畜牧兽医学报  2018, Vol. 49 Issue (7): 1394-1404. DOI: 10.11843/j.issn.0366-6964.2018.07.008    PDF    
精料类型对肉羊饲粮养分消化率及尿嘌呤衍生物排出量的影响
富丽霞1,2, 马涛1, 刁其玉1, 成述儒2, 宋雅喆1     
1. 中国农业科学院饲料研究所, 农业部饲料生物技术重点试验室, 北京 100081;
2. 甘肃农业大学动物科学技术学院, 兰州 730070
摘要:旨在建立利用嘌呤衍生物排出量估测微生物氮产量的模型。本研究选择10只平均体重为(47.4±4.4)kg健康的杜寒杂交成年公羊。10种全混颗粒饲粮,单一精料替换比例30%,每个处理10只羊,每个重复1只羊,试验按时间和饲粮划分为10期进行;每种饲粮饲喂20 d,其中预试期15 d,正试期5 d;整体试验持续200 d。试验测定了饲喂10种不同精料饲粮肉羊的营养物质消化率及尿嘌呤衍生物(PD)排出量。结果表明:1)饲粮营养成分的消化率与营养成分含量存在相关性,精料类型不同饲粮消化率有差异,饲粮可消化蛋白质(DCP)的最佳预测因子是粗蛋白质(CP);10种饲粮的摄入氮、尿氮、粪氮等均因精料类型不同呈极显著差异(P < 0.01)。2)10种饲粮的尿囊素、尿酸、黄嘌呤(包括次黄嘌呤)占PD排出量的比例均因饲粮类型的不同呈极显著差异(P < 0.01),占PD排出量的比例范围分别是85.60%~92.47%、2.54%~7.18%、3.20%~7.41%;10种饲粮的嘌呤氮指数(PNI)因饲粮类型的不同呈极显著差异(P < 0.01),变化范围是0.03~0.10,然而PD排出量与摄入氮和微生物氮(MN)存在强的线性相关。摄入氮与氮表观消化率、尿氮和氮沉积具有强相关关系,建立的沉积氮(Y)估测方程式:Y=0.244 9×摄入氮-1.319 9(R2=0.825);PD排出量与摄入氮以及MN均存在线性强相关关系,建立的估测方程式分别是PD=0.119 7×摄入氮+10.161(R2=0.925)、MN=0.746 1×PD+1.785 4(R2=0.898)。
关键词肉羊    沉积氮    嘌呤衍生物    微生物氮    估测方程式    
Effect of Different Concentrates on Nutrient Digestibility and Excretion of Purine Derivatives in Urine of Mutton Sheep
FU Li-xia1,2, MA Tao1, DIAO Qi-yu1, CHENG Shu-ru2, SONG Ya-zhe1     
1. Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
2. College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
Abstract: The aim of this study was to establish a model for estimating microbial nitrogen with purine derivatives. Ten Dorper×thin-tailed Han crossbred, non-castrated adult rams with(47.4±4.4) kg BW were assigned to 10 experimental diet treatments with different concentrate sources in a single factor design, and 10 rams in each treatment. The experimental diet included 10 pelleted TMR with a single concentrate ratio of 30%. The experiment included 10 periods in which 10 lambs were fed with one of the 10 pelleted TMR. Each period lasted for 20 d(15 d for adaptation and 5 d for trial period) and the total experiment lasted for 200 d. This experiment study the effect of 10 different concentrates on nutrient digestibility and excretion of purine derivatives in urine of mutton sheep. The results showed that:1)The digestibility of nutrients in diets was related to the content of nutrients, and the digestibility of diets with different concentrates was different. The best predictors of dietary digestible crude protein(DCP) was crude protein(CP). The urinary nitrogen, fecal nitrogen and intake nitrogen of lambs fed 10 diets with different concentrates showed significant difference(P < 0.01). 2) The proportion of allantoin, uric acid, xanthine(included hypoxanthine) in total purine derivative(PD) excretion were significantly different(P < 0.01) among 10 treatments, and the ratios were 85.60%-92.47%, 2.54%-7.18%, 3.20%-7.41%, respectively. Purine nitrogen indexes were significantly different(P < 0.01) among 10 treatments, and range was 0.03-0.10. However, PD excretion had a strong linear relationship with intake nitrogen and microbial nitrogen(MN). Intake N had a strong relationship with apparent digestibility of N, urine nitrogen and retained N. A linear relationship was found between retained N(Y) and intake N:Y=0.244 9×intake N-1.319 9(R2=0.825). A linear relationship was found between PD excretion and intake N:PD excretion=0.119 7×intake N+10.161(R2=0.925), and a linear relationship was found between PD excretion and MN:MN=0.746 1×PD+1.785 4(R2=0.898).
Key words: mutton sheep     retained N     purine derivatives     microbial nitrogen     prediction equation    

