specific degradation of VISA mediated by PCBP2 through Western blot. In a word, FMDV VP0 can increase degradation of VISA mediated by PCBP2 via VP0-PCBP2 interaction to reduce the production of IFN-β, and enhance the FMDV activity in cell.
Key words: foot-and-mouth disease virus     innate immune     poly (rC) binding protein 2     mitochondrial antiviral signaling protein     VP0    

口蹄疫病毒(foot-and-mouth disease virus, FMDV)是一种单股正链RNA病毒,能引起牛、猪等多种偶蹄动物发生口蹄疫(foot-and-mouth disease, FMD)[1]。临床主要表现为患病动物的口、唇和蹄等部位出现水泡或烂斑。发病率达100%,死亡率低(可引起幼畜较高的死亡率),但可造成动物生产能力下降,肉质受损,且严重影响种用价值。FMDV基因组包含5′非编码区(UTR)、一个完整的开放阅读框(ORF)和一个带有Poly(A)尾巴的3′UTR。ORF编码一个多聚蛋白,随后被切割成至少13个蛋白,例如VP1、VP2、VP3、VP4、先导蛋白酶(Lpro)、2A、2B、3A、3B1、3B2、3B3、3Cpro和3Dpro[2-3]。病毒衣壳是由VP1、VP2、VP3和VP4四个结构蛋白各60个分子构成,其中VP1、VP2和VP3作为病毒衣壳的亚单位,主要构成病毒衣壳的外表面。VP4与RNA紧密连接,与FMDV衣壳的内部结构有关,VP0是VP2和VP4的前体蛋白,其结构中,VP4位于VP2氨基末端的延伸部位。前期研究表明FMDV蛋白可以调控干扰素的产生,例如,Lpro能抑制poly(I:C)诱导IFN-λ1的启动子活性;3Cpro通过影响IRF-3/7的活性来拮抗IFN-α1/β的启动子激活[4]。VP1与宿主蛋白可溶性耐药相关钙结合蛋白(soluble resistance-related calcium-binding protein, Sorcin)发生互作抑制Ⅰ型干扰素的产生[5]。VP3通过降解VISA抑制IFN-β的活性[4]。那么是否有宿主蛋白与FMDV蛋白互作通过天然免疫途径调控FMDV增殖?本研究发现宿主蛋白PCBP2能与FMDV VP0互作,并通过天然免疫途经调节FMDV增殖。

天然免疫在保护宿主不被病原体入侵中起到关键性作用。Ⅰ型干扰素中IFN-α和IFN-β是先天抗病毒应答的核心成员。主要有两类模式识别受体(pattern recognition receptors, PRRs)识别病原相关分子模式(pathogens-associated molecular patterns, PAMPs),分别为Toll样受体(Toll-like receptors, TLRs)和RIG-Ⅰ样受体(RIG-Ⅰ like receptors, RLRs)[6-8]。RIG-Ⅰ和黑色素瘤分化相关基因5(melanoma differentiation-associated protein, MDA5)作为胞质传感器,能检测到细胞质中RNA病毒(例如仙台病毒SeV和新城疫病毒NDV等)[9]。在RLRs介导的抗病毒应答过程中,入侵细胞内的病毒分子主要被RIG-Ⅰ和MDA5识别,并招募下游位于线粒体的接头蛋白VISA(也称作IPS-1、CARDIF和MAVS)[10]来激活下游通路[11]。随后,VISA通过激活蛋白激酶TBK1磷酸化修饰转录因子IRF3,使其形成二聚体,进入细胞核中[12-13]。活化的转录因子IRF3入核后结合到IFNB1基因启动子的干扰素刺激反应元件ISRE位点,诱导IFNs和多种ISGs因子的产生,并在其他效应因子的协同下发挥抗病毒功能。

多聚胞嘧啶结合蛋白2[poly(rC) binding protein 2, PCBP2]是一种在人类和小鼠中广泛表达的宿主蛋白,不仅参与RNA的复制和翻译[14],也参与到蛋白之间的相互作用[15-17]。有研究报道PCBP2能与VISA特异性结合,进而抑制细胞中RIG-Ⅰ通路的抗病毒感染应答;过表达PCBP2可特异性引起VISA蛋白的降解从而抑制IFN-β的产生[18]。尽管PCBP2通过特异性降解VISA来抑制RIG-Ⅰ通路的抗病毒免疫反应,抑制细胞中IFN-β启动子活性,进而增强病毒在细胞中的活性[18],但是PCBP2与FMDV蛋白通过天然免疫来调控FMDV增殖的机制还不清楚。作者利用免疫共沉淀试验、GST pull-down试验、双荧光素酶报告系统试验和Western blot试验对此进行了研究。

1 材料与方法 1.1 材料

pcDNA3.1/myc-HisA载体由本实验室保存。pcDNA3.1-myc-PCBP2质粒、HA-PCBP2质粒和带Flag标签的且被克隆在PCAGGS载体上的各口蹄疫蛋白质粒,均由本实验室构建保存,且测序鉴定为正确。双荧光素酶报告系统所需质粒,仙台病毒(Sendai virus, SeV)以及带HA标签的VISA质粒由武汉大学舒红兵院士馈赠。鼠抗Flag、HA、Myc单克隆抗体购于Sigma公司。兔抗VISA多克隆抗体购自BETHYL公司。兔抗GST多克隆抗体和鼠抗β-actin单克隆抗体购自Thermo公司。HRP标记的山羊抗鼠IgG二抗和抗兔IgG二抗均购自Santa Cruz公司。人源胚胎肾细胞系HEK293T用含10%灭活胎牛血清(FBS, Gibco)的DMEM培养基(Gibco)在37 ℃、5%CO2温箱中培养。

1.2 免疫共沉淀和蛋白印迹

HEK293T细胞培养在10 cm培养皿中,待生长为90%左右的单层细胞时,将FMDV VP0、VP2、L、2B、2C、3A、3C和3D分别与PCBP2质粒共同转染HEK293T细胞。24 h后弃掉培养基,加入NP-40裂解液[50 mmol·L-1 Tris (pH 8.0), 150 mmol·L-1 NaCl, 5 mmol·L-1 EDTA, 1%NP-40, 2 mg·mL-1 aprotinin, 2 mg·mL-1 leupeptin, 1 mmol·L-1 phenylmethanesulfonyl fluoride],冰上孵育30 min并收集液体,12 000 r·min-1离心10 min。取适量上清加入SDS-PAGE蛋白上样缓冲液,煮沸10 min后离心,进行Western blot试验;将剩余上清平分,加入IgG抗体和Flag或HA抗体,再加入G蛋白琼脂糖珠(Sigma),用裂解液补至1 mL,4 ℃旋转摇床孵育3 h。用裂解液清洗树脂3次,SDS-PAGE裂解煮沸,进行Western blot。

Western blot试验方法,将质粒转入培养好的细胞,24 h后收样并处理,煮沸10 min后12 000 r·min-1离心10 min。将处理好的样品加入蛋白胶孔,跑至底部,用浸泡过甲醇的PVDF膜转膜。将转好的膜用5%的脱脂奶粉封闭30 min,之后加入一抗4 ℃摇床过夜,回收抗体,洗三次,加入二抗,洗三次,随后曝光。

1.3 双荧光素酶报告试验

将HEK293T细胞培养于24孔板,待细胞生长至70%左右,将IFN-β-Luc/ISRE-Luc报告质粒、PRL-TK内参质粒以及PCBP2三种质粒共同转入细胞,用空载体确保每一个孔接收相同的质粒。24 h后用SeV(100 HAU·mL-1)进行接毒试验,12 h后处理细胞,用双荧光素酶报告基因试剂盒(Promega)照其说明书进行试验。

1.4 GST pull-down试验

首先取80 μL GST树脂于EP管中,10% BSA封闭,于4 ℃旋转摇床孵育4~6 h。然后加入TIF buffer(1.0 mmol·L-1 MgCl2, 20 mmol·L-1 Tris (pH 8.0), 0.1% Nonidet P-40, 150 mmol·L-1 NaCl, 10% glycerol, 0.1 mmol·L-1 DTT)清洗树脂六次。在封闭好的树脂中分别加入纯化的GST和GST融合蛋白,用TIF buffer补液,于4 ℃旋转摇床孵育2.5 h后清洗树脂,然后在树脂中加入表达有目的质粒的HEK293T细胞裂解液,于4 ℃旋转摇床孵育4~6 h,清洗树脂,加入SDS-PAGE蛋白上样缓冲液,煮沸处理,进行Western blot试验。