反刍动物代谢蛋白质(MP)或小肠可消化蛋白质包括小肠可消化菌体蛋白质(MCP)和过瘤胃蛋白质两部分。正常饲喂条件下,进入小肠消化吸收的主要是MCP,可达50%以上[1],因此定量分析MCP对于测定MP很重要。应用微生物标记物法估测MCP含量,需要给动物安装瘘管,而且测定过程比较繁琐。尿嘌呤衍生物(PD)法克服了安装瘘管这一缺点,测定结果比较准确,因此被广泛应用于测定MCP。国内外应用PD法估测MCP的报道较多,Martínorúe和Gonzalez-ronquillo等[2-3]已经建立了肉牛和奶牛等不同动物的估测模型,Ma等[4]报道,PD排出量可以预测反刍动物MN含量,PNI可以评价饲粮中氮的利用效率[5]。先前应用PD预测肉羊MCP的研究主要集中在不同饲喂水平[6]和精粗比[7-8]上,且饲料原料组成较为单一,精料是反刍动物MCP合成的重要来源,饲粮蛋白质来源的不同是影响微生物蛋白质合成的主要因素[9]

本试验以杜寒杂交公羊为试验动物,采用套算法探究肉羊在10种常用精料组成的饲粮条件下,营养物质消化率、PD排出规律及氮平衡情况,为建立肉羊MCP模型提供参考。

1 材料与方法 1.1 主要试验材料

尿囊素:纯度≥98.0%(Sigma),尿酸:纯度≥99.0%(Sigma),黄嘌呤氧化酶:7.6 U·mL-1(Sigma),尿酸酶:5.0 U·mg-1(Sigma)。

1.2 试验动物与设计

本试验选用10只体况健康,平均体重为(47.4±4.4) kg的杜寒杂交成年公羊,试验分10期处理,每期处理10只羊,每个重复1只羊。试验采用单因子设计,试验饲粮为10种全混颗粒饲料(每期饲喂一种饲粮),当单一精料替换比例在30%时,配方精粗比与生产实践最为接近(赵江波等[10]),因此本试验中饲粮分别由高粱、玉米、大麦、小麦、燕麦、菜籽粕、花生粕、棉籽粕、豆粕、DDGS替换基础饲粮中羊草、玉米和豆粕。饲粮组成及营养水平见表 1。每种饲粮饲喂20 d,其中预试期15 d,正试期5 d,正试期全收粪和尿,整个试验持续200 d。

表 1 饲粮组成和营养水平(干物质基础) Table 1 Dietary composition and nutrient levels (DM basis)
1.3 饲养管理

试验羊提前打好耳号,使用伊维菌素进行驱虫,试验羊单栏饲养。每期消化代谢试验正试期前后均称重并记录。饲喂量按照维持需要饲喂,每天饲喂2次,分别于08:00、16:30各饲喂1次,每次饲喂600 g,自由饮水。

1.4 指标测定与方法 1.4.1 样品采集与处理

消化代谢试验正试期每天全收粪并称重,将粪样充分混匀并从不同位点取未受羊毛及尘土污染的部分样品,准确称取总粪量的10%于自封袋中,置于-20 ℃冰箱保存;每天全收尿并记录尿量,收尿前于桶中加入100 mL 10%的稀硫酸,调整尿样pH至2~3,防止尿样腐败分解,4层纱布过滤,采集尿样时先加自来水将尿样稀释至5 L,混匀后取30 mL尿样于收尿瓶中,置于-20 ℃冰箱保存。