1.5 数据分析

使用单因素方差分析法进行统计学分析(数据为三次独立试验的平均值)。差异显著性用“*”表示(*. P < 0.05,**. P < 0.01,***. P < 0.001)

2 结果 2.1 鉴定与PCBP2发生互作的FMDV蛋白

为了验证PCBP2与哪些口蹄疫病毒蛋白有相互作用,将FMDV VP0、VP2、L、2B、2C、3A、3C和3D分别与PCBP2表达质粒共同转染,免疫共沉淀试验显示PCBP2与FMDV的VP2、2B、L、VP0、2C和3D有相互作用(图 1ab)。进一步用GST pull-down试验证实PCBP2与FMDV的VP0、VP2、2B、2C和3D有相互作用(图 1cd)。

a、b.将带Flag标签的FMDV蛋白VP2、2B、3A、L、VP0、2C、3C和3D(10 μg)分别与HA-PCBP2(10 μg)共同转入HEK293T细胞(2×106),用HA/IgG(a)和Flag/IgG(b)抗体进行免疫共沉淀,随后用Flag/HA进行蛋白印迹试验;c、d.将带有Flag标签的口蹄疫病毒蛋白L、VP0、VP2、2B、2C、3D(10 μg)进行转染,24 h后进行GST pull-down试验,图上从左到右依次为2B分别与GST、GST-PCBP2,2C分别与GST、GST-PCBP2,3D分别与GST、GST-PCBP2,L分别与GST、GST-PCBP2,VP0分别与GST、GST-PCBP2以及VP2分别与GST、GST-PCBP2的GST pull-down试验,随后用Flag(上)、GST(中)进行蛋白印迹试验,WCL(底部)是用蛋白印迹试验验证蛋白表达 a, b. HEK293T cells (2×106) were transfected with the indicated plasmids (10 μg each). Immunoprecipitation, with anti-Flag (HA) or control mouse immunoglobulin (IgG) of proteins from lysates and immunoblot were performed with anti-HA or anti-Flag; c, d. Flag-tagged FMDV proteins L, VP0, VP2, 2B, 2C, 3D transfected for 24 h with 10 μg plasmid, tested by GST pull-down. GST pull-down (from left to right): 2B/GST, 2B/GST-PCBP2, 2C/GST, 2C/GST-PCBP2, 3D/GST, 3D/GST-PCBP2, L/GST, L/GST-PCBP2, VP0/GST, VP0/GST-PCBP2, VP2/GST, VP2/GST-PCBP2 and immunoblot were performed with anti-Flag (top) or anti-GST (middle), WCL (bottom), expression of proteins 图 1 与PCBP2发生互作的FMDV蛋白 Figure 1 The FMDV proteins interact with PCBP2
2.2 PCBP2负调控VISA介导的细胞信号通路

为了探究猪源PCBP2是否对Ⅰ型干扰素通路有影响,首先将HEK293T细胞铺于24孔细胞板,每组样品设置4个重复,16 h后将重组质粒Myc-PCBP2、100 ng IFN-β-Luc/ISRE-Luc报告质粒、20 ng PRL-TK内参质粒三种质粒共同转染HEK293T细胞,用相应空载体确保每一个孔细胞接收相同质粒,24 h后用SeV刺激4个重复中的2个重复,剩下2个重复不做接毒处理,12 h后收集样品进行双荧光素酶报告系统检测。结果表明,猪源PCBP2抑制IFN-β和ISRE的活性(图 2ab)。