1.4.2 测定方法及计算公式

样品营养成分干物质(DM)、有机物(OM)、粗灰分(Ash)、粗蛋白质(CP)的测定参照张丽英[11]的方法,测定中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量时,先用胰蛋白酶及淀粉酶对样品进行酶解,再按照Van Soest等[12]方法进行操作。PD采用分光光度计进行测定[13]

营养物质消化率、氮平衡及PD排出量等指标计算公式:

饲粮中某营养成分的表观消化率(%)=100×(饲粮采食量×饲粮中该营养成分的含量-排粪量×粪中该养分含量)/(饲粮采食量×饲粮中该营养成分的含量);

沉积氮(g·d-1)=摄入氮-粪氮-尿氮;

吸收氮(g·d-1)=摄入氮-粪氮;

氮沉积率(%)= 100×沉积氮/摄入氮;

氮表观消化率(%)= 100×吸收氮/摄入氮;

PD(mmol·d-1)=尿囊素+尿酸+黄嘌呤+次黄嘌呤;

嘌呤氮指数(PNI)=(PD×0.056)/尿氮排出量[14]

PD排出量(mmol·d-1)=0.84X+0.150W0.75×e-0.25X [13],式中X为嘌呤吸收量(mmol·d-1);

微生物氮(MN,g·d-1)=70X ÷(0.83×0.116×1 000)=0.727X[15],式中,X为嘌呤吸收量(mmol·d-1),0.83为微生物嘌呤在肠道中平均消化率,70为嘌呤含氮量是70 mg N·mmol-1,0.116为瘤胃微生物嘌呤氮与总氮的比值。

1.5 数据处理

试验数据采用Excel整理统计,采用SAS 9.1进行单因素方差分析(one-way ANOVA, LSD),并采用Duncan氏法进行多重比较。P<0.05作为差异显著的判断标准。

2 结果 2.1 精料类型对肉羊营养物质表观消化率的影响

表 2可以看出,10种饲粮的DM、OM、CP、NDF、ADF的平均表观消化率分别是63.21%、67.00%、71.76%、42.28%、40.52%,变异系数分别是6.48%、5.57%、9.04%、11.62%、14.67%。DM、OM和CP的变异系数均在10%以下,ADF的变异系数最高。

表 2 精料类型对肉羊营养物质表观消化率的影响 Table 2 Effect of different concentrates on apparent digestibility of nutrients of mutton sheep

表 3表明,营养物质消化率与饲粮中的营养物质含量存在相关性。饲粮DM消化率与NDF呈极显著负相关(P < 0.01),与ADF显著负相关(P < 0.05);OM消化率与ADF呈极显著负相关(P < 0.01),与NDF显著负相关(P < 0.05);CP消化率与OM呈显著负相关(P < 0.05),与CP呈极显著正相关(P < 0.01)。可见,饲粮可消化蛋白质(DCP)的最佳预测因子是粗蛋白质(CP)。

表 3 养分消化率与概略养分相关关系 Table 3 Correlation between nutrient digestibility and proximate nutrients
2.2 精料类型对肉羊氮表观消化率的影响

表 4可以看出,10种饲粮的摄入氮、尿氮、粪氮等差异显著(P < 0.01),氮的摄入量与总排出氮及存留氮均有相关,其中花生粕饲粮摄入氮最多,总排出氮最高;玉米饲粮摄入氮最低,总排出氮也较低。氮的表观消化率为64.04%~83.00%,氮沉积率为13.46%~25.11%。10个处理组的羊只均处于正氮平衡状态,摄入氮与沉积氮呈线性相关(R2=0.825,图 1),随着摄入氮的增加,尿氮呈直线增加(R2=0.985,图 2)。

表 4 精料类型对肉羊氮表观消化率的影响 Table 4 Effect of different concentrates on N apparent digestibility of mutton sheep
图 1 不同精料类型沉积氮与摄入氮的相关关系 Figure 1 The correlation between retained N and intake N in different concentrates
图 2 不同精料类型尿氮排出量与摄入氮的相关关系 Figure 2 The correlation between urinary nitrogen excretion and intake N in different concentrates
2.3 精料类型对肉羊尿嘌呤衍生物排出量的影响

表 5显示,尽管10种饲粮的粗蛋白质和表观消化率不同,但黄嘌呤+次黄嘌呤排出量比较稳定,差异不显著(P>0.05);10种饲粮的尿囊素和尿酸排出量差异极显著(P < 0.01),花生粕饲粮的尿囊素和尿酸排出量最高,玉米饲粮的尿囊素排出量最低,燕麦饲粮尿酸排出量最低;10种饲粮尿囊素、尿酸、黄嘌呤+次黄嘌呤占PD总排出量的比例差异极显著(P < 0.01),占PD总排出量比例范围分别是85.60%~92.47%、2.54%~7.18%、3.20%~7.41%。10种饲粮的PNI均在0.1之下。10种饲粮MN数值稳定,差异不显著(P>0.05),MN含量范围是10.84~13.99 g·d-1。摄入氮与PD排出量存在线性相关(R2=0.925,图 3),建立的方程式为:PD排出量=0.119 7×摄入氮+10.161;MN与PD排出量存在线性相关(R2=0.898,图 4),由此建立的方程式:MN=0.746 1×PD+1.785 4。

表 5 精料类型对肉羊尿嘌呤衍生物排出量的影响 Table 5 Effect of different concentrates on excretion of purine derivatives in urine of mutton sheep
图 3 不同精料类型尿嘌呤衍生物排出量与摄入氮的相关关系 Figure 3 The correlation between PD excretion and intake N in different concentrates
图 4 不同精料类型尿嘌呤衍生物排出量与微生物氮的相关关系 Figure 4 The correlation between PD excretion and MN in different concentrates
3 讨论 3.1 精料类型对肉羊营养物质表观消化率的影响

消化率是评价饲料营养价值的重要指标,饲粮的组成、采食量、动物机体本身都会影响消化率的变化。本试验10种饲粮的DM、OM、CP、NDF、ADF表观消化率的变化范围:57.32%~67.40%、61.45%~70.44%、64.03%~80.16%、36.37%~48.03%、32.21%~47.00%。除NDF之外,DM、OM、CP、ADF等4种营养物质表观消化率与赵江波等[10]在杜寒杂交肉用羯羊上(分别是:57.46%~68.93%、58.32%~72.23%、63.56%~80.38%、33.90%~47.06%)的研究结果相近。本研究中,10种饲粮CP、NDF等物质含量存在着差异,故表观消化率的差异符合营养消化的逻辑,孔祥浩等[16]通过对不同NDF水平对肉羊饲粮营养物质表观消化率影响的探究,结果显示,NDF水平低于30%或超过45%都对营养物质的表观消化率产生一定的影响,本试验中,NDF水平在33.33%~41.33%之间,处于上述研究报道的适宜范围之内。日粮中各种营养物质的含量存在着互作,DM消化率与ADF呈显著负相关,刘洁等[17]研究了不同精粗比对肉羊营养物质表观消化率的影响得出类似的结果;OM表观消化率与NDF呈极显著负相关,CP表观消化率与CP呈极显著正相关、与OM呈显著负相关,与赵江波等[10]的研究结果相似。本试验中,饲粮CP含量为10.56%~26.89%,随着不同饲粮蛋白质水平的提高,CP表观消化率有升高的趋势,但对其他几种营养物质的表观消化率没有显著影响,李志静等[18]、彭玉麟等[19]和王波等[20]的研究也得出类似的结果。