a、b.将重组质粒Myc-PCBP2(0、500 ng)、100 ng IFN-β-Luc/ISRE-Luc报告质粒、20 ng PRL-TK内参质粒共同转染HEK293T细胞,24 h后用SeV刺激12 h(右),收集样品进行双荧光素酶报告系统检测;c、d.将不同剂量Myc-PCBP2(0、0.3、0.6、1.2 μg)与100 ng IFN-β-Luc/ISRE-Luc报告质粒、20 ng PRL-TK内参质粒以及HA-VISA(0、2.5 ng)质粒共同转染HEK293T细胞,24 h后进行双荧光素酶报告系统检测;EV、VEC指相对应载体蛋白的空载体;每组数据均为三次或者三次以上独立试验的结果;**.P < 0.01为差异极显著 a, b. HEK293T cell were transfected with 100 ng reporter plasmid (IFN-β-Luc/ISRE-Luc), 20 ng pRL-TK and PCBP2 (0, 500 ng) and infected for 24 h with SeV (right), assessed as luciferase activity after 12 h; c, d. HEK293T cell were transfected with luciferase reporter constructs plus PCBP2 (0, 0.3, 0.6, 1.2 μg), assessed as luciferase activity after 24 h. EV. Empty vector; VEC. Vector empty control; The results represent the means and standard deviations of data from three independent experiments. **.P < 0.01 图 2 猪源PCBP2抑制VISA诱导的IFN-β和ISRE的产生 Figure 2 Porcine PCBP2 inhibites VISA-induced IFN-β and ISRE

进一步将不同剂量Myc-PCBP2(0、0.3、0.6、1.2 μg)与100 ng IFN-β-Luc/ISRE-Luc报告质粒、20 ng PRL-TK内参质粒以及HA-VISA(0、2.5 ng)质粒共同转染HEK293T细胞,24 h后进行双荧光素酶报告系统检测。结果表明,猪源PCBP2抑制VISA诱导的IFN-β和ISRE的活性(图 2cd)。

2.3 FMDV蛋白2C、3D、VP0、2B增加了猪源PCBP2对IFN-β启动子活性的抑制作用

为了探索哪些FMDV蛋白影响PCBP2负调控VISA介导的细胞信号通路。将FMDV蛋白L、VP2、2C、3D、VP0、2B(均100 ng)分别与Myc-PCBP2(500 ng)、100 ng IFN-β-Luc报告质粒、20 ng PRL-TK内参质粒以及2.5 ng HA-VISA质粒共同转染HEK293T细胞,双荧光素酶报告系统试验证明,2C、3D、VP0、2B蛋白促进PCBP2对IFN-β的抑制作用(图 3)。

a、b、c、d、e、f.将FMDV蛋白L、VP2、2C、3D、VP0、2B(0、100、0、100 ng)分别与Myc-PCBP2(0、0、500、500 ng)、100 ng IFN-β-Luc报告质粒、20 ng PRL-TK内参质粒以及HA-VISA(0、2.5 ng)共同转染HEK293T细胞,24 h后进行双荧光素酶报告系统试验。EV指相对应载体蛋白的空载体;Con. VP0载体蛋白相对应的空载体是PCAGGS,Myc-PCBP2对应的空载体是pcDNA3.1;每组数据均为三次或者三次以上独立试验的结果;**.P < 0.01为差异极显著 a, b, c, d, e, f. HEK293T cell were transfected with 100 ng reporter plasmid, 20 ng pRL-TK, HA-VISA (0, 2.5 ng) various FMDV plasmids (0, 100, 0, 100 ng) and Myc-PCBP2 (0, 0, 500, 500 ng) for 24 h, assessed as luciferase activity. EV. Empty vector; Con.The corresponding empty vector of VP0 is PCAGGS, the corresponding empty vector of Myc-PCBP2 is pcDNA3.1;The results represent the means and standard deviations of data from three independent experiments. **P < 0.01 图 3 2C、3D、VP0、2B蛋白促进PCBP2对IFN-β的抑制作用 Figure 3 The effect of IFN-β inhibited by PCBP2 is promoted by 2C, 3D, VP0, 2B proteins
2.4 VP0促进PCBP2对VISA的特异性降解