3.2 精料类型对肉羊氮表观消化率的影响

本试验中,10种饲粮的CP水平不同,随着摄入氮水平的增加,氮总排出量显著增加,氮沉积量与氮表观消化率增加,粪氮排出量有增加的趋势,尿氮的排出量呈线性增加,Castillo等[21]、Marini和Van Amburgh[22]和楼灿等[23]得出类似的结果。反刍动物对蛋白质的消化利用与瘤胃微生物对其降解合成、氮排出量有关,MCP占反刍动物小肠吸收蛋白质的很大一部分,MCP的合成与饲粮可降解蛋白质(RDP)及有机物采食量(DOMI)有关,本研究是在维持水平进行,因此影响MCP合成的关键因素是RDP含量,随着饲粮摄入氮的增加,MCP合成量增加,反刍动物小肠吸收的蛋白质一部分用于动物自身维持基本生命活动,另一部分沉积于机体及随粪尿排出体外,所以氮沉积量增加,氮总排出量增加。本试验中,10种饲粮均处于正氮平衡状态,其中尿氮排出量均大于粪氮排出量,Deng等[24]研究了20~50 kg杜寒杂交肉羊的氮代谢规律,除自由采食水平之外,其他处理组尿氮排出量均大于粪氮排出量,Zou等[25]、Jardstedt等[26]和楼灿等[27]研究得出类似的结果,也有报道显示,粪氮排出量大于尿氮排出量[28],但Hristov等[29]报道,瘤胃可降解蛋白质的过量供给主要以尿氮的形式排出,Agle等[30]通过减少饲料中的CP和RDP的浓度证实了这一观点。

3.3 精料类型对肉羊尿嘌呤衍生物排出量的影响

本试验中,PD排出量为12.27~16.33 mmol·d-1,与马涛等[6]研究的不同采食水平下杜寒杂交肉羊PD排出量(9.0~18.8 mmol·d-1)接近,在Chen等[31]研究的欧洲绵羊PD排出量(6.4~22.6 mmol·d-1)范围之内。本研究中,10种不同类型饲料的PD排出量表明,随摄入氮水平的增加,PD排出量增加,并且两者间具有强相关性(R2=0.925),Ma等[5]、Dipu等[32]和Zhou等[33]的研究得出了类似的结果。反刍动物采食量相同的情况下,摄入氮越多,即饲粮提供的氮源越丰富,微生物合成蛋白越多,进而PD排出量也越多[34],因此可利用方程Y=0.119 7X+10.161来通过摄入氮预测PD排出量,Y为PD排出量(mmol·d-1),X是摄入氮量(g·d-1)。其中黄嘌呤+次黄嘌呤的排出量很稳定,表明它们在体内代谢途径的特殊性。本研究得出,尿囊素、尿酸、黄嘌呤+次黄嘌呤占PD总排出量的比例分别是89.42%、4.88%、5.70%,Belenguer等[35]研究得出,山羊所占比例分别是63.71%~88.60%、1.79%~9.15%、6.62%~27.27%,PD排出量与动物品种、饲粮组成、采食水平、摄入氮含量及蛋白质来源有关[32],本研究中,10种饲粮的蛋白来源不同,因此PD排出量有差异。本研究中,10种饲粮的MN合成量处于稳定状态,并且MN与PD排出量存在很强的相关性(R2=0.898),反刍动物小肠吸收的核酸主要来源于瘤胃微生物,微生物核酸在小肠中降解释放出嘌呤核苷和碱基, 最后转化为嘌呤衍生物, 随尿排出体外,因此可通过建立PD排出量与MN的相关关系来估测MN,进而估测微生物蛋白质的合成。所以可以利用PD=0.119 7×摄入氮+10.161和MN=0.746 1×PD+1.785 4这两个方程来通过摄入氮估测MN,得出微生物蛋白质的合成量。PNI是一种评价可降解饲粮氮转化为瘤胃微生物的简单、快速的指标,本研究得出,随着饲粮摄入氮的增加,PNI减少,Ma等[5]和Zhou等[33]得出类似的结果。

4 结论 4.1

在本试验日粮范畴内,肉羊日粮中蛋白质含量不同可以导致粗蛋白质表观消化率有差异,摄入氮与表观消化率、尿氮和氮沉积具有强相关关系;建立的沉积氮估测方程式:Y=0.244 9X-1.319 9(R2=0.825),Y为沉积氮(g·d-1),X是摄入氮(g·d-1)。

4.2

在本试验条件下,摄入氮与嘌呤衍生物排出量存在线性强相关关系,建立的嘌呤衍生物估测方程式为:PD=0.119 7×摄入氮+10.161(R2=0.925)。

4.3

在本试验条件下,嘌呤衍生物排出量与微生物氮存在强相关关系,建立的微生物氮估测方程式:MN=0.746 1×PD+1.785 4(R2=0.898)。

参考文献
[1] AFRC. Technical committee on responses to nutrients, Report 9.Nutritive requirements of ruminant animals:protein[J]. Nutr Abs Rev, Series B, 1992, 62: 787–835.
[2] MARTÍNORÚE S M, BALCELLS J, GUADA J A, et al. Microbial nitrogen production in growing heifers:direct measurement of duodenal flow of purine bases versus urinary excretion of purine derivatives as estimation procedures[J]. Anim Feed Sci Technol, 2000, 88(3-4): 171–188. DOI: 10.1016/S0377-8401(00)00221-2
[3] GONZALEZ-RONQUILLO M, BALCELLS J, GUADA J A, et al. Purine derivative excretion in dairy cows:endogenous excretion and the effect of exogenous nucleic acid supply[J]. J Dairy Sci, 2003, 86(4): 1282–1291. DOI: 10.3168/jds.S0022-0302(03)73712-6
[4] MA T, DENG K D, JIANG C G, et al. The relationship between microbial N synthesis and urinary excretion of purine derivatives in Dorper×thin-tailed Han crossbred sheep[J]. Small Rumin Res, 2013, 112(1-3): 49–55. DOI: 10.1016/j.smallrumres.2012.09.003
[5] MA T, DENG K D, TU Y, et al. Effect of dietary forage-to-concentrate ratios on urinary excretion of purine derivatives and microbial nitrogen yields in the rumen of Dorper crossbred sheep[J]. Livest Sci, 2014, 160: 37–44. DOI: 10.1016/j.livsci.2013.11.013
[6] 马涛, 刁其玉, 邓凯东, 等. 饲粮不同采食水平下肉羊氮沉积和尿中嘌呤衍生物排出规律的研究[J]. 动物营养学报, 2012, 24(7): 1229–1235.
MA T, DIAO Q Y, DENG K D, et al. Nitrogen retention and urinary excretion of purine derivatives of mutton sheep at different levels of feed intake[J]. Chinese Journal of Animal Nutrition, 2012, 24(7): 1229–1235. (in Chinese)
[7] 杨膺白, 梁贤威, 郭辉, 等. 山羊尿中嘌呤衍生物排出规律的研究[J]. 黑龙江畜牧兽医, 2011(1): 64–66.
YANG Y B, LIANG X W, GUO H, et al. Study on the urinary excretion of purine derivatives on goat[J]. Heilongjiang Animal Science and Veterinary Medicine, 2011(1): 64–66. (in Chinese)
[8] 马涛, 刁其玉, 邓凯东, 等. 日粮不同精粗比对肉羊氮沉积和尿嘌呤衍生物排出量的影响[J]. 中国畜牧杂志, 2012, 48(15): 29–33.
MA T, DIAO Q Y, DENG K D, et al. Effect of different ratio of concentrate to roughage on N rentention and urinary excretion of purine derivatives in mutton sheep[J]. Chinese Journal of Animal Science, 2012, 48(15): 29–33. DOI: 10.3969/j.issn.0258-7033.2012.15.009 (in Chinese)
[9] 韦鸿战, 莫彦. 反刍动物瘤胃微生物蛋白合成的机理及影响因素进展[J]. 北京农业, 2012(21): 122.
WEI H Z, MO Y. Ruminant rumen microbial protein synthesis mechanism an dinfluencing factors of the progress[J]. Beijing Agriculture, 2012(21): 122. (in Chinese)
[10] 赵江波, 魏时来, 赵明明, 等. 精料来源对肉羊营养物质消化率的影响及代谢能预测模型的建立[J]. 畜牧兽医学报, 2016, 47(11): 2257–2265.
ZHAO J B, WEI S L, ZHAO M M, et al. Effect of concentrate source on nutrient digestibility and establishment of prediction model of metabolizable energy in mutton sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(11): 2257–2265. (in Chinese)
[11] 张丽英. 饲料分析及饲料质量检测技术[M]. 3版. 北京: 中国农业大学出版社, 2007.
ZHANG L Y. Feed analysis and quality inspection technology[M]. 3rd ed. Beijing: China Agricultural University Press, 2007. (in Chinese)