为了验证哪些FMDV蛋白促进PCBP2降解VISA,将FMDV 2C、3D、VP0和2B蛋白(600 ng)分别与猪源PCBP2(1 μg)、VISA(800 ng)共转染,Western blot试验显示FMDV VP0和3D促进PCBP2特异性降解外源VISA(图 4a~d)。进一步试验表明,只有VP0促进PCBP2对内源VISA的特异性降解(图 4ef)。

a、b、c、d.将FMDV 2C、3D、VP0和2B蛋白(600 ng)分别与猪源Myc-PCBP2(1 μg)、HA-VISA(800 ng)转入HEK293T细胞,24 h后进行Western blot试验;e、f.将FMDV VP0和3D蛋白(600 ng)分别与猪源Myc-PCBP2(1 μg)转入HEK293T细胞,24 h后进行Western blot试验 a, b, c, d. Immunoblot analysis of HEK293T cells transfected with plasmids encoding HA-tagged VISA (800 ng), Myc-tagged PCBP2 (1 μg) and various FMDV plasmids (600 ng) for 24 h; e, f. Immunoblot analysis of HEK293T cells transfected with plasmids encoding Myc-tagged PCBP2 (1 μg) and various FMDV plasmids (600 ng) for 24 h 图 4 VP0加速PCBP2对VISA的特异性降解 Figure 4 VP0 accelerate the specific degradation of VISA from PCBP2
3 讨论

口蹄疫是由口蹄疫病毒引起的一种急性、接触性传染的动物疫病,是国家乃至全球经济贸易的最大羁绊。由于FMDV广泛的宿主范围,高效的变异频率[19-20],从而有利于FMDV逃避宿主免疫监视,建立持续性感染[21]。宿主细胞作为FMDV生命活动载体,在其生活周期中,发现有多种宿主细胞蛋白参与其中。由于FMDV是一种RNA病毒,这些细胞蛋白里有一部分是RNA结合蛋白(RNA binding protein, RBP),例如多聚嘧啶结合蛋白(PTB)[22]、La自身抗原(La autoantigen)[23]、核糖体40S亚基(40S ribosomal subunit)[24]、突触结合胞质RNA相互作用蛋白(NSAP1)[25-26]以及核不均一核糖核蛋白(hnRNP)[27]等,而PCBP2细胞蛋白是属于特异性结合RNA胞嘧啶富集片段的HnRNP[28-30]。已有研究报道PCBP2能够调控细胞的免疫应答反应[18],促进FMDV的增殖[31],那么阐明PCBP2在FMDV引起免疫抑制中的分子机制,则有利于对FMD进行有效的防控提供科学依据。本文首先验证出与PCBP2发生互作的FMDV蛋白(VP2、2B、VP0、2C、3D)。接着阐明PCBP2负调控细胞的免疫应答。将互作蛋白分别与PCBP2共转染,双荧光素酶报告试验初步证实2C、3D、VP0和2B进一步抑制IFN-β的产生。据文献报告,PCBP2能够通过E3泛素连接酶AIP4泛素化降解VISA,以达到对细胞免疫应答的负调控作用[32],随后将2C、3D、VP0和2B分别与PCBP2共转染,Western blot试验检测内、外源VISA的降解情况。结果表明,VP0和PCBP2共转染能增加VISA的降解,从而减少免疫应答中IFN-β的产生,增强FMDV在宿主细胞中的活性。前言中提到VP3也能降解VISA,抑制IFN-β的产生,但VP3是通过影响VISA的RNA水平达到降解VISA蛋白的目的,抑制细胞的免疫应答;而VP0对VISA转录水平的影响将在后续试验中进行,目前推测VP0可能通过泛素化途径直接或间接降解VISA,以达到对IFN-β启动子活性的抑制,促进FMDV的增殖,这些猜想还需要进一步验证。对于VP0、PCBP2和VISA三者之间的具体关系,也需要我们继续深入研究下去。

4 结论

PCBP2能够与FMDV蛋白VP0、VP2、2B、2C和3D发生相互作用,且负调控Ⅰ型干扰素产生的信号通路,同时PCBP2能特异性降解VISA并呈剂量依赖效应;双荧光素酶报告试验证实VP0、2B、2C和3D蛋白可以促进PCBP2对IFN-β启动子活性的抑制作用,其中只有VP0蛋白能协助PCBP2进一步引起VISA的特异性降解。由此可知,PCBP2通过与FMDV VP0蛋白相互作用,引起通路蛋白VISA的进一步降解,导致宿主细胞中IFN-β分泌减少,从而保护FMDV在细胞中的繁殖和生长。