[12] VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. J Dairy Sci, 1991, 74(10): 3583–3597. DOI: 10.3168/jds.S0022-0302(91)78551-2
[13] CHEN X B, GOMES M J. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives-an overview of the technical details[M]. Bucksburn Aberdeen UK: International Feed Resources Unit, Rowett Research Institute, 1995.
[14] GEORGE S K, VERMA A K, MEHRA U R, et al. Nitrogen utilization in goats fed various oil cakes[J]. Archiva Zootechnica, 2011, 14(2): 76–91.
[15] CHEN X B. Excretion of purine derivatives by sheep and cattle and its use for the estimation of absorbed microbial protein[D]. Aberdeen: University of Aberdeen, 1989.
[16] 孔祥浩, 郭金双, 朱晓萍, 等. 不同NDF水平肉羊日粮养分表观消化率研究[J]. 动物营养学报, 2010, 22(1): 70–74.
KONG X H, GUO J S, ZHU X P, et al. Study on apparent nutrients digestibility of mutton sheep diets with different neutral detergent fiber levels[J]. Chinese Journal of Animal Nutrition, 2010, 22(1): 70–74. (in Chinese)
[17] 刘洁, 刁其玉, 赵一广, 等. 肉用绵羊饲料养分消化率和有效能预测模型的研究[J]. 畜牧兽医学报, 2012, 43(8): 1230–1238.
LIU J, DIAO Q Y, ZHAO Y G, et al. Prediction of nutrient digestibility and energy concentrations using chemical compositions in meat sheep feeds[J]. Acta Veterinaria et Zootechnica Sinica, 2012, 43(8): 1230–1238. (in Chinese)
[18] 李志静, 眭丹, 周玉香. 不同蛋白水平对舍饲滩羊消化代谢及血液生化指标的影响[J]. 中国畜牧杂志, 2014, 50(17): 39–43.
LI Z J, XU D, ZHOU Y X. Effect of dietary protein level on nutrient digestion metabolism and serum biochemical indexes in Tan Sheep[J]. Chinese Journal of Animal Science, 2014, 50(17): 39–43. DOI: 10.3969/j.issn.0258-7033.2014.17.010 (in Chinese)
[19] 彭玉麟, 贾志海, 卢德勋, 等. 不同蛋白质水平的日粮对内蒙古白绒山羊消化代谢的影响[J]. 畜牧兽医学报, 2002, 33(4): 321–326.
PENG Y L, JIA Z H, LU D X, et al. Effects of different protein levels on digestion and metabolism of Inner Mongolian White Cashmere goats[J]. Acta Veterinaria et Zootechnica Sinica, 2002, 33(4): 321–326. (in Chinese)
[20] 王波, 柴建民, 王海超, 等. 蛋白水平对早期断奶双胞胎湖羊公羔营养物质消化与血清指标的影响[J]. 畜牧兽医学报, 2016, 47(6): 1170–1179.
WANG B, CHAI J M, WANG H C, et al. Effects of protein levels on nutrient digestion and metabolism and serum parameters of early-weaned male Hu twin lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(6): 1170–1179. (in Chinese)
[21] CASTILLO A R, KEBREAB E, BEEVER D E, et al. The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets[J]. J Anim Sci, 2001, 79(1): 247–253. DOI: 10.2527/2001.791247x
[22] MARINI J C, VAN AMBURGH M E. Partition of nitrogen excretion in urine and the feces of Holstein replacement heifers[J]. J Dairy Sci, 2005, 88(5): 1778–1784. DOI: 10.3168/jds.S0022-0302(05)72852-6
[23] 楼灿, 姜成钢, 马涛, 等. 杜寒杂交繁殖母羊氮代谢和维持净蛋白质需要的研究[J]. 畜牧兽医学报, 2014, 45(6): 943–952.
LOU C, JIANG C G, MA T, et al. Study of nitrogen metabolism and net protein requirement for maintenance of Dorper×Thin-tailed Han crossbred breeding ewes[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(6): 943–952. (in Chinese)
[24] DENG K D, DIAO Q Y, JIANG C G, et al. Energy requirements for maintenance and growth of germ an mutton merino crossbred lambs[J]. J Integr Agric, 2013, 12(4): 670–677. DOI: 10.1016/S2095-3119(13)60285-3
[25] ZOU C X, LIVELY F O, WYLIE A R G, et al. Estimation of the maintenance energy requirements, methane emissions and nitrogen utilization efficiency of two suckler cow genotypes[J]. Animal, 2016, 10(4): 616–622. DOI: 10.1017/S1751731115002268
[26] JARDSTEDT M, HESSLE A, NØRGAARD P, et al. Feed intake and urinary excretion of nitrogen and purine derivatives in pregnant suckler cows fed alternative roughage-based diets[J]. Livest Sci, 2017, 202: 82–88. DOI: 10.1016/j.livsci.2017.05.026
[27] 楼灿, 姜成钢, 马涛, 等. 饲养水平对肉用绵羊空怀期和泌乳期营养物质消化代谢的影响[J]. 畜牧兽医学报, 2015, 46(3): 407–415.
LOU C, JIANG C G, MA T, et al. Effects of different feeding levels on digestion and metabolism of meat ewes during non-pregnancy and lactation[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(3): 407–415. (in Chinese)
[28] SENA J A B, VILLELA S D J, SANTOS R A, et al. Intake, digestibility, performance, and carcass traits of rams provided with dehydrated passion fruit (Passiflora edulis f.flavicarpa) peel, as a substitute of Tifton 85(Cynodon spp.)[J]. Small Rumin Res, 2015, 129: 18–24. DOI: 10.1016/j.smallrumres.2015.05.005
[29] HRISTOV A N, ETTER R P, ROPP J K, et al. Effect of dietary crude protein level and degradability on ruminal fermentation and nitrogen utilization in lactating dairy cows[J]. J Anim Sci, 2004, 82(11): 3219–3229. DOI: 10.2527/2004.82113219x
[30] AGLE M, HRISTOV A N, ZAMAN S, et al. The effects of ruminally degraded protein on rumen fermentation and ammonia losses from manure in dairy cows[J]. J Dairy Sci, 2010, 93(4): 1625–1637. DOI: 10.3168/jds.2009-2579
[31] CHEN X B, MEJIA A T, KYLE D J, et al. Evaluation of the use of the purine derivative:creatinine ratio in spot urine and plasma samples as an index of microbial protein supply in ruminants:studies in sheep[J]. J Agric Sci, 1995, 125(1): 137–143. DOI: 10.1017/S002185960007458X
[32] DIPU M T, GEORGE S K, SINGH P, et al. Measurement of microbial protein supply in Murrah buffaloes (Bubalus bubalis) using urinary purine derivatives excretion and PDC index[J]. Asian-Australas J Anim Sci, 2006, 19(3): 347–355. DOI: 10.5713/ajas.2006.347
[33] ZHOU J W, MI J D, DEGEN A A, et al. Urinary purine derivatives excretion, rumen microbial nitrogen synthesis and the efficiency of utilization of recycled urea in Tibetan and fine-wool sheep[J]. Anim Feed Sci Technol, 2017, 227: 24–31. DOI: 10.1016/j.anifeedsci.2017.03.005
[34] JETANA T, SUTHIKRAI W, USAWANG S, et al. The effects of concentrate added to pineapple (Ananas comosus Linn.Mer.) waste silage in differing ratios to form complete diets, on digestion, excretion of urinary purine derivatives and blood metabolites in growing, male, Thai swamp buffaloes[J]. Trop Anim Health Prod, 2009, 41(4): 449–459. DOI: 10.1007/s11250-008-9207-5
[35] BELENGUER A, YAÑEZ D, BABER N H O, et al. Urinary excretion of purine derivatives and prediction of rumen microbial outflow in goats[J]. Livest Prod Sci, 2002, 77(2-3): 127–135. DOI: 10.1016/S0301-6226(02)00081-7