参考文献
[1] ZHU Z X, WANG G Q, YANG F, et al. Foot-and-mouth disease virus viroporin 2B antagonizes RIG-Ⅰ-mediated antiviral effects by inhibition of its protein expression[J]. J Virol, 2016, 90(24): 11106–11121. DOI: 10.1128/JVI.01310-16
[2] MA X Q, LI P H, SUN P, et al. Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus[J]. Infect Genet Evol, 2015, 31: 17–24. DOI: 10.1016/j.meegid.2015.01.003
[3] NAYAK A, GOODFELLOW I G, BELSHAM G J. Factors required for the uridylylation of the foot-and-mouth disease virus 3B1, 3B2, and 3B3 peptides by the RNA-dependent RNA polymerase (3D(pol)) in vitro[J]. J Virol, 2005, 79(12): 7698–7706. DOI: 10.1128/JVI.79.12.7698-7706.2005
[4] LI D, YANG W P, YANG F, et al. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway[J]. FASEB J, 2016, 30(5): 1757–1766. DOI: 10.1096/fj.15-281410
[5] LI X Y, WANG J C, LIU J, et al. Engagement of soluble resistance-related calcium binding protein (sorcin) with foot-and-mouth disease virus (FMDV) VP1 inhibits type Ⅰ interferon response in cells[J]. Vet Microbiol, 2013, 166(1-2): 35–46. DOI: 10.1016/j.vetmic.2013.04.028
[6] AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4): 783–801. DOI: 10.1016/j.cell.2006.02.015
[7] LIAO Z W, WAN Q Y, SU H, et al. Pattern recognition receptors in grass carp Ctenopharyngodon idella:Ⅰ. Organization and expression analysis of TLRs and RLRs[J]. Dev Comp Immunol, 2017, 76: 93–104. DOI: 10.1016/j.dci.2017.05.019
[8] BHATELIA K, SINGH K, SINGH R. TLRs:Linking inflammation and breast cancer[J]. Cell Signal, 2014, 26(11): 2350–2357. DOI: 10.1016/j.cellsig.2014.07.035
[9] KATO H, TAKEUCHI O, SATO S, et al. Differential roles of MDA5 and RIG-Ⅰ helicases in the recognition of RNA viruses[J]. Nature, 2006, 441(7089): 101–105. DOI: 10.1038/nature04734
[10] LI W W, ZHU Z X, CAO W J, et al. Esterase D enhances type Ⅰ interferon signal transduction to suppress foot-and-mouth disease virus replication[J]. Mol Immunol, 2016, 75: 112–121. DOI: 10.1016/j.molimm.2016.05.016
[11] WU Y B, WU X Q, WU L H, et al. The anticancer functions of RIG-Ⅰ-like receptors, RIG-Ⅰ and MDA5, and their applications in cancer therapy[J]. Transl Res, 2017, 190: 51–60. DOI: 10.1016/j.trsl.2017.08.004
[12] LIN D D, ZHANG M, ZHANG M X, et al. Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6[J]. Proc Natl Acad Sci U S A, 2015, 112(36): 11324–11329. DOI: 10.1073/pnas.1509968112
[13] SHU H B, WANG Y Y. Adding to the STING[J]. Immunity, 2014, 41(6): 871–873. DOI: 10.1016/j.immuni.2014.12.002
[14] REN C, ZHANG J, YAN W S, et al. RNA-binding protein PCBP2 regulates p73 expression and p73-dependent antioxidant defense[J]. J Biol Chem, 2016, 291(18): 9629–9337. DOI: 10.1074/jbc.M115.712125
[15] YANATORI I, RICHARDSON D R, TOYOKUNI S, et al. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer[J]. J Biol Chem, 2017, 292(32): 13205–13229. DOI: 10.1074/jbc.M117.776021
[16] WAN C G, GONG C, ZHANG H F, et al. β2-adrenergic receptor signaling promotes pancreatic ductal adenocarcinoma (PDAC) progression through facilitating PCBP2-dependent c-myc expression[J]. Cancer Lett, 2016, 373(1): 67–76. DOI: 10.1016/j.canlet.2016.01.026
[17] BEDARD K M, DAIJOGO S, SEMLER B L. A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation[J]. EMBO J, 2007, 26(2): 459–467. DOI: 10.1038/sj.emboj.7601494
[18] YOU F P, SUN H, ZHOU X, et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4[J]. Nat Immunol, 2009, 10(12): 1300–1308. DOI: 10.1038/ni.1815
[19] ROBINSON L, KNIGHT-JONES T J D, CHARLESTON B, et al. Global Foot-and-Mouth disease research update and gap analysis:7-pathogenesis and molecular biology[J]. Transbound Emerg Dis, 2016, 63(S1): 63–71.
[20] KNOWLES N J, SAMUEL A R. Molecular epidemiology of Foot-and-Mouth disease virus[J]. Virus Res, 2003, 91(1): 65–80. DOI: 10.1016/S0168-1702(02)00260-5
[21] ROBINSON L, KNIGHT-JONES T J D, CHARLESTON B, et al. Global Foot-and-Mouth disease research update and gap analysis:6-immunology[J]. Transbound Emerg Dis, 2016, 63(S1): 56–62.
[22] KATOCH A, GEORGE B, IYYAPPAN A, et al. Interplay between PTB and miR-1285 at the p533'UTR modulates the levels of p53 and its isoform Δ40p53α[J]. Nucleic Acids Res, 2017, 45(17): 10206–10217. DOI: 10.1093/nar/gkx630
[23] MAHONY R, BROADBENT L, MAIER-MOORE J S, et al. The RNA binding protein La/SS-B promotes RIG-Ⅰ-mediated type Ⅰ and type Ⅲ IFN responses following Sendai viral infection[J]. Sci Rep, 2017, 7: 14537. DOI: 10.1038/s41598-017-15197-9
[24] KIEFT J S, ZHOU K H, GRECH A, et al. Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation[J]. Nat Struct Biol, 2002, 9(5): 370–374.
[25] EL-HAGE N, LUO G X. Replication of hepatitis C virus RNA occurs in a membrane-bound replication complex containing nonstructural viral proteins and RNA[J]. J Gen Virol, 2003, 84(Pt 10): 2761–2769.
[26] CHOI K S, MIZUTANI A, LAI M M C. SYNCRIP, a member of the heterogeneous nuclear ribonucleoprotein family, is involved in mouse hepatitis virus RNA synthesis[J]. J Virol, 2004, 78(23): 13153–13162. DOI: 10.1128/JVI.78.23.13153-13162.2004
[27] CHENG M H K, JANSEN R P. A jack of all trades:the RNA-binding protein vigilin[J]. Wiley Interdiscip Rev RNA, 2017, 8(6): e1448. DOI: 10.1002/wrna.1448
[28] JI X J, PARK J W, BAHRAMI-SAMANI E, et al. αCP binding to a cytosine-rich subset of polypyrimidine tracts drives a novel pathway of cassette exon splicing in the mammalian transcriptome[J]. Nucleic Acids Res, 2016, 44(5): 2283–2297. DOI: 10.1093/nar/gkw088
[29] TANG S L, GAO Y L, CHEN X B. MicroRNA-214 targets PCBP2 to suppress the proliferation and growth of glioma cells[J]. Int J Clin Exp Pathol, 2015, 8(10): 12571–12576.
[30] GHANEM L R, KROMER A, SILVERMAN I M, et al. The Poly(C) binding protein Pcbp2 and its retrotransposed derivative Pcbp1 are independently essential to mouse development[J]. Mol Cell Biol, 2015, 36(2): 304–319.
[31] GAO Y, SUN S Q, GUO H C. Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements[J]. Virol J, 2016, 13: 107. DOI: 10.1186/s12985-016-0561-z
[32] JACOBS J L, COYNE C B. Mechanisms of MAVS regulation at the mitochondrial membrane[J]. J Mol Biol, 2013, 425(24): 5009–5019. DOI: 10.1016/j.jmb.2013.10.